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A three-dimensional free-electron-laser theory in the small-signal regime is presented. In the first

part, we derive an energy theorem which relates the gain and the loss of an optical beam of arbitrary

shape, driven by an electron beam of arbitrary profile. %'e show how this theorem can be applied
for gain calculation and optimum resonator design. In the second part, we introduce a generalized

description of a Gaussian optical beam. This includes four real parameters: the on-axis intensity

and phase, the beam waist, and its radius of curvature. These quantities are made to evolve self-

consistently and are governed by a set of ordinary differential equations which are readily integrated

numerically. The solution of these equations provides an easy and intuitive means for the under-

standing of transverse effects induced by the interaction with the electron beam in a way which is

considerably simpler than the more accurate large-scale simulation techniques.

INTRODUCTION

In the free-electron laser (FEL), a beam of relativistic
electrons moves through a periodic magnetic field (undu-
lator or wiggler) while interacting with an optical beam
stored in a resonator.

The details of the start-up, amphfication, and satura-
tion processes of the FEL oscillator have been the subject
of extensive research in the past few years' based on one-
dimensional (1D) theories. The 1D model enabled one to
discuss the topics of small-signal-gain spectrum, efficien-
cy enhancement schemes, and pulse propagation. The
results obtained were generally in good agreement with
the observations made in the first two machines that be-

came operational. Both were low-gain machines and
employed short electron-beam pulses in which the longitu-
dinal effects were dominant.

The need for a three-dimensional description has arised
especially since the recent operation of a new machine
and the construction of another which incorporate high-

gain design. In such lasers the structure of the optical
mode will be largely influenced by the transverse effects
and may differ significantly from the well-known'o

empty-cavity modes.
In contrast to one-dimensional models where light is al-

lowed to propagate in only one direction, one may antici-
pate some fundamentally new phenomena such as trans-
verse multimode behavior, " focusing, ' ' and trapping'
of the optical mode as a result of the interaction with the
gain medium, which have been observed in conventional
lasers.

The term focusing is used whenever the interaction has
the effect of a positive lens (i.e., the geometrical rays bend
toward the axis). Beam trapping is understood as a situa-
tion where the optical mode propagates down the axis
without large-scale diffraction and the optical power is
kept confined in the transverse plane as a result of the in-
teraction. (This term should not be confused with a sirni-
lar term from ID I'EL theory which is related to the con-
finement of electron orbits in phase space. ) In conven-

tional lasers higher-order phenomena such as self-focusing
and self-trapping have also been considered. ' Self-action
is understood when a nonlinear term of the interaction is
included and its effect is pictured by means of a field-
dependent index of refraction. This work will be con-
cerned with linear theory only and we shall refer to focus-
ing and trapping caused by the lowest-order, linear change
in the index of refraction caused by the presence of the
electron beam. This change may lead, among other possi-
bilities, to the process of optical guiding similar to that
which takes place inside an optical fiber. '~

The standard linear methods of optics usually deal with
a light beam whose initial transverse profile is known and
calculate its propagation in free space. ' The difficulty in
treating the full FEL problem lies in incorporating the
optical-beam —electron-beam interaction, which evolves
along the axis into the picture. For strong fields, the in-

teraction tends to be highly nonlinear and requires numer-
ical computation even in the simpler one-dimensional
model.

Previous works on this subject may be classified rough-
ly in the following categories.

(a) Single-pass amplifier treatments. ' ' In this con-
figuration which was realized in gain measurement experi-
ments, a semianalytical expression for the single-pass gain
and phase modulation of the input mode was evaluated in
the low-gain, small-signal regime. For discussion of the
saturation phase of the FEL oscillator, certain assump-
tions concerning the electron dynamics had to be made,
such as "freezing" its phase with respect to the light beam
phase.

(b) Self-consistent multipass calculations. These in-

clude purely numerical Fox-Li -type approaches ' and
mode expansion techniques. In the former group,
the wave front was propagated back and forth between the
resonator mirrors employing numerical integration with a
paraxial kernel. In the latter, the kernel was explicitly ex-
pressed in terms of free-propagation modes or its spatial
Fourier components, resulting in simplification of the
transverse integrals involved. In both cases the process
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was iterated successively until a steady-state oscillator
rhode was reached. These treatments were inspired by
similar calculations done in the context of conventional
lasers.

(c) Other, more recent works ' have considered FEL
optically guided modes by treating the interaction region
as a dielectric channel. The index of refraction of this
channel was computed analytically from the linearized
FEL equation and compared to numerical results obtained
by particle simulations. These studies were undertaken as
a result of current interest in a high-gain device operating
in a short-wavelength region for which good reflectors are
not available.

The object of the present article is to provide some sim-
ple and intuitive means for the understanding of the
transverse mode evolution in the FEL interaction. This is
in contrast to most of the works mentioned above which
emphasized a more accurate approach and turned out to
be computationally involved in many cases.

