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Ground-state energies as well as corresponding stability thresholds characterizing several theoreti-

cal or phenomenological potentials which are of interest in the description of quarkonia have been

established and discussed. For this purpose a nonperturbative quasiclassical method for the evalua-

tion of the ground-state energy proposed previously has been used. %e are then led to establish

ground-state energies for nonrelativistic as well as for relativistic spin- —, particles. In this respect,

Coulomb inverse-logarithmic potentials, linear plus Coulomb potentials, power potentials, and su-

perpositions of power potentials have been considered. In addition, the ground-state energy charac-
terizing the relativistic Dirac bag model has also been established and discussed.

I. INTRODUCTION

A quasiclassical nonperturbative method for the evalua-
tion of the ground-state energy (GSE}proposed previous-
ly' has been validated for a wide range of quantum-
mechanical (QM) systems. Such results open the way to
perform a general quasiclassical description of the QM-
GSE problem, now for several momentum-independent or
momentum-dependent potentials, as well as for several
Hamiltonians. So far this method enables us to establish
quite simply relevant orders of magnitudes, qualitative
properties, stability thresholds, and analytical forms
characterizing the GSE s for nonrelativistic and relativis-
tic Hamiltonians. In particular, such a quasiclassical
description has also been checked for Coulomb and Yu-
kawa potentials. Here we shall analyze GSE's and stabil-
ity thresholds for certain potential models which are of
interest in the description of quarkonia. We are then led
to establish new and useful results concerning concrete as
well as general stability properties of corresponding Ham-
iltonians.

Basic assumptions concerning the present quasiclassical
approach are presented in Sec. II. The Coulomb inverse-
logarithmic potentials and the linear plus Coulomb poten-
tials are discussed in Secs. ID and IV. Stability thresholds
for general superpositions of power potentials have also
been established. So far the Hamiltonians are nonrela-
tivistic ones. Next one considers relativistic po~er poten-
tials in Sec. V, whereas the GSE for the relativistic linear
plus Coulomb potential is analyzed in Sec. VI. The GSE
characterizing the Dirac bag model is established in Sec.
VII. The conclusions are presented in Sec. VIII. Appen-
dixes are included. Units for which c =1 will be used.

II. PRELIMINARIES

We shall begin by presenting some preliminary re-
marks. For the nonrelativistic two-body (m~ ——m2 ——mp)
Schrodinger Hamiltonian H(r,p)=p Imp+ V(r), the
GSE problem can be converted into the algebraic evalua-
tion of the minima

trtdp
F.= minH r,

or equivalently,

= min
fizd p + V(r)
mor

(2.1)

E= minH

r

lid p p2
,p = min +V

p pip . p
(2.2)

d +d —l(l+1) mpr V(r)IA = mpr Es /—A—(2.3)

within coordinate (r= (x~ ) and momentum (p=
~ p) )

representations, respectively. Here dp-1 denotes the
underlying phase-space quantum which is subject to suit-
able eigenvalue conditions. 2 For the three-dimensional
configuration space (j=3) one has, in general, 0&dp g —,.
In the relativistic case one proceeds similarly. Next
let us remember that the energy "dispersion"
5H(r)=H(r, hdp Ir) comes from the quasiclassical limit
of Hf under the conditions of which the usual QM state
function g=g(r) approaches the limiting case of the
powerlike probe function ((), -r p It is und. erstood that
the P~((), limit should be supplemented with H~H,
where H (tilde} denotes the quasiclassical counterpart of
the usual H operator. 2 Therefore H$, =5HP„as em
phasized previously. The main point is that the above
choice of P, can be interpreted as the analytic continua-
tion of a concrete /~at, limit, where f, -r expresses
the dominant behavior of the irregular state function near
the origin. For potentials which are not too singular at
the origin, d =d(l) is a parameter which depends on the
angular momentum but which is independent of the cou-
phng. So far one has d(l)E( ——,',0) on general grounds
with respect to the matching of ( a )~ and ( a )~ aver-

ages. Here a

=ibex

t)/t)x denotes the non-Hermitian con-
stituent of the usual dilation generator. Restricting our-
selves to the GSE, ere have to take I =0, so that
dp ——

~
d(0)

