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A mathematically transparent derivation of the multiple-scattering equations valid for a general
non-muffin-tin potential, as applied to clusters of atoms with and without a surrounding outer
sphere, is presented. These equations are shown to be a natural generalization of the analogous
equations valid for muffin-tin potentials. An expression for the photoabsorption and electron
scattering cross section in the framework of the multiple-scattering theory valid for a general poten-
tial is derived for what may be the first time, providing the necessary generalization for the similar
expression valid in the muffin-tin case. A connection with the Green-function approach to the prob-
lem is also established via a generalized optical theorem.

I. INTRODUCTION

The multiple-scattering-theory approach to the calcula-
tion of the electronic structure of molecules and clusters
of atoms, although quite successful in many applications,
has suffered from the restriction to potentials of the
muffin-tin type, i.e., to potentials which are spherically
symmetric inside the atomic spheres and constant in the
interstitial region.

The difference between the true potential and its
muffin-tin form can be quite serious in those instances in
which there is a building-up of charge density along a
bond or when most of the charge is left in the interstitial
region, as is the case of short bonds between low-Z atoms.
The monopole approximation of the potential inside the
atomic spheres in the first case and the approximation of
the potential in the interstitial region by a constant in the
second case constitute a very poor representation of the
real state of affairs.

The purpose of this paper is to give a general formula-
tion of the multiple-scattering equations (MSE) for any
(local) potential that can be represented by a multipole ex-
pansion around the atomic centers. The final result will
turn out to be a straightforward generalization of the
equations valid for the muffin-tin case, and is easily
amenable to computer programming.

Attempts to lift the restrictions imposed by the form of
the potential used in the calculations already exist in the
literature. Siegel, Dill, and Dehmer' have given a formu-
lation of the MSE for a nonspherically symmetric poten-
tial inside the atomic spheres, while still assuming its con-
stancy in the interstitial region. They came to the con-
clusion that this generalization entails a doubling of the
linear system of equations to be solved. Moreover, their
formulation for this case loses the physical transparency
which was present in the muffin-tin case. In contrast, our
formulation provides an extension to general potentials
which does not require such sacrifices.

A much more complete review of multiple-scattering
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theory in condensed matter with original contributions
was given by Lloyd and Smith.>2 The extension of the
method to local potentials of general type is in fact con-
tained in their paper if one is willing to put together bits
and pieces scattering throughout the various sections.
However, a mathematically clear, simple, and unified
derivation of the MSE in the general case, as applied to
clusters of atoms, especially in the presence of a surround-
ing outer sphere, which is necessary for example in prob-
lems of scattering by a long-range potential (e.g., Coulomb
tail in problems of photoionization), is still missing as far
as we are aware. The present paper is intended to fill this
gap.

Section II is devoted to the derivation of the MSE in
the general case following the Green-function approach as
used by Beleznay and Lawrence® to introduce nonzero in-
terstitial potentials in the calculation of electronic band
structure. Section III contains an application of the MS
method to the calculation of the photoabsorption and
electron scattering cross section by a cluster of atoms with
no approximation for the one-electron potential. A gen-
eral expression is derived which should prove very useful
in estimating the errors introduced by the often-used
muffin-tin approximation to the potential. Via a general-
ized optical theorem satisfied by the scattering amplitudes
B; defined below we make contact with the Green-
function approach to the problem which is formulated in
terms of the projected density of excited states onto the
photoabsorbing site. This approach enables us to provide
an estimate in Sec. IV of the correction introduced by the
interstitial potential in the MS expansion for the cross sec-
tion, which is shown to be absolutely convergent under
certain conditions. These corrections are estimated to be
important for open structures and photoelectron energies
which are not too high (< 100—150 eV). Finally, Sec. V
discusses the difficulties involved in numerically imple-
menting the formulation of the theory and makes compar-
ison with other methods. In this connection it is shown
that the extension of the theory to nonlocal potentials
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does not pose unsurmountable problems, only adds greater
computational complication.