This paper consists of five sections. In Secs. I and II,
we summarize the linear FEL theory based on the coupled
Maxwell-Lorentz equations. In Sec. III we derive from it
an energy theorem that relates the change in the optical
power, the FEL gain, and the diffraction losses in the
resonator in the linear regime. This theorem is valid in
the low- and high-gain regime and can be applied provid-
ed one has an a priori knowledge of the mode structure.
We demonstrate its use in calculating the gain in some
simple cases.

In Sec. V, a general "Gaussian-like" form is assumed
for the optical beam. The beam is then characterized by
only four real parameters that are allowed to vary self-
consistently along the interaction region. These quantities
are the on-axis intensity and phase, the beam waist, and
its radius of curvature. Our theory yields a set of coupled
ordinary differential equations for these parameters. The
equations are easily solved numerically and one obtains a
good deal of information about the beam deformation
near the axis for various regions of the gain and the de-
tuning parameter.

terms of a carrier wave of frequency that is slowly modu-
lated in amplitude E(r, t) and phase p(r, t). The vector
po~en~ial is A =

I
E

I
(si ny, cosy, o)/k where

t/r=kz co—t+y(r, t), co=kc, and A, =2m/k is the optical
wavelength. When A(r, t) is inserted into Maxwell equa-
tions and an average is made over many wavelengths of
the optical beam, it results in the inhomogeneous parabol-
ic wave equation

——V' + a(r, z, ~)= —(je ' )r-,+,„,.

Here r=(x y)=(x y)(kl2L)'~, t and z have been
transformed to ~= ct /L, z = (z ct)/5—where 5 is the elec-
tron pulse length (here we will assume long pulses so
5=L). |)' =B /Bx +B /By accounts for the diffrac-
tion in the transverse plane. The transverse scaling dis-
tance (2L/k)'~ is a characteristic distance associated
with the diffraction. The quantity j (r, r)
=g

¹ P,L p(r, r)/ymc is related to the current densi-
ty of the beam. a(r, r)=4tr¹KLE(r,r)/y mc is the
normalized electric field. The lag of the eltx:tron beam
with respect to the optical beam over one undulator length
is given by the normalized slippage s =(1 Po)L/5. W—e
neglect the interaction between longitudinal modes (which
is mostly important in short-pulse FEL's) and set s =0.
( ) is an average over electrons in one wavelength of
light. The electron phase g is defined as
g=(k+ko)z cot. The curr—ent in the right-hand side of
(1.1) consists of many electrons obeying Lorentz's force
equation j =cP (BA/Bt)mc . Using the definitions of P,
g, A, and a, this equation takes on the form of the so-
called "pendulum equation"

f= —,
' (ae'~+c.c. ) . (1.2)

Equations (1.1) and (1.2) without the diffraction operator
have been used extensively before in 1D calculations. '

Our purpose is to develop a similar theory that will ern-
phasize the spatial mode characteristics of the problem.

I. THE PENDULUM
AND THE PARABOLIC WAVE EQUATIONS

The FEL problem is normally described by an equation
of motion for the electron beam derived from the Lorentz
force equation coupled with a field equation derived from
Maxwell's equations. Consider an electron beam perfect-
ly injected into a helical undulator of length L and period
Q =2m /ko, where the magnetic field is
8=80(cos(koz), sin(koz, 0)). The electron will move in
helical orbits with velocity cg=c( —P, cos(koz),
—P, sin(koz), PO), where cP, is the transverse velocity,
P, =K/y (for a linear undulator, replace IC/y by the rms
velocity K/v 2y), where K=e8+/2nm—c cpa is. the .in-
jection longitudinal velocity„e is the magnitude of the
electron charge, m is the electron mass, c is the speed of
light, and y, as usual, defined by y=(1 —Po) '~ . Under
the scalar approximation the optical field is taken to have
a polarization similar to that of the spontaneous emission
from electrons in the undulator. The field is described in

II. LINEAR FEL THEORY

Equations (1.1) and (1.2) are quite general and are cap-
able of describing the evolution of the optical and electron
beam for a wide range of the field parameter a. For
moderate to strong fields the nonlinear effects imbedded
in (1.2) dominate the problem and one must resort to nu-
merical methods.

Some analytical progress is possible if one assumes
weak fields. To first order in small quantities we may
write the electron phase as

(2.1)

where g is of order a, so the electron phase is nearly
linear in ~. This allows linearization of both Eqs. (1.1)
and (1.2) by expanding and retaining terms of order a.
Subsequent integration of Eq. (1.2) yields

g'= —,
' f f (ae ' '+c.c.)d~" d~' . (2.2)

Note that the center of the wiggler is taken at the point
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~=0. Upon substituting g into the linearized source
term of Eq. (1.1} and averaging over a umform initial

phase distribution of monoenergetic electrons in phase
space we arrive at the following linear equation for the
field:

——V + a(r, r}
4 B~

by a" and dividing the latter by a yields (from here on we
omit the tildes over the transverse coordinates):

2 la I~V.~la 1+4 la I'~'V+
[

= Re , ij—(r,r)
7X, dr'(r r—')a (r, ~')a *(rr,)e

(3.1a)

(2.3)

This equation describes the 3D evolution of the slowly
varying part of the optical field in interaction with an
electron beam of a transverse structure, while consistently
accounting for the resulting electron motion in phase
space.