~
. This yields, in combination with Eq. (2.1), a

useful prescription for the evaluation of the dp parameter.
More definitely, the Schrodinger equation for the radial
state function i'(r )=Rt(r ) produces the intermediary
algebraic equation
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d(d+1) —l(1+1)=r [rno —(8' —V) )/1 (2.6)

insofar as Ri(r )—tP, . The relativistic Hamiltonian
4 (r,p)=po+V(r) with a vectorial potential has been
considered. Accordingly, p~=(p +mo}' . Now the
GSE has the property 8'-mo, so that 8'~0 if m0~0.
Then the relativistic counterpart of (2.4) is

insofar as Ri(r)-P„where Es denotes the energy eigen-
value. However, do estimates, which are functions of Es,
are not compatible with the intrinsic minimization attri-
butes characterizing Eq. (2.1). The simplest choice is then
given by Es ——0. Then Eq. (2.3) becomes

d +d —l(1+1)=mor V(r)/fi

which exhibits r roots for suitable do values only. In this
sense Eq. (2.4) exhibits the meaning of an eigenvalue con-
dition for the do parameter, too. Next we mention that
for nonsingular potentials r V(r) vanishes at the origin
(and conversely). So the do parameter is independent of
the coupling and takes the dominant value do=1. Of
course, one has do) 1 (do &1) in all the cases in which
r V(r))0 [r V(r) &0]. This coupling independence of
do implies certain symmetry properties, such as the con-
vexity property of the GSE with respect to the coupling
constant (see Appendix A). Next we have to notice that
under certain special conditions the usual QM virial equa-
tion itself, 2( p /nio) = ( V ), can be subject to nontrivial

g~P, and P~g, linuts. This leads to5

2(A' do /mor )p ——( V)p (2.5)

and similarly for f~f, . In the preceding, V =r(d V/dr),
as usual. One realizes that suitable combinations of such
limits are able to produce nontrivial constraints on the ad-
missible do values. Taking as an example the attractive
power potentials V„(r)=C„/r", one sees immediately
that Eq. (2.1) works only for n &2. Then Eq. (2.5) yields
1 &do & —', and 0 & do & 1 for n &0 and 0 & n &2, respec-
tively. On the other hand, Eq. (24} exhibits well-defined
r roots if dan+1 )0 (n &0) and d~+d &0 (0 & n &2).
This leads to 1&do& —,

'
(n &0) and 0&do&1 (0&n &2),

which agrees with Eq. (2.5). This agreement provides evi-
dence that the choice of do proposed above is subject to
actual relevance. However, we want to remark that a
quickly tractable theoretical alternative to Eq. (2.5) is
highly desirable. For the sake of generality we shall then
restrict ourselves to the qualitative interpretation of Eq.
(2.4).

The relativistic generalization of Eq. (2.4) is straightfor-
ward. So the Klein-Gordon (KG) equation becomes

then have d(d+1) =1(1+1),so that do ——1. We have to
notice that Eqs. (2.7) and (2.8) refer specifically to the
KG equation. In this respect the GSE for the Dirac
Hamiltonian is still established by minimizing the corre-
sponding KG Hamiltonian, but the do parameters need to
be established with the help of the Schrodinger Hanul-
tonian. This Schrodinger Hamiltonian is, of course, the
nonrelativistic limit of the KG one. This prescription is
confirmed by the exact GSE for the Dirac-Coulomb prob-
lem, as well as by the GSE's for Dirae Hamiltonians with

equally mixed scalar and vectorial potentials. For this
purpose we have to use the property that the Dirac equa-
tion with such equally mixed potentials can be rewritten
equivalently as a Schrodinger equation. On the other
hand, the exact nonrelativistic GSE for the harmonic os-
cillator (j=3) is given in terms of do ———, . These results
lead to the admissible proposal do ——1 (0&n &2) and

do ———', (n &0), which agrees with Eq. (2.4). It is under-

stood that such proposals are subject to further refine-
ment;s.

Equation (2.1) is also able to produce well-defined mini-
ma for certain combinations containing singular poten-
tials. Such potentials require a special treatment as do
ceases to be independent of the coupling. In the nonrela-
tivistic case such potentials are given by V(r)= Vz(r)+
other terms. Potentials for which r V(r) exhibits non-
trivial (nonzero and finite) upper or lower bounds can also
be considered. For the KG equation this happens for
V(r)= V, (r)+ other terms. So the Coulomb potential is
a singular potential for the KG equation, in contradistinc-
tion to the Dirac equation. Among the special peculiari-
ties mentioned above we note the onset of relationships

like do )&
~
d(0;C)

~
competing with do &

~

d(0;C)
~

. Here

d(l =0;C) comes from the donunant behavior of Eq. (2.4)
near the origin, whereas C stays for the relevant cou-
pling. The onset of do is favored by the agreement with
exact results, as, e.g., with the exact nonrelativistic GSE
for the Kratzer potential. 'o A similar conjecture has also
been proved for the KG equation with a Coulomb poten-
tial. In this respect the nonrelativistic superposition of
Vz(r) with other power potentials will be analyzed in Ap-
pendix B. Coming back to (2.2) we also have to mention
that this equation meets the upper or lower energy bounds
established specifically within envelope representations for
hydrogenlike systems. " Accordingly, V(fido /p ) repro-
duces so-called kinetic potentials involved in this context.
Using these theoretical developments we can now make
detailed calculations concerning GSE's for several poten-
tials.