II. THE MODIFIED
MULTIPLE-SCATTERING MATRIX

Since we are mainly interested in scattering problems,
we shall first consider the Lippmann-Schwinger equation

Dr)=o(r)+ fVGJ(r,r')V(r')¢(£')d3r' @.1)
resulting from the Schrédinger equation
(A+E(r)=V(r)(r), (2.2)

where ¢o(r)=e’*" (k?=E, using atomic units for lengths
and Ry units for energies) is the solution of the free equa-
tion (A+E)¢o(r)=0, G (r,r') is the free Green function
appropriate to outgoing waves, satisfying

(A+E)G{ (r,r')=8(r—r1") (2.3)

and V(r) is a general local potential which we assume can
be represented as a multipole expansion around a given
center (L=I,m),

V(=3 V(Y. (). (2.4)
L

The spherical harmonics Y;(r) are defined following
Condon and Shortley.*

As usual in the multiple scattering theory, we partition
the whole space V into nonoverlapping spheres (); cen-
tered around the atomic site j and a remaining interstitial
region AQ. In order to make simple the derivation of the
MSE in the general case, we shall defer to a later stage the
inclusion of an outer sphere ), enclosing all the atomic
spheres.
|

0

FIG. 1. Vector diagram for reexpansion formulas [Egs. (2.9)
and (2.10)].

By introducing the potentials V;(r)=V(r) for r€;
and V;(r)=0 for r&€Q;, V;(r)=V(r) for rezjn,- and
V;(r)=0 for r€ szj, we can write Eq. (2.1) as

UD=¢o0+3, [ G (6,0 (r)(r)d’r
j J

+ [, GF (Wi wir)d’r . 2.5)
Use of Green’s theorem in the form
[ IF(V*+E)G —G(V*+E)Fldr
=[5 (F¥6 —GVF)ndo  (2.6)

where Sy is the surface enclosing the volume V, when ap-
plied to the volume integrals over ©; in Eq. (2.5), leads to
the following relations:

Un=¢0+3 [; (65 (L)) —9(rIV, G (r,r)]n;do;
j J

+ [0 OF (Lo Wi(eWir)dr if re§nj :

(2.7a)

0=¢(0+3 [; [GF (r.e)VYr)—¢(r)V,GF (r,r)]-n;do,
J i

+ AnGd’(r,r')V,(r')¢(r’)d3r’ if rEZﬂj .
j

(2.7b)

In deriving these equations we have made the identifications F=G (r,r') and G =1y(r) in Eq. (2.6), using Eq. (2.2) to

rewrite V¢ as (A+E)y in Eq. (2.5), remembering Eq. (2.3).

To perform the surface integrals in Eq. (2.7b) for r€ Q;, we need to rewrite the free Green function as

G (n,r)=Gg (r—r)=—SXplk [t—r'|) _
0 o (r—r') 417|r_r’|

—ik 3 jitkr )Y (r Dbt (kr )YE(r,)
L

—ik 3 jitkr YL (x Ohit(kr )Y (ry),
L

(2.8a)

(2.8b)

where 7, (r ) refers to the greater (lesser) of |r| and |r’'|, in terms of coordinates referred to different sites (j;, n;, and
hit are spherical Bessel, Neumann, and Hankel functions, respectively, with A" =j; +in)).
We find, with reference to Fig. 1, defining R;=R;—R;, r;=r—R,;,
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Gi (r—r)=G¢ (r;+Ry;—1j))=—ik 3, jikr)) Y (r)h" (k | 1;—Ry; | ) Y[ (r;—Ry;) 2.9
L
since, when r is inside (2; and r’ on the surfaces Snj, t;—Ri|=[r'—R;| > [r—R;|.
Using the reexpansion theorem, and noting that | R;j| > |rj|, when r' is on Snj, we have
—ihft(k |1 —Ry | YL(rj—R;)=13, jplkr)) Yo (x))Hfp (2.10)
“
where
Hi'y =4 3 i7"+ ICE o[ ik (kR;)]YLA(R;;)
~
=3 it 1y aa 2l + 121 + D217+ D]
-
II I III ll I lll ) +
X 0 O o ml —m mn [—'lhl" (kRﬂ)]YL"(Rﬂ) (2.11)
T
since’ where
Chrv= [ YL(Q Y @)Y, AQ)dQ Vidr) =3 CELViAr) (2.15)
-