—' I ~t I

'+

1 V'/a
f

4 fa/
7

+Im 2ij (r,—r) f d~'(~ ~') — ' e
a(r, w)

(3.1b)
III. ENERGY FLO%'

IN THE FEL 30 GAIN FORMULA

Setting a =
~
a

~

e'~ in (2.3) and separating the real and
imaginary parts of the equation, multiplying the former

where in the conversion to a single integral we used a
method described in Appendix A.

Integrating Eq. (3.1a) over an arbitrary region in the
transverse plane we obtain

2 2+ e ) 2p J r + + + + + 4 ~ + + r + + ~ (3.2)

Equation (3.2) is an energy statement which says that the
change in the optical power experienced by the beam
while propagating through a region of arbitrary cross sec-
tion equals the gain (the first term on the right) minus the
amount of power lost because of diffraction or increased
due to focusing (the second term on the right).

The last integral on the right-hand side may be convert-
ed to a surface integral which will simplify its evaluation
in most cases. In the limit of a large Fresnel number, this
term will vanish when a is a cavity mode.

Integrating over the time spent in one pass along the
wiggler, and using the methods of Appendix A results in
the following expression for the power increment

»p-. = fd"-(
I
a( 2 }

I

'-
I
a(- 2 ) I'1:

/ IvoT5P~„=—— f d rj (r) f dre 'a(r, ~)

d~ V. a 'Vq d'r,

where the transverse integration is carried over the resona-
tor cross section. %'e have dropped the v dependence in
the current profile assuming it is constant along the in-
teraction region and thus excluded transverse effects such
as finite beam emittance and betatron oscillations. The
first term on the right-hand side when divided by the in-

put power is identified as the gain per pass:

1 iV7G= — f d rj(r) f d~e a(r, r)

(3.3)

In order to evaluate it without explicitly solving Eq. (2.3)
some assumptions concerning the mode a (r, r) are neces-
sary. It is common practice to choose one of the passive
cavity modes (usually the fundamental). This is intuitive-
ly justified in the case of low gain. In the high-gain case,
Eq. (3.3) still holds but may prove to be useless in the ab-
sence of information about the prevailing mode. In a
high-gain amplifier the injected mode will certainly un-

dergo considerable reshaping as a result of the interaction.
The latter case will be dealt with in Sec. V. We also note
that since the dependence of the mode on vo has not be-
come explicit (the derivative is a partial derivative and
acts only on the exponent) one cannot use this equation, in
the high-gain case, to calculate effects of beam energy
dispersion as was done in ID treatments.

Let us further remark here that Eq. (3.3) with a being a
cavity mode (a member of a complete set of eigenmodes)
may be considered an extension of a familiar expression
relating the spontaneous and stimulated emission in 10
theories, known as Madey's theorem. An expansion of
the spontaneous emission in terms of resonator modes has
been given in Ref. 36, where the expansion coefficients
have a similar form to the quantity to be differentiated in
Eq. (3.3). Unlike the 1D theory, due to the extra degrees
of freedom, the 3D mode appearing in (3.3} will be
characterized by a frequency (or a longitudinal index) and
two transverse indices. Expression (3.3} can be used for
optimizing the laser gain by choosing the appropriate
values for the parameters of a given optical mode, as will
be shown in the next section. It is interesting to point out
that in contrast to many conventional lasers, most FEL's
tend to have gain media that are much narrower than the
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optical beams. It is therefore conceivable (and indeed
shown in Sec. IV) that a higher gain could be achieved
were the laser mode made of a combination of passive
cavity modes. Unfortunately, the oscillation frequencies
of the cavity modes of different transverse indices are dif-
ferent in general which implies also different detuning pa-
rameters with respect to the electron beam. This situation
may be avoided in confocal resonators which have degen-
erate mode spectra. These resonators are, however, on the
edge of the geometrical stability region' and may not be
suitable for practical design. Another interesting possibil-
ity along the same lines is mentioned in Ref. 29.

-0.2-

IV. THE GAIN IN SOME SIMPLE CASES

Let us now turn to some simple examples where an ex-
plicit expression for the single-pass gain may be written.
The empty cavity modes are given in any standard text'
by solving Eq, (2.3) with j =0. The fundamental mode,
having an azimuthal symmetry, of the so-called
Gaussian-l. aguerre beams is given by

—qril( i yiqr)

1+i/ 7'
(4.1)

%e are using somewhat nonconventional notations which
tend to produce short expressions. Following Ref. 18 we
have defined q =L/z& where zo nwoli, ——(known as the
Rayleigh length) and tao is the beam waist. ao may be
determined from the input power since I';„=ann/2q.