d(d+1) l(1+1)= rV (—r)/k &0, — (2.7) III. THE COULOMB INVERSE-LOGARITHMIC
POTENTIAL

in which the mo~O limit has been performed. This
yields d(d+1) &1(1+1),so that 0&do & 1. For the rela-
tivstic scalar potentials one has

d(d+1) —1(!+1)=r V (r)/A~) 0, (2.g)

instead of Eq. (2.7). This means that the general do inter-
val characterizing such potentials is 1 ~ do & —,

' . For
equally mixed vectorial and scalar potentials one would

Proofs have been given that quarkonia can be treated
satisfactorily considering quarks as nonrelativistie fer-
mions interacting through some simple phenomenological
and/or quantum-chromodynamieally (QCD) motivated
potentials. An interesting example is the theoretical
Coulomb inverse-logarithmic potential'

V(r ) =gaia/r ln(pr/fi),



34 QUASICI. ASSICAI. GROUND-STATE ENERGIES FOR. . .

in which a=8m. /(33 —2nf) for QCD with nf flavors.
Above p =ymp is a mass scale characterizing the
renormalization-group subtraction point. Using Eq. (2.1)
leads to a negative GSE:

0)E )ELa ———moao /16,2

which is the root of the algebraic equation

(2@do/ap) exp(P sgna) =P ' —(sgna)P 2 .

Above
~

a
~
=apdo, whereas

P=P(E)= —+—sgnE 1+1 1 16E
2 2 mpap

(3.2)

(3.3)

)vZ.

ao) ac+ =4ydo((+i=39 72lpdo/mo ~

(+)

or, equivalently, for supercritical values

(3.5)

mo & m,'+'(nf ) =4dppg~+i lao —=39 721@do/ao

of the quark mass. Here g~+ &

——( exp% 2)(v 2 —1)-=9.930.
Starting with a fixed coupling, one would then have to
consider Eq. (3.6). This shows that the present nonrela-
tivistic Hamiltonian is subject to stability if
m p )my ( nf ) only. In contradistinction, one would
have

ap& a& =47'dpg( ~=0.4028}jldp/mp (3.7)

for a & 0, which can be rewritten equivalently as

mo & m,' '(nf ) =4doy4( ) lao =0 40—28pdp/a. p . (3.8)

Now g~ ~

——exp( —v 2)(W2+ 1)=-0.1007. In addition,
one would also have a positive GSE which is given by the
algebraic equation

(2ydo/ao) expP=~ (3.9)

insofar as a & 0, now irrespective of ap and mp. This time
p&v 2 because E)0. Further, we have to consider
do&1 (dp&1) for E&0 (E&0). Taking, for the mo-
ment, nf ——3 and p=400 MeV, yields a=0.9308 and
m,'+'(3) = 17.069 GeV, where do

——1. So far, this
m,'+'(3) evaluation approaches the magnitude order of
the t-quark mass. More refined numerical estimates are
also of further interest. Note that m,'+'(nf) decreases
linearly with nf for all underlying nf &16.5 values. So
one has m,'+'(nf)ip E[48.994, 1.580] for nf &[1,16]. In

l

(3.4)

The above lower-bound ELa is four times smaller than the
GSE characterizing the attractive Coulomb potential

kzp—dp/r Fir.st let us consider that a) 0. Then Eq.
(3.3) produces the required solution only for supercritical
values of the coupling:

other words, the nonrelativistic Hamiltonian with the
quark potential (3.1) exhibits stability for sufficiently
heavy quarks only. This is a quite relevant result which
comes from the QCD background of (3.1). Next
m,' '(nf) increases linearly with nf, now for nf ) 16.5
and with an appreciable smaller slope parameter. In par-
ticular, m,'+'(16.5) =m,' '(16.5)=0.

Note that Eq. (3.7) is also of special interest in order to
explore the logarithmic approximation to the polarization
effects in quantum electrodynamics (QED}. This time
a= —3m/2, whereas p=mo5exp(3n/2a, ). Here
5=4.0982, ' whereas a, denotes the usual Coulomb cou-
pling of the electron-positron interaction. Then Eq. (3.7)
yields the upper bound

a, & a, (5)=3m/2 In(3ir/8(~ ~d p5}=4.4925, (3.10)

where dp ——l. Other relativistic evaluations of the critical
Coulomb coupling should also be noticed. ' In this
respect a, (5} is approximately 2.5 times larger than some
concrete critical Coulomb couplings (a, -2) relying on
the two-body problem. Assuming, however, that 5=1
leads to a, (1}—= 1.9160 instead of Eq. (3.10). Note that
for the one-body problem the critical couplings establish-
ed above become two times smaller.