=(—1)"[2U+1)(20 +1)2I" + 1) /47]'?
roo
000

rooro

X ml —m mll

(2.12)

Inserting Eq. (2.10) into Eq. (2.9) we finally have the re-
sult,

Gf(r—r)
=G{f(r,+R,J—r})
=k 3 jilkr))Yy () HY jy(kr)) Y1 (T))
L,L'

(2.13)

for r inside the sphere Q; and r’ on the surfaces of the
spheres Q; (ji). To derive Eq. (2.13) we have taken into
account  that Y, =(—1)"Y,_,  and that
(—=Vym+m'Hy . =Hf_,..,_,, which follows from the defi-
nition (2.11).

Next we need an expression for the solution of the
Schrédinger equation (2.2) inside each sphere ;. Writing

¢(r)=z¢L(r)YL(r)
L

and inserting in Eq. (2.2) together with expansion (2.4),
using the orthogonality properties of the spherical har-
monics, we find that the functions ¢, (r) satisfy the fol-
lowing set of coupled differential equations:

ol

dr

Ia+1)

1 d
- +E — 2 oL(r)

vt dr

=3 Vi (r)gp(r), (2.14)
Iz

0=3 jilkr;)Y,(r;)
L

+oo(n)+ [, G (W (e i )d

with Cf.; . defined in Eq. (2.12).

Now Egs. (2.14) constitute a set of (I, + 1)* coupled
equations if we truncate the L expansion to an /g, al-
lowed angular momentum. As is well known, we can con-
struct (I +1)? linearly independent solutions R, (r)
regular at the origin, by using this number of different ini-
tial boundary conditions.

Under the assumption that the matrix elements V;;.(r)
have no singularity of order 2 or greater, we can take near
the origin

RypAr)=~r's;,. . (2.16)

For a given L', R;;(r) is a vector solution of Eq. (2.14)
of (In.+1)* dimensions, L labeling the vector com-
ponents.

Consequently the general solution ¢, (7) can be written
as

¢L(r)=2 CL'RLL'(I') (2.17)
I

so that, without loss of generality, inside the spheres Q;,
we can write

P(r))=3 CLRip(r))Y,(1}) (2.18)
L.L'

Insertion of Eq. (2.13) and (2.18) into Eq. (2.7b), assum-
ing r inside the sphere (); and performing the surface in-
tegrals, gives

kp.?g WI—ihi" R ICL-+ 3 S kp?HY, - W[jp,Ri-1Cl
Jj (L' L"”

(2.19)
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where p; is the radius of sphere (; and we have introduced the Wronskians

W[];(krj) RiL (r; )]-——j](krj d Ri[_ (I’J RiL (rj)

calculated at r;=p;.
By putting

Bl =kp} 3 Wi Ri-1CH-

and introducing the matrices of the Wronskians

(WUHLRD=WinRipl, (W[—ih*, R =W[—ih,Ri; 1,
we can solve for the coefficients C{ in Eq. (2.20), obtaining

kejCl=S(WU,R/DiBL:
Defining of the atomic quantities

(THR =W —ih* R AW j,RIDE
e

dJI

kr,)

(2.20)

(2.21)

(2.22)

(2.23)

and expanding the incoming wave @q(r), which is referred to the origin o of the coordinates, around center i,

do(n) = T=47 S il jukn) Y (D) Y (K) =473 i’ YE(K)S ji(kr) Yy (e
L' L' L

we can write Eq. (2.19) as

O=Ej,(kr,-)YL(r,~)
L

+fmGJ(r,r’)V,(r’)¢(r’)d3r’ .