Consider first a cylindrical beam distributed at r =ro
(in the special case ro ——0 we have a "filamentary" beam
located on axis}. Its current density is given by

j(r) =io5 (r —ro ). Substitution in (3.3) gives

I

-to
DETUNING po

IO

FIG. 1. Gain as a function of the detuning parameter vo at
different values of diffraction parameter q. Note the shift and
the decrease in height of the peaks as q gets larger. This is due
to the fact that the highly diffracted modes consist of many
photons diverging at large angles with respect to the electron
beam. In terms of the 1D model, such photons will have large
detuning parameters and therefore lie at the tails of the gain
curve. A combination of highly diverging photons also suffers
an overall large phase shift with respect to axial photons for the
same reason.

actual resonator it is of course necessary to consider also
the losses (diffractive or other) that will generally vary
with q.

In the limit q ~0 the integral in Eq. (4.2) can be calcu-
lated [explicit expressions in conventional (mks) units for

o'i~ +I«~+ ~0

C}VO 1/2 1+lqT
(4.2)

where to=86¹P,L J.(k/2L)l/ymc, I being the total
current in the beam. Equation (4.2) in a different form
has appeared before, ' where it was derived under dif-
ferent considerations that did not yield the proportionality
constant in front.

A plot of the gain formula (4.2) for an on-axis (ro ——0)
electron beam is given in Fig. 1 (the numerical computa-
tion is facilitated using a method described at the end of
Appendix A). Different values of q mean different angu-
lar spreads of the photons forming the beam which results
in an effective shift of the peak gain. From (4.2} we also
note that at small values of q the gain is very nearly pro-
portional to q (inversely proportional to the mode area).
As q grows, the bearo consists of photons diverging at
larger angles which implies greater detuning for an elec-
tron moving along the axis. Eventually most of them
contribute only to the tails of the ID gain spectrum so
that their total gain decreases. These considerations
predict a rnaximurn that is evident in Fig. 2, near q =4.
The "finite angular acceptance" of the gain is the main
rnechamsQ1 by which the typically narrow FBI gain
medium can select a transverse mode. %hqn designing an

q

FIG. 2. Maxima of the curves in Fig. 1 as a function of q.
At large q the beam diffracts and gain is reduced as discussed
above. At smaB values, the on-axis field of the normalized
mode decreases inversely proportional to the mode area, because
of the larger spread of the energy and so that the gain also de-
creases as seen on the left part of the curve. The curve was ob-
tained by first maximizing the gain over all values of vo in Eq.
(4.2).
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the helically undulating beam interacting with an open
resonator mode as mell as linearly polarized beam in-

teracting with a waveguide mode may be found in Ref.
37]. We find (taking ro ——0 for simplicity) that except for
the phase shift, Eq. (4.2) agrees completely with the ear-
lier 10 results that were corrected phenomenologically by
a "filling factor, " provided the optical mode area is taken
as iriiio/2 Our theory has yielded this factor in a natural
way.

As ro grows (Fig. 3) the gain magnitude shrinks due to
the exponential falloff of the field. It is interesting to note
that no significant phase shift is observed unless the gain
is negligibly small.

A slightly more realistic electron-beam profile would be
P

j(r)=(ioq, /m')e ', where q,
' is the characteristic

beam area in our units {for actual dimensions, multiply by
2L/k). With this current profile and the Gaussian beam
in (4.1), the gain in Eq. (3.3) becomes, after performing
the transverse integrals:

0.2-

Q~

-02—

-04
I

—IO

DETUNING po

IO

FIG. 3. Gain curves for cylindrical beams of various radii ro.
There is very little phase shift introduced unless the radius is so
large that the gain is negligibly small. The diffraction parame-
ter is q =3. Actual radius is normalized by V'2l. /k.

—ivO(r —r')

(1+iq~')(1 iqq) —q, I+iqq' 1 —iqq
I~

(4.3)

Figures 4 and 5 are analogous to Figs. 1 and 2, respective-
ly. In Fig. 4 we note that varying the beam area over 5
orders of magnitude does not yield any significant phase
shifts. In light of Fig. 3 it is clear that electrons that are
very far from the axis, which experience considerable
phase shifts, have produced negligible contribution to the
gain. For very wide electron beams (very small values of
q, ) the gain curve will eventually shift but then the peak
gain is already very small. For values q, &10 the gain

q~ = IOO
IO

I

curve is practically that of a filamentary beam (as in Fig.
1). We must keep in mind, however, that in the actual
electron beam, finite beam emittance, and the wiggler
field inhomogeneities will alter electron trajectories and
consequently lower the gain seen in these curves. Elec-
trons moving at an angle with respect to the axis will tend
to drive photons which correspond to detuning parameters
off the peak of Fig. 1 making it broader and the peak gain
smaller.

As a final example, let us consider a field composed of
the first two azimuthally symmetric Laguerre-Gaussian
modes which are different from zero at the center. The
combination is given by

0.2-
l

O

0=

-0.2-

1
a =ao

2 ig2
(go+agi) ~(1+

) [

2)li2

qrili 1+iq ~)/{ 1—+&q

g, =go[1—2qr /(1+q q ))(I iqr)/(1+i—qw) .