IV. THE LINEAR PLUS COULOMB POTENTIAL

Another potential used frequently in the description of
quarkonia is the linear plus Coulomb potential'5

V( r )=a r (fux/r ), — (4.1)

in which a typical choice is a —=0.48 and inc�-=0.182 GeV .
Equation (2.1) shows that the GSE cannot be defined if
both ~ and a take negative values. In the other cases the
GSE is given by the algebraic equation

' 3/2

ap+3
37p= sgn(aa)
ap

E 2 2+—ap+ (sgna }
mo 9ap Pfp

5H =mo
3To 1 (ao) o)'"—2(sgna)
ao u Q

(4 3)

in which rlli =u(ao/yo)' . Next the minima of the en-
ergy dispersion are located at

(4.2)

in which ~~~ =mpyp/l& (yp —=y~, ~) and li fidp/mo. ——p

For the sake of simplicity the above Coulomb coupling
has been denoted as before. An eigenvalue equation
which is similar to Eq. (4.2) has also been obtained using
the method of potential envelopes. ' However, Eq. (4.2) is
more simple. Using the virial equation one sees that the
energy dispersion can also be written as'

T

sinh(P/3), sinh4 =Po, a &0, ~ & 0

cosh(P/3), cosh/=Po) 1; a &0, a &0
tt =it(do, 1'o cos(P/3), cosP=Po& 1; a &0, ~&0

—cos[(/+4~)/3], cosP=Po& 1; a & O, a. &0

(4.4)
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where Pp=3 /
yp /a()/. Of course, we also can elim-

inate the u variable from the virial equation and from Eq.
(4.3), thereby obtaining Eq. (4.2}. Starting with Pp & 1, one
sees that the present GSE exhibits the limits E—+0 (a & 0)
and E~—mpa()/4((z )0) for yp~0. Similarly, the a~O
limit produces the GSE 3mp(yp/2) / characterizing the
attractive linear potential ar, now for Pp& 1. Concerning
the dp choice one should have dp& I for a&0()r&0},
dp &1 for a&0 combined with )r&0, whereas dp & 1 for

)r&0 (a&0}.' Numerical estimates can also be per-
formed. Using the data mentioned above gives
E=D.6229 GeV for dp ———', , where we have considered
that mo ——1 GeV.

Further, one has the GSE bounds

0&E/mp) —(z()/3, tI}p&2,

3(yp/2) /'& E/mp) 0 Pp& 2

for (z & 0 and )r )0. Further E & 0 if )r & 0, so that

(4.5)

2«pyp)'"+3y p/(zp& E/)rip»«py p)'" Pp & Po
(4.7)

3(y()/2)' '+2(zp(yp/2)'/') Elm p )3(y()/2)'/'

+rzp(y()/16}'" Pp & Pp

in which pz ——3v 3/2. Such upper and/or lower bounds
come simply from inequalities characterizing the locations
of the minima. So one has x &2/(zp or x &(2/yp)'/ if
a&0 and ~&0, 2/ap&x &3/ap for s &0, whereas
x &(2/yp)' or x &(ap/yp)' for (x&0. Here x=r/l).

General results concerning the superposition of the
Coulomb potential with other power potentials can also be
noticed. So the superposition of an attractive Coulomb
potential with repulsive power potentials exhibits a well-
defined GSE if

y„&y, (n)=o (1 n[—
2

Ro

/2 —n/

(4.8)

for n &1, whereas y„&(0,0o) for n &1. The present re-
sults show the possibility to perform a theoretical syn-
thesis concerning y,"'(n) for several n values. Next we
notice that the parametrization C„=mpy„l", (y„=

~ y„~ }
is the same as that used in Appendix B. The superposi-
tion of an attractive Coulomb potential with other attrac-
tive power potentials can also be considered. Now the
GSE is well defined if y„&y,"'(n) for n &2, whereas
y„E(0,(e ) for n & 2. Further, the repulsive Coulomb po-
tential is subject to superpositions with attractive n ~2
potentials only. In this case one should have

—(z()/6 —9yp/2ap )E /rn p & —(zo/3 v 3/2 &Pp & 1

—(zp/6 —9yp/2(zp & E/r)i p & —3yp/ap —ap/4,2 2

v 2/2&pp&v 3/2, (4.6)

—(zo/4 & E/r)i p )—3yp/(zp —(zo/4 Pp & ~2/2

If a &0 the GSE takes positive values which are subject
to

p y())( ) (4.9)

for 1 & n & 2, whereas y„G (0, 00 ) for n & 1. If n = 1, Eq.
(4.9) reads simply yi &ap. Above V(r)= a—A/r+ Vn(r)