In deriving Eq. (2.24) we have made use of the expansion?
-—R,'j ! )YL(rj —Rij)
= Zj,:(krj ) YL'(rj )Jii'L

-

j](kri)YL(l'i)Ej](k l l'j
(2.26)

valid under no restriction on r;, r;, and R;;, where

Iy =4r T i ICL L (kR YL ARy) . (227)
I
Under the assumption that V;(r)=0, Eq. (2.25) gives
the usual multiple-scattering equations? for nonspherically
symmetric potentials V;(r), provided the exciting ampli-
tude 4i'Y7 (k) is set equal to8yp

S [(To)iiBi-8+(1—8;)HY Bf. 1= —Jf% . . (2.28)
We show in Appendix A that the quantities (7). in
Eq. (2.23) are indeed the atomic ¢ matrices in angular
momentum representation relative to the potentials V;(r)
as defined by Evans and Keller® in their Appendix 1.
When V;(r)=V¥;(|r|) is spherically symmetric, then in
Eq (2.18) RiL _’RiSLL » SO that ( TJ )LL —+ti8LL ’ where

t{ =WLj,R{1/W[ —ih",R{f] (2.29)

which is the usual definition of the atomic ¢ matrices in
the spherical case.”~

When V;(r)0, we need to consider Eq. (2.7a) for
r€Y,;Q;. If r is in the interstitial region, then

.ZL,[‘ T il B -8;+(1—8;)HYL B} +Ji
b

(2.24)

Ami'YE(k)]

(2.25)

r
[r—R;| > |r'—R;| if r’ is to be on the surface of the
sphere ;. Hence, using Eq. (2.8b) in the form

Gd (r—r')=G¢ (r;—1))
= —ik 3 jikr)) Y2 (£)hit (kr) YL (x;)
L

(2.30)

inserting in Eq. (2.7a), using again Eq. (2.18), and per-
forming the surface integrals we find

Yr)=—i 3 kit (kr,) Y, (r;)Bf +do(r)
AL

+ [, GF (r=r Wi (r' Wir)d (2.31)

remembering the definitions (2.20).

Notice that, when V;(r)=0, the solution of Eq. (2.28)
yields the coefficients B/ of the scattered waves in the in-
terstitial region. Equations (2.20) provide the relation be-
tween these coefficients and the coefficients C{ in Eq.
(2.18) of the solution inside the atomic spheres. It is the
straightforward generahzatlon of the similar relation valid
for the spherical case®® and does not seem to be contained
in the literature. Notice also that in the nonspherical case
no doubling of the dimensions of the multiple scattering
matrix (2.28) is necessary.

Coming back to the case V;(r)s<0 we can use Eq. (2.31)
to determine ¥(r) in the interstitial region to substitute in
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Eq. (2.25), in order to obtain the MSE in the general case.

As it is, Eq. (2.31) is the Lippmann, Schwinger equa-
tion relative to the potential V;(r), with incoming waves
given by

bolr)=—i 3 hi (kr;)YL(1;)Bf +¢o(r) . (2.32)
hL

By introducing the T matrix relative to the interstitial po-
tential V;(r) defined by the equation

T =V, +V,G¢ T =V, +T,GV, (2.33)
so that
Tido=Vr¥ (2.34)

we can write the last term in Eq. (2.25) as
[ GF (r= Wi (e d
= f fmG(f(r—r’)T,(r',r”)JO(r”)d3r'd r'’  (2.35)

since Eq. (2.33) shows that T;(r,r’) is different from zero
only for r and r' in the interstitial region.

For r inside (;, as appropriate in Eq. (2.25) and r’ in
the interstitial region, as demanded by Eq. (2.25), we have
|r;| < |r;]|,sothat we can write

Gg (r—1)=—ik 3, jilkr)) Y, (xRt (kr{) YL (1))
L

(2.36)

Use of this relation into Eq. (2.35), remembering Eq.
(2.32) and (2.24) referred to the center o, gives

[ GF (=2 Wi x)dr

=3 jilkr)YL(x;) | 3, T/, -Bi-
L AL’

+§ei°,4ﬂi"¥z.(k> , (237
where we have defined
T =k [ [, [—ikt Gr)1¥E () Ty (x,0)
X [—ihi (kr)]YAx))dr dr
(2.38)
o=k [ [, [~k Uer)]¥E (r)Ty(x,x')
X jilkrg )Y Ax,)dr dr' . (2.39)

Insertion of Eq. (2.37) into Eq. (2.25) provides the
desired generalization of the MSE, in the absence of an
outer spheres, after equating the coefficient of
Jitkr;) Y, (r;) to zero and putting 4mi'Y] (k) =8,

SUTo)ir +Tip 1BL8
ML

+(1=8;)HY + T}y B}y =—Jf5 . — 02, .