(4.4)

-IO
DETUNlNG P()

l

IO

FIG. 4. Gain curves of Gaussian electron beams of different
areas, computed from Eq. (4.3). Contribution of outer electrons,
which experience substantial phase changes of the optical beam,
to the gain, is very small (in accordance with Fig. 3). As a result
the wider electron beams that sample large phase shifts tend to
move the peak gain but the overall gain is diminished. Beam
area in actual units is q, '(2L /k).

Here a is a constant {complex in general) which describes
the mode mixing and (1+

~

a
~

)' is the normalization
constant. As previously mentioned, these modes can be
excited in a general resonator at different frequencies
which wi11 induce a re1ative detuning hvo between the
two. This shift can be taken into account by replacing the

l A@0'7
constant a by ae ' in the gain expression following.
However, since the present theory was not constructed to
account for the full multimode picture of the FEL oscilla-
tor, it will be inconsistent to introduce such an effect here.
We may, however, treat the somewhat nonpractical case
of a confocal resonator where transverse modes are fre-
quency degenerate in order to get an idea about the gain
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medium. We note that choosing q =4 will ensure both a
domination of the fundamental mode and optimum gain
in that mode. A more accurate approach requires con-
sideration of complex values of a as well as the inclusion
of higher-order modes.

V. EVOLUTION
OF THE SELF-CONSISTENT BEAM PARAMETERS

0.)

O.OI

8 IO

FIG. 5. Maxima of each of the curves in Fig. 4 as a function

of q. For q &10 the curve is practically equivalent to Fig. 2.
Note the small shift of the maxima for very wide beams.

increase when the system is allowed "to choose" its
desired combination of cavity modes. Inserting (4.4) into
(3.3) with a filamentary beam at ro ——0, we obtain

lvoT
X dec '

8vo 1+iq7
1 —iq7

1 —(x
I +i/7

(4.5)

In Fig. 6 we have plotted Eq. (4.5) at several real values
of the coefficient a. In a confocal resonatoi, the value

q =2 which maximizes the gain over all combinations
should be selected. In a nonconfocal resonator designed
for a single-mode laser, such a value should be avoided
since it represents an inclination of the system to generate
a large fraction of the higher-order mode by the gain

In this section we introduce a generalized form for the
Gaussian beam in (4.1). Using this form we can solve Eq.
(2.3) near the axis and describe the optical beam evolution
through the interaction region in a fully self-consistent
manner.

We begin by writing the field in the form a =e'"' we
shall confine our attention to a small region around the
axis and to azimuthally symmetric fields, we expand f as
follows: g(r, r)=go(r)+r P)(r)+ . This is analo-
gous to the aberration expansion familiar from classical
optics. ' In terms of real functions we write

iP2(r)+(Qi(r)+iQ2(T) jr + (5.1)

P„Pi,Q i, Qz are real and may be interpreted (in a local
sense) as the beam on-axis intensity and phase, inverse
"beam waist, " and inverse radius of curvature, respective-
ly.

Neglecting orders higher than the quadratic will be re-
ferred to as "the near-axis expansion. " This expansion
will be valid for the case of relatively wide electron beams
where boundary effects can be neglected. The introduc-
tion of narrow electron beams will necessitate the in-
clusion of higher-order transverse modes that will not be
carried out here. If we keep, however, our discussion
within this rather limited context we will be able to follow
the evolution of the optical beam —an object that in the
more general case requires extensive numerical computa-
tions. Important insight will be gained by looking at the
lowest-order transverse corrections to the familiar one-
dimensional theory.

Retaining only the lowest power of r i one may solve ex-
actly' the homogeneous version of Eq. (1.1) to find the
fundamental cavity mode having an azimuthal symmetry
(4.1). For (4.1) one can write explicitly the beam parame-
ters

u 0.2

Q=2

I (1+q 2)'~ 1+q r

Pi = —tan '(qr), Qi = r
1+q

(5.2)

Equation (5.1) is not inserted into (2.3); carrying out the
derivatives and dividing both sides by a C7} we obtain

FIG. 6. Maximum gain curves for different combinations of
the fundamental and the second higher-order azimuthally sym-

metric Gaussian-Laguerre modes [Eq. (4.5)] (indices 0 and 2).
Maximum gain for the combination is obtained at a region
around q =4 and gives about 20% more gain than the funda-

mental mode (o.=0) whose maximum lies near q =2.

I

iQ+ +( iQ'—+Q')r'+—
I'

= —,ij(r) «'(r 7')—, P(r')
—1/2 P(r)

~V,I~ —.~+t g~~~-g~. ~~.~+ - "
Qe (5.3)
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X t
—q, +[Q(r') —Q(~)]le '

(5.4b)

In the derivation of Eq. (5.4) we have relied upon the
assumption that there exists a region near the axis where
the field evolves locally, neglecting contributions from the
outer region. The expansion that led to (5.41) will be jus-
tified provided the quadratic terms in the exponent of
(5.3) are kept small. This gives a measure for the size of
the region of validity in the transverse plane

max /EQ i—1/2 & gg 1/2

(5.5)

where max
~

b,Q ~

is the maximum amplitude of the varia-
tion of Q over the specified interval [that is, the max-
imum value that the quantity

~ Q (r, ) —Q (r2)
~

may
achieve when ~(,~2 lie in the interval]. In a geometrical-
optics picture, the region of validity is wide if light rays
would not deflect much away from the axis (either as a re-
sult of the natural diffraction or the interaction with the
electron beam).