V. ATTRACTIVE PO%'ER POTENTIALS

A simple potential motivated by the cc and bb data is
the attractive power potential'

Vn(r) =Cn lr", (5.1)

where nCn &0. For such potentials the nonrelativistic
GSE's have been established explicitly within the usual
%KB approach, as well as within the present quasiclas-
sical method. Relativistic power potentials have also
been discussed. The main point is that the quasiclassical
GSE s characterizing the Dirac Hamiltonian can be estab-
lished minimizing the dispersion

A' d()
5A (r)= +m() (5.2)

2 + V(r),

of the relativistic Hamiltonian P (r,p} pp+ V(r), where
a vectorial potential has been considered. Then the Dirac
GSE is given by 8'= min5A, insofar as dp is subject to
the nonrelativistic choice, as mentioned in Sec. II. One
proceeds similarly with respect to scalar potentials as well
as with respect to combinations of scalar and vectorial po-
tentials. We shall then use this opportunity to analyze in
more detail the relativistic GSEs characterizing spin- —,

particles interacting through V„potentials. First the
minimization of (5.2) leads to the algebraic equation

I
~ ly' I

l —n I' "=f.(X)

in which y = 8(' /m p and

(5.3)

1)(n —))/2(2 & )(2—n)/2 (5.7)

if 1 &n &2. Note that Eq. (5.7) can also be extrapolated
towards n = 1 and n =2. If n &0 such constraints cease
to be involved, so that y„E(0, oo ). In other words the rel-
ativistic Hamiltonian go+ V„ is subject to stability for su-
percritical (0&n & 1) and subcritical (1 &n &2) values of

f„(y)=[yn +n(1 —n)]( "'/
[yn +(1 n)] '/2—. (5.4)

In general 1&dp & —, and 0&dp &1 for n &0 and

0 & n & 2, respectively. Remember that a useful particular
choice reads dp=1 (0 n&&2) and dp-= —', (n &0). Using

inequality byproducts of Eq. (5.4), one realizes that

& 8 Ui), 1 & ll & 2,
(5.5)

g('Ua& 8', n &0,
whereas 8' G(0, ao) for n F(0,1). Above 8'Li)
=rn()(n —I)/n and g('Ui) —2m()(n —1)/n . On the other
hand, f„(y ) &f„(0) and f„(y ) &f„[2(n—1)/n ] if
0&n &1 and 1&n &2, respectively. Then Eq. (5.3) yields
the critical couplings

yP )y~ (~ ) ~
—n/2(1 ~ )(n —i)/2 (5.6)

for O~n ~1, ~hereas
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the coupling, respectively. Equations (5.6) and (5.7) can
also be rewritten equivalently in terms of the upper rest-
mass bounds

rn &m,'(n) =(1 —n)'~ n" " "'M

acting for 0&n &1, whereas

2«o+yo) ~0 VO
X cos[—', (P+n )]+

3A 370

provided that 27yo&(ao+yo) and ao&2, where

co@=3(3yp)'~ /(a()+y()) ~

(6.6)

(6.7)

m &m (n)=n '~(" "(n —1)'~

X (2—n )(2—n)/2(n —1)M
n ~ (5.9)

for 1&n &2, in which M„=Ado())Ido/~ C„~ )'~(" '. Of
special interest are also the GSE's characterizing the rela-
tivistic two body Hamiltonian 4 (r,p)=2po+ V„. Such
GSE's can be established with the help of Eq. (5.3), now
using the rescalings 8)'~ g"/2 and y„~y„/2. This leads
to the eigenvalue equation

~

n
~ y„~ 1 n~—' "=2f„(S" /4mp), (5.10)

in which N" denotes, this time, the GSE of 2pp+ V„. Ac-
cordingly, Eqs. (5.6) and (5.7) become y„&2y,'(n) and

y„&2y, (n ).

VI. THE VECTORIAL LINEAR PLUS
COULOMB POTENTIAL

Other concrete examples can also be discussed. The
two-body relativistic energy dispersion for the linear plus
Coulomb potential reads

2(l —yo)'~ & g" /mo &(4—ao)/2,

for ~ &0 and

()I"/mp ) (4—ap)/2,

(6.8)

{6.9)

for a & 0 and a & 0.
Now let us consider, just for instance, the data

fuc=—0.177 GeV (Ref. 21) and 3a/4=0. 23 (Ref. 22) as
well as the masses 0.02, 0.33, 1.28, and 4.57 GeV for the
u, s, e, and b quarks, respectively. In addition let us
use, this time, the general do ——1 choice. Then Eqs.
(6.2)—(6.4) show that the GSE's of corresponding quar-
konia are given by 1.09, 1.35, 2.94, and 9.22 GeV. Note
that m„=mq, so that 8"„s=S"~. For the top quarks
(rn, =30 GeV) one would have I";,~59.33 GeV. Such re-
sults agree satisfactorily with other evaluations performed
on this subject.