(2.40)

If we had worked in K-matrix normalization
(—ih*—n;) instead of T-matrix normalization, we
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would have recovered the analogous generalization of the
MSE with the substitution, in all the above formulas, of
the standing wave n; in place of the outgoing wave
—ih;*. In this case Eq. (2.40) would constitute the gen-
eralization of the Dehmer and Dill® version of MSE to
non-muffin-tin potentials, with the same definition of the
coefficient B} .

To solve for this latter quantity, we need to know the
matrix elements Ty in Eq. (2.40), which is tantamount
to the T; matrix for the interstitial potential. If V;(r)
cannot support a bound state, then a Born expansion of
Eq. (2.33) provides the desired result. If instead V,(r) is
strong enough to support a bound state, one can use some
of the tricks already known in the literature.! The sim-
plest of these is suggested by the observations that there is
a reasonable chance that with a judicious choice of the
constant Vi, the potential V;(r)—V;, does not bind.
Generalization to this case of the above formulas is then
immediate. Indeed now Eq. (2.2) should read

(A4+E =V W) =[V(r)— Vip JW(r) .

If we choose the free Green function as the solution of the
equation

(A+E -V, )G (1,r')=8(r—r")

(2.41)

then all the above derivation is valid, provided we replace
k=VE with «k=(E—Vy)"? and V,(r) with
V;(r)—V,,. However, the solution of the Schrédinger
equation inside the atomic spheres () j» Ry (rj,E), should
still be calculated at the energy E, since in {2; the solution
of Eq. (2.41) is the same as the one of Eq. (2.2).

The presence of an outer sphere (,, enclosing all the
atomic spheres, having radius p, and centered at site o,
does not introduce any major complication in the deriva-
tion of the MSE. Strictly speaking the introduction is
only necessary when dealing with long-range potentials
(e.g., Coulombic), in order to impose the appropriate
boundary conditions at infinity. It is, however, a useful
expedient even for short-range potentials, since it helps
reduce the volume of the interstitial region and conse-
quently the strength of the interstitial potential.

In analogy with above we define V,(r)=V(r) for
r€€Q,, where €, is the region of the space comple-
mentary to Q, and V,(r)=0 for rEQ,. Similarly we
take V;(r)=V(r) for r€AQ'=Q,— 3V Q;, which now
defines the interstitial region, N being the number of the
atomic spheres, and V;(r)=0 elsewhere.

As before, use of the Green theorem Eq. (2.1) leads
again to Eq. (2.7a) for rE%Qo+2jv=lﬂj and to Eq.
(2.7b) for rE‘fQ,,-i-E;v:lﬂj, the summation Ej over
the surface integrals including now a contribution from
the outer sphere surface Sq . The free part ¢o(r) can be

now dropped since the outgoing wave condition can be
imposed directly on € (2,. In this region we can write, in
analogy with Eq. (2.18),

W)= [AL L1 () +CLy L Ar)]YL(r,) , (2.42)
LL

where f7;+ and y7;. are determined by inward integration
in €Q, through their asymptotic behavior, normalized to
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one state per Ry:

1/2
lim f{,(ro)zawlzl—— ] L in(kr, — Lir o),
r,—> m 0

(2.43a)
. 172 .
i Qs ~ — LN e - k —lI
"Jlgllw vYioir,) 8.1 [kv . cos(kr, —zlm+w))
—ifipr,) . (2.43b)

The extra phase shift @; has been introduced for dealing
with long-range potentials.