It is clear from (5.5}that as b,Q decreases the size of the
region of validity increases and if there are no variations
at all it is easily seen that Eqs. (S.3) and (5.4) become ex-
act [i.e., no higher-order terms are needed and
Q(v')=Q(v)]. Thus, from the set of the general solutions
of (2.3) (with a parabolic current profile), those whose na-
ture is most closely given by (5.3) may be described as the
nearly trapped modes. The subject of trapping will be
further investigated in a subsequent article.

The various terms in Eq. (5.4) may be interpreted as
follows. In the absence of the source term (proportional
to jo} one gets the free propagating mode solutions given
in (5.2). When the right-hand-side terms are added, the
first equation describes the change of field on axis. The
interaction term in this equation is similar to that of 1D
theories, with the exception of the term —iQ on the left,
which takes into account the effects of diffraction spread
and focusing as felt on-axis (e.g., in a focused beam, the
negative imaginary part of Q will cause an increase in
P(). The second equation describes the off-axis evolution
of the beam. The term proportional to q, comes from the
transverse gradient of the electron beam. Its contribution
may be discussed in the familiar terms of propagation in a
medium with a quadratic index of refraction. ' ' 3 We

iP2
where the notations Q =Q(+iQ2, P =P, e have been
used. In a similar fashion we expand the gain profile, as-
suming a parabolic form near the axis j(r) =jo(1 q—,r ).
Expanding the r-dependent part of the exponent and col-
lecting similar powers of r we arrive at the following set
of complex equations:

p', ~, , p(r') (vo(r ~)
iQ—+ = —,

'
ijo 1~'(r r'—) e

P —1/2 P(~}

(5.4a)

i Q—2+Q'

, P(r')=
p ijo d~'(~ r')—

—1/2 P(~)

note here that this index of refraction may include both a
refractive and a dissipative or gain component. We will
use the term "localization" to describe an amplification of
the power near the axis without significant phase fronts
distortion. Thus, the refractive and the gain part may
lead to focusing and localization, respectively. The other
part of the integral [containing Q(r') —Q(v)] is unique to
our problem. It is related to the dynamics of Q in the
same way as the right-hand side of (5.4a) drives P, and
contains the first-order correction to the differential gain

i vo(Y —r)
term e P(~')lp(~) for being evaluated off-axis.
The field variations in the transverse plane lead to dif-
ferent electron-beam dynamics and different amounts of
gain across this plane. Even if the electron beam was
transversely homogeneous (q, =0), that term alone may
cause deformations in the beam curvature and waist.

As described in detail in Appendix B, Eqs. (5.4a} and
(5.4b) may be easily transformed into a set of nonlinear,
ordinary differential equations which is conveniently
solved on a computer. For a single-pass problem, one
may start with the initial values for a free mode (5.2) at
the beginning of the wiggler (r= ——,

'
), and evaluate the

propagation according to (5 4) until r= —,. [If integration
over the complete round trip is desired, the effect of the
mirrors may be introduced by discontinuously changing
Q2 at the mirror position then set jo in (5.3) to zero and
propagate it analytically to the other mirror where anoth-
er phase transformation is needed to complete the cycle.]

In Figs. 7—10 [curve (a)] we plo(tted the homogeneous
solution to (5.4). These are the free mode parameters as
given by (5.2}. We note that the beam waist decreases to-
ward the middle and achieves a minimum at v.=0. The
phase fronts are flat at the center, reach a maximum cur-
vature at the Rayleigh length ~=q ', and flatten out as
we move away from the center.

Let us now consider what happens when the FEL in-
teraction is turned on. The numerical solution to Eqs.
(5.4) is illustrated Figs. 7—10 [curves (b) and (c)] in two
cases: (1) q, p q, an electron beatn having a sharper gra-
dient then the optical mode [note that the value of q refers
only to the initial condition and describes the beam every-
where in the transverse plane while Q(r) for ~&0 is only
local in character] and (2) q, =0, an electron beam with
zero gradient (which we may safely assume being much
~ider than the optical mode without violating our previ-
ous assumptions). The initial conditions are taken to be
those of the free mode starting at a mirror with the
correct radius of curvature to produce the given q accord-
ing to (5.2).