This time the ap&2 condition comes from up & 1. Fur-
ther, Eq. (6.6) is also subject to ap) 2yp, ap+yp&3 and
yo&1. One realizes that 8"&0 in all the cases discussed
above. Next the GSE is subject to the bounds 8{"/mp )2
for a &0,

5A {x)=m() —{1+x )'~ — +y( ()x . (6.1)x xdp VII. THE DIRAC BAG MODEL

We notice that (6.1) can also be written as Now we have the opportunity to analyze the GSE
characterizing the Dirac bag Hamiltonian

5A (x)=m() —(1+x'))~2+2(sgn)r)ypx
X

(6.2) A (r,p)=ah/2r+(p +a r )'/, (7.1)

where the virial equation has been used. The minumum
of (6.1) is located at

r

x =f(+)(a yo)+f( —)(a yo) —
3

1+
d

1 2a
doyo

in which afi/2r expresses the Coulomb repulsion, whereas
o relies on the surface tension of the quarks confined
within the bag of radius r. It is understood that r and p
can be treated as usual canoni. cal variables. Then the
minimization of the energy dispersion leads to the GSE

in which x=r/I(, K)0, a=+aod(), and y()—= ~y( ]}(,
whereas =2' (Ad ) o' 'F(ap), (7.2)

f(+)«yo) =
2

1+ 1+ —1
ypdp

' 2/3
3 in which cr =rnoy'I) & 0,

~

a
~

=apdp, and

F(ao)= I (ao/2)sgna

+[1+—,
' G(ao)]'~' j /[G(ao)]) ~6 .

Abo ve

(7.3)

In addition, one has a0 ~ 2 insofar as a ~ 0. Note that the
present virial equation gives the cubic equation

1/2

G(ao) =1+ 1+(sgna) 1+ 216 A0
(7.4)

uo+(a/y( () 1»p —-2—/y( ()=o3 (6.5)

where uo ——(1+x )'~ ) 1. The present relativistic Hamil-
tonian is also subject to a well-defined GSE if )(&0
(a&0). This agrees with the nonrelativistic limit dis-
cussed in See. IV. The location of this minimum is then
given by

We notice that this time, mo has the meaning of an arbi-
trary mass scale relying on the parametrization of o. For
the sake of generality the a &0 case has also been con-
sidered. Accordingly, a0~2, which is a typical relativis-
tic result characterizing the attractive Coulomb potential.
An interesting property of Eq. (7.2) is the onset of the fae-
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torization with respect to the ao and y' parameters. For
small ao values F(ao) behaves as

7 2 5&0
F(ao)=v'3/2(1 —», ao)+ sgna +O(ao),

8
(7.5)

so that F(0)=(3/2)'~. Comparing the ao ——0 hmit of
Eq. (7.2) with the corresponding WKB evaluation of the
relativistic GSE, ' one finds the do fit:

' i/2 I 3

I ( —,')
(7.6)

which approaches reasonably the do ———,
' choice.

In particular, the relativistic Hamiltonian (7.1) can also
be interpreted as the superposition of the vectorial
Coulomb potential aA/2r with the shifted harmonic-
oscillator scalar potential Vs(r ) = or z mo. A—ccordingly,
mo has the meaning of an "arbitrary" mass parameter.
Then the nonrelativistic limit of (7.1) reads

HNR(r, p)=p /mo+ezA/2r+crr mo—{2+y')/2, (7.7)

insofar as mo &
~
or rno

~

—. This means that y'& 0 and
x & (2/y')'+. So the virial equation works if
4(4—y')pa (02y')' /sgna only. Next, Eq. (2A) reads
do —do&0 if a&0 so that do&1. However, combining
the right-hand side of Eq. (2.4) with the virial equation
leads to do & —,

' for a &0, where the concavity condition

3aox & 16 has also been used. Note that other interpreta-
tions of the nonrelativistic limit can also be proposed. '
Using {7.7) gives the GSE as

' ~oy'sgn~[{y'+fa)/3y']'"=~' 3y'+y'f—s, (7.8)

in which y'=E/2mo+(2+y')/4 and fs ——{y'i+3y')'~ . 2

One has y' & 0 (a & 0) and y' & —9ao/256 (a & 0). On the
other hand,

x'=(y'+ fa)/3y' & 2/y',

so that y'&(l2 —y')/4.

(7.9)

VIII. CONCI. USIONS

The above results show that it is of interest to perform
a nonperturbative quasiclassical approach to the stability
properties characterizing several potentials involved in the
description of quarkonia. The present GSE results have
been established just using the virial equation
d5H{r)/dr =0, which has to be combined with the con-
cavity condition of 5H(r } Now one has. the possibility to
obtain, in a quite simple manner, useful analytical forms
characterizing the GSE's and the corresponding stability
thresholds. Such thresholds are byproducts of the virial
equation itself and/or of the combination of this equation
%&1th the concavity condition. Some general remarks con-
cerning the onset of this approach can still be made. The
main point is that the virial theorem relying on P, can be
formulated adequately by replacing the usual variational
problem for the energy average F[g]={H )& with the
minimization of the quotient 5H(r)=HP, /P, . Suffice it

to say that F[P] and 5H(r) exhibit well-defined minima
under the influence of the dilations P( r )~g'(r ) —P( A'r ,)

and r~r'=A, 'r (A, '=1+@). The minimization of
HP, /f, can also be performed, but this relies on Hamil-
tonians with negative kinetic energy. However, our ap-
proach is based on the assumption that do is the same for
both P, and P, . On the other hand, the usual variational
procedure ceases to work if f is a scale-invariant function,
i.e., if f'{r)-P{r}.This necessitates the proposal of an
appropriate extension of the virial theorem for scale-
invariant powerlike probe functions, as we did above.

In this paper we have concerned ourselves with some
typical quark potentials. Sensible nonperturbative results
concerning the underlying mass spectrum, the upper
and/or lower bounds on the GSE, or the relevant domains
of admissible couplings have been established. Such re-
sults appear to provide a better understanding of the small
distance region. Now we are able to distinguish in greater
detail between candidate potentials. Spin-dependent
forces can also be discussed by averaging separately the
spin factors. General x-dependent potentials are also of
further interest. Such potentials can be analyzed in a—

leapsimilar manner using the probe function (x.n} ' instead
of P, . Here n denotes a unit-vector parameter. In this
way a consistent quasiclassical picture of the GSE for
realistic atomic, molecular, or nuclear potentials is now
emerging.

We end with a brief presentation of some corrections
relying on power potentials. The static electromagnetic
potential energy of two point-charge scalar particles is
given to fourth order by a repulsive n =2 potential.

Fourth-order

gravitational potential energi~27 and
quantum-electrodynamical corrections to the static gravi-
tational potential energy of the ele:tron s have also been
analyzed in terms of n=2 potentials. The onset of van
der Waals forces acting between color-neutral objects, as
well as many other similar forces acting between charged
and neutral systems, should also be noticed. Vacuum
fluctuations relying on n= —4 potentials, ' as well as
universal potential curves for quarkonia, should also be
mentioned. Now we have the possibility to obtain sensible
quasiclassical results and to make further syntheses. In
this respect Eqs. (4.8), (4.9), (82), (85), and (87) can be
useful. Of course, "exact" do values are still desirable. In
this sense we might notice that do ——1 gives the exact
Dirac GSE for the superposition of scalar and vectorial
Coulomb potentials, as one might expect. The same
remains valid for the scalar Coulomb potential. More-
over, do=1.376 gives the exact nonrelativistic GSE for
the linear potential, whereas the "exact" GSE of the
zero-mass Dirac Hamiltonian with the scalar linear poten-
tial comes from do=1.311. Further mathematical de-
tails concerning the present quasiclassical approach will
be presented in a subsequent paper.
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APPENDIX A: THE CONVEXITY BEHAVIOR

E(A, )=A, U+fi do/2mor

where r =r(A, ) is subject to the virial equation

A, U'=A do/mor &0,

as well as to the concavity condition

F'+ '( r }=A (r U"+3rU'] & 0 .

(Al)

(A2)

(A3)

Here U'=dU/dr and U"=d U/dr . In consequence,

dF
U

dr ~U, 0~d'
dA dA mop

so that

= U[r(A, )], (A4)

Let us parametrize a certain potential energy V(r) as
V(r)=A, U(r), where A, expresses the coupling. Therefore
U(r) is independent of A, . The nonrelativistic GSE is
given by

APPENDIX 8: SINGULAR POTENTIALS

0

5H(x ) =mo +
X X

where y„= I y„ I
and x =r /I i Ne.xt one realizes that the

minimization (2.1) works only for attractive n & 2 poten-
tials (ny„&0). This yields the GSE

0
' 2/(2-Jj )

0 on —2E(n &2;y2)=mo(1+y2}
2(1+y2)

(81)

(82)
On the other hand, Eq. (2.4} reads

In this appendix we wi11 present GSE results concerning
the superposition V(r)= V2(r)+ V„(r) of the singular
V2(r) potential with other power potentials V„(r), where
n+2 .First let us consider that V2(r) is a repulsive po-
tential so that Vz(r) =