Case (1) is illustrated in Figs. 7—10 [curve (b)]. The pa-
rameters chosen where jo ——7, q =2, q, =5, and vo~0. As
is well known from the 1D theory, this value of vz pro-
duces large phase shifts. Indeed, when comparing the
curves (a) and (b) on Fig. 8, we observe the difference with
respect to the free mode. The phase remains approxi-
mately constant over the last quarter of the trip. This in-
dicates that the natural defocusing of the Gaussian beam
has been prevented. Some extra focusing has also taken
place. Note that the curve (b) of Fig. 8 is approximately
constant at the last quarter of the trip and even curls up-
ward slightly. It becomes even more obvious in curve (b}
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FIG. 7. Evolution of the parameter P),. Figures 7—10
describe the evolution of the optical beam parameters

P~, P2, Q~, Q2 as a function of x [see Eq. (5.1) for definition]

given by the numerical solution of Eqs. (5.4a) and (5.4b). Center
of the wiggler (v =0) was taken to coincide with the minimum
beam waist. In this example q =2. (a} Free mode. Beam is
normalized so that P& ——1 at the center. Note that the max-
imum of Q2 is obtained at the Rayleigh length 1=q '). (b)
Evolution under the interaction with a quadratic profile electron
beam. Here q, =5, jo ——7, vo ——0. Note that the on-axis intensity
at r= —, is larger by about 10% than the initial value. This is

due to significant phase distortion that has taken place as can be
seen clearly in Figs. 8 and 10. (c) Evolution of the beam param-
eters under the interaction with an electron-beam profile much
wider than the optical mode (q, =0, jo ——7, vo ——7). Beam ener-

gy has concentrated near the axis (
~ Q~ ~

has increased by about
0.5 overall) and the on-axis intensity grew by about 10% with
not much distortion of the phases. This is evidence of near-axis
power localization (see text) induced by the transversely inhomo-
geneous evolution of the gain medium.

FIG. 9. Evolution of Q, . (Same case as Fig. 7.)

of Fig. 10 where the negative part of Q2 is apparent in
that region. This focusing also results in more power on
axis as seen when the curves (a) and (b) of Fig. 7 are com-
pared at the end of the trip.

In this case then, the electron beam has acted as a con-
verging lens, producing phase shifts that vary with the
electron-beam profile. For other values of vp the trans-
verse gradient of the electron beam can produce localiza-
tion when the real part of the gain becomes dominant.

Case (2) is illustrated in Figs. 7—10 [curve (c)]. The pa-
rameters taken mere jo ——7, q =3, q, =0, and vo ——7. This
value of vo was chosen since in its neighborhood the phase
shifts are minimal. This is clear from curve (c) of Fig. 8
and curve (c) of Fig. 10. On the other hand, there is a
larger on-axis gain seen on curve (c) of Fig. 7. The large
gain causes the beam to grow considerably near the axis
which induces even further growth. The growth has won
over the natural decrease due to diffraction as shown on
curve (c) of Fig. 9 where a net increase in the absolute
value of Q, is evident at the end of the trip. This field-

0.8-

0.4-

0—

—l.2'
-Q6

-0.6 0.6

FIG. 8. Evolution of P2. (Same case as Fig. 7.) FIG. 10. Evolution of Qz. (Same case as Fig. 7.)
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&&G. 13. Changes in Q~ as a function of vo. (Same case as
Fig. 11.)

FIG. 11. Changes in I'l as a function of the detuning vo for
different values of the diffraction parameter q. Figures 11—14
describe the changes in the optical-beam parameters (compare to
a free mode at the end of the wiggler) as a function of vo for a
very wide electron beam (q, =0, jo——7) for various values of q.
Electron beam has a homogeneous profile. Choice of q sets dif-

ferent initial conditions in each case. Note that the maxima of
the localization and focusing occur at alternating points. Near

vo ——0 strong defocusing and delocalization occur.

localization mechanism for wide electron beams is made
possible by the nonlocal (in r) nature of the FEI. gain pro-
cess as expressed by the second term on the right-hand
side of Eq. (541). The electron-beam dynamics evolves.
differently at different points in the transverse plane be-
cause of the transverse structure of the field. This results
in inhomogeneous evolution of the gain across this plane.
We note that the phase-fronts curvature has returned to
its original value [Fig. 10(b)] with no significant net

I.2

change. This process may also lead to focusing at dif-
ferent values of vo.

For most values of vo, a combination of localization
and focusing occurs. We have plotted the changes in the
beam parameters as a function of the detuning in Figs.
11—14 (corresponding to case 1) and 15—18 (case 2).
Note that the maxima of Fig. 13 which correspond to lo-
calization falls roughly at the zeros of Fig. 14 and vice
versa. It is also evident that both effects grow with in-
creasing q. Somewhat different curves were obtained with
a finite gradient electron bairn in Figs. 15—19. In Fig. 15
we note a substantial difference compared to 1D theory in
instances where the electron beam is of smaller diameter
than the optical beam. In these cases the maximum gain
and phase shift moved away from their "classical"
(predicted by one-dimensional theory) positions on the vo
axis. This is due to the relatively large changes in the
optical-beam profile occurring during a single pass at
these values.

CONCLUSION

%e have extended the linear one-dimensional FEL
theory in several ways. First, we presented an energy
theorem that allowed the 3D gain calculation for a given

2.l

Q4

O. l

I

0
&o

I-8 I

0
Pp

FIG. 12. Changes in I'2 as a function of vo. {Same case as
Fig. 11.)