I
Cz I

/r . Using the parametriza-
tion C„=moy„li, the dispersion of the nonrelativistic
(two-body) Hamiltonian reads

d E U, dr
dA,

(A5)
P2(d )=—d'+d —l(~+ 1)™oI C2 I

/Jl

=moCnr /A (83)

Differentiating (A2) with respect to A, gives

dr F'+' drU'=—
dA r dA,

(A6)

This means, in general, that Pq(d ) & 0 if 0 & n & 2,
whereas P2(d }&0 for n &0. However rt "vanishes near
the origin, so that the dominant behavior of P2(d) is
given by P2(d ) =0. Then we find

insofar as ddo/dA, =O, where (A3) has been used. Then
(A5) and (A6) yield d E/dA, &0, which shows that the
GSE is a convex function of A, . In other words, the con-
vexity of the GSE with respect to the coupling is a conse-
quence of the concavity of the energy dispersion 5H(r),
provided that do is independent of the coupling.

In the relativistic case one procoxls quite similarly.
Now,

' 1/2

I
d(l =0;y2) I

=—+ —+ (84)

where the irregular choice of the power exponent has been
considered. Now we have the possibility to make the fol-
lowing two identifications: do ——

I
d(1=0;C2)

I
or

d~ ——Id(l=O;Cz) I. Using the first alternative yields

do =1+yt. So the GSE becomes

8'(A, ) =A, U+ fo(r }, (A7)

where fo(r)=(mo+Ji do/r )' . Above AU is a vectorial
potential. Then

E(n &2;y2)=mo (do)
ll

0 2/(2 ")

2
(85)

d 8'
U, dr

dA,
(A8)

where the virial equation

X U'=+do2/r'fo &0

has been used. Now the concavity condition is

G'+'(r)=AU" +3' do/r4fo Ado/r f'&0—

(A9)

Thus the differentiation of (A9) with respect to A, yields
U'- (dr/dA. )G'+', prov—ided again that do is indepen-
dent of A, . In consequence d 8'/dA, &0, which exhibits
the convexity of the GSE for relativistic Hamiltonians
with vectorial potentials. In addition one has
A,(dr/de, ) &0, both in relativistic and nonrelativistic cases.
We notice that for scalar potentials, or for equally mixed
scalar and vectorial potentials, the convexity of the GSE
is able to be preserved for suitable A. values only.

in which do is given by (84}. For the Kratzer potential'
we have to set n =1, so that

02 Q2
E(1;y2)= —mo ———mo

o ]

4do 4' do
(86)

This produces the exact GSE characterizing the single-
particle Hamiltonian via the rescaling mo~2mo. In
general, do &

I
d(1 =0;yi) I

for n &(),
do & Id(l=0;yz) I

if 0&ii &2. This means that d&=
I
d(1=0;y2) can also be interpreted as the dominant do

choice characterizing the whole n ~ 2 region.
We now consider the attractive V2(r) potential. This

time the GSE reads
' 2/(2-8)

Pg —2 (} ~ Vlj
E(n; —y2) =mo (1—yt)

2(y —1)

(87)
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insofar as

ny„&0, n &2, y', &1,
ny„(O, n~Z, y', ~1.

In general, the present power exponent reads

1 1+
2 4

' 1/2
m, IC, I (89)

provided that
I Ci I

&irt /4mo This inequal}ity can be
rewritten equivalently as 1&4yzdo. For the attractive
tt & 2 potentials (yq & 1) the discussion is analogous to the
one performed above. Indeed, do ——do-'(yz} leads to the
dominant choice do ——1 —yi. Then one would have
0&do g —,

' for 1&yz& —,
' insofar as the sign "—"would

be considered, whereas —,
' ado &1 and 0&yz& —,

' act for

the sign "+ ". In this respect sgn( —,
' —yo) =—+. Note that

the inequality
I Cz

I
& fi /4mo is fulfilled self-consistently

in terms of (2yz —1) &0. Alternatively, one would also
have the possibihty of probing the choice do ——do+'(yz).
Then do ——I/(1+yz}, so that 1/2&do &1 for 0&yz(1.

Considering the repulsive n & 2 potentials (yz & 1), one
realizes immediately that the right-hand side of (83) can-
not be ignored. Now Pz(d)&0, whereas the do-fixing
condition do ——do-'(yz) ceases to be meaningful. Under
such conditions the only "admissible" choice is
do ——do '(yq). This yields do ——1/(1+yi), so that
0&do& —,

' for yi&1. The condition
I Ci

I
&iI /4rno is

also fulfilled self-consistently, now in terms of
(1—yq) &0. The above results also show that do is sub-
ject to complex values as soon as

I Cz I &+/4mo thereby
involving quasiclassical predictions of corresponding reso-
nances. We might also notice that Eq. (89) comes from
the generalization of Eq. (4.21}of Ref. 2.
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