F1'. 14. Changes in Q2 as a function of vo. {Same case as
Fig. 11.)
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FIG. 15. Changes in P~ as a function of vo. Figures 15—18
are similar to Figs. 11—14 except that the electron beam has a
transverse profile (q, =5, jo——'7). Note that for q=0 (plane
wave at ~= —

2 ), a relatively large on-axis intensity enhance-

ment occurs at vo. This is contrary to the result of 10 theories
and is due to the strong focusing induced by the FEL gain medi-
um at this value of the detuning parameter (which is known
from 10 theory to produce large phase shifts}. As in Figs.
11—14, the zeros and maxima of the focusing and localization
alternate.

mode. This expression enabled us to discuss the amplifi-
cation of a Gaussian beam in a low-gain FEL. We found
that optimum gain is achieved at a certain value of the
diffraction parameter. The reduction in gain for both
larger and smaller values describe the basic mo:hanism
for transverse mode selo:tion by the FEI. gain medium.
We also investigated finite-width electron-beam profiles
and found that the reduction in gain due to nonzero ex-
tension of the beam is substantial only for dimensionless
areas (q, ') of order unity and larger. We considered the
possibility of transverse multimode excitation in a confo-
cal resonator and showed that a larger gain may be avail-

FIG. 17. Changes in g~ as a function of vo. (Same case as
Fig. 15.)

able provided the system is allowed to oscillate in its own
"natural" mode rather than forcing oscillation in a cavity
eigenmode.

Our gain formula has limited applicability to low-gain
cases where the optical mode was assumed to be known
and unchanged by the interaction. In order to investigate
the high-gain case we have developed a formalism in Sec.
IV where the mode develops self-consistently and we have
examined the deformation of an input optical beam under
the interaction in a single pass. Two mechanisms for con-
fining the beam energy near the axis were described. The
gain medium was shown to be capable of both focusing
and localizing the optical beam due to its refractive and
amplifying components. In both cases there is usually a
mixture between the two mechanisms, depending on the
value of the detuning parameter. We have distinguished
between simple focusing and localization caused by the
transverse gradient of the electron-beam profile and that
which arises as a result of the electron beam being driven
differently across the optical-beam cross section.

The reshaping of the mode resulted in a gain spectrum
that may be significantly different than what is expected
from a 1D theory or our 3D gain formula with an

0.8-

Q ~~~i'd+&~

I

0
Po

I
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FIG. 16. Changes in P2 as a function of vo. |;Same case as
Fig. 15.)

FIG. 18. Changes in Q2 as a function of vo. (Same case as
Fig. 15.)
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empty-cavity mode. This spectrum can manifest itself in

a high-gain amplifier experiment where a scan over input
frequencies is made or in an oscillator, in the shift of the

lasing mode frequency when compared with the peak
spontaneous emission.

Of most current interest is the possibility of construct-
ing a high-gain device operating with nondiffracting
(trapped) modes. The existence of such modes is the sub-

ject of the subsequent paper in this series.
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APPENDIX A: SIMPLIFICATION OF THE GAIN INTEGRAL

In Sec. IV we deal with integrals of the form
r I

I=Rei rj f ~ v' ~"e ' *r,~ r, ~"

Integrating by parts eliminates the r' integral

'vo[«]

where we have renamed v" as ~'. The last expression can be written more compactly as

I =Re( —1) fj (r)d r f dr'e '"' ' f'(r, w)f(r, r') .

Note that Re[e f'(r, v)f(r, r')] is symmetric under the exchange of v and r' This p.roperty may be used to
decouple the double integral as follows (omitting the r dependence for brevity)

Re f dr f dr'e ' f'(~)f(~')
I 1/2 1/2= —,

' Re f dr f dr'e ' f'(r)f(~')+ —,
' Re f dr f dr'e ' f'(r)f(r'},

where in the last integrals we have changed the order of
integration.

Thus we get

iv rI = —— fj (r)d r f dre ' f(rr)
2 8vo —1/2

Finally we note that the numerical computation of the
integrals

i3 1/2 Iv wJ(vo)= f dre ' f(r, ~)

APPENDIX 8:
CONVERSION OF EQUATIONS (5.4) TO A SET
OF ORDINARY DIFFERENTIAL EQUATIONS

We define the variable U and V as
I

U= (r r')e ' P(r')d—r',—1/2
I

V= ~—~'e ' P ~' ~'dv. ',
to get the following set of ordinary differential equations
of the second order:

P'=iPQ+ ,'ij &Ue—

is most conveniently carried out in the form

1/2 l VOTJ(vo)=2Re deere ' f(r, r)—1/2
1/2

X f dre ' f'(r, r) .

Q'=tQ'+ , ij,P '[V U(—Q+q,-)]e—
P (vo1 qt~

Q
(voT

The initial conditions for U and V are obtained from their
definitions: U'( ——, ) = U'( ——,

'
) =0 and V'( ——, )

= V( ——, )=0.
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