In Eq. (2.42) A} is the exciting amplitude, to be set
equal to §;;~ and C7 is to be determined by solving the
MSE. To evaluate the outer sphere contribution to the
surface integrals in Eq. (2.7) we need the free Green func-
tion G, rewritten either as

Gy (r—r')=Gg (r;—R,; —1,)
=k 3 [—ih*(kry)]Y, (1))
LL"
X JPLejprl k) YT n(x;) (2.44a)

forr€Q;and ron Sq (|1, | > |1, |), or as
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G (r—1)=G{ (ro+Ry —1})
=k 3 [—ih(kr,)]Y.(z,)
L,L"
XIZ wjplber)) Y (2)) (2.44b)

for r€€Q, and r' on Sq (|1, |> |1, |). These rela-
tions easily follow from an application of Eq. (2.8) and
subsequent use of Eq. (2.26).
Defining, in keeping with Eqgs. (2.21), the matrices of
the Wronskians
(W[—in*,y°’ D =WI[—ih 71 ],

(2.45a)
(Wl—ih* fD=WI[—ihi" f1];
WUy D =Wlhinviel
T o (2.45b)
(WD =W lhinfic]
and putting
—kp2 S {(W[—ih*,y°])LCP.
<
F(W[—ih* fo) L AD ) =BY  (2.46)

we obtain for r€();, the same equation, (2.25), provided
the exciting amplitude 47i'Y} (k) is replaced by BY.
Similarly, for r in the interstitial region
(r&ZQ,+3,Q;), we recover Eq. (2.31) provided ¢o(r)
is replaced by 3, ji(kr,)Y.(r,)Bf. These two equations

are to be combined with a further relation obtained when
r€E¥Q,:

0=—i 3 hj*(kr,)Y.(x,) |3 JPL Bl + 3(To) i Bl — 3, DiL-AL |+ f a G (r,0)Vi(r)(r)d3r (2.47)
L JL L L
having defined, in analogy with Eq. (2.23) (but notice the inversion of j; with — ih;*)
(T =S WLy Do AW —ik ¥y D (2.48)
<
and
Dy =kp} (WL fDL— 3 WU Dep A W[ —ik Ty )i AW [ =ik * f Do ] : (2.49)
LL"
The derivation of the MSE proceeds now as before. The final result is
S ([T + Ty 1BL 8y +(1—8;)(Hpy + TP B} + 3 (Jf +©FL)BE- =0, (2.50a)
L’ L'
(2.50b)

S (J2h +6%.)Bf + S(To)i + 677 1B =Dir - ,
AL’ L'

where the quantities T, - and ©Y; . are defined as in Egs.
(2.38) and (2.39), and the integration is now extended to
the new interstitial region AQ)'. Similarly ©%;. and 7%
are obtained by Eq. (2.39) through the replacement
— ikt —j; whenever the site j is replaced by the outer
sphere site o and vice versa. Again the exciting amplitude
A7 has been set equal to 8, .

Notice that the MSE in (2.40) already contain the con-
tribution of the outer sphere region € Q, since in this case

-

the interstitial region AQ includes € 2,. The MSE in
(2.50) make explicit this contribution to the matrix ele-
ment T7;., coming from € Q,. The two sets of equations
are indeed alternative ways to solve the same problem.

For spherically symmetric potentials and constant in-
terstitial potential, Eqs. (2.50) reduce to the MSE of Ref.
9 when written for T-matrix normalization, since in this
case

Dy —8 WIfE,vi 1/ Wlinvi] -
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With the replacement y;—g/ (real part of y{) and
—ihj" —n; the sets of equations (2.50) reduce identically
to the MSE of Ref. 9, which are written for K-matrix nor-
malization.

In absence of spin-dependent potentials, the complex-
conjugate solution of the Lippmann-Schwinger equation
(2.1) can be used to treat the photoemission problems.
Indeed, according to Breit and Bethe,'! to describe this
latter process we need to impose incoming wave boundary
conditions, which in absence of spin entail the replace-
ment G§ —G§ and — ih;* —ih;", i.e., complex conjuga-
tion.

Finally, by dropping the inhomogeneous term ¢ in the
Lippmann-Schwinger equation (2.1), making the analytic
continuation k—ik, E— —E wherever necessary, in par-
ticular in the expression for the function G§ and the T
matrix for the interstitial region, using the reexpansion
theorems for modified Bessel, Neumann, and Hankel
functions, and imposing decay wave boundary conditions
on the outer sphere region €, (47 =0), we obtain the
MSE for bound states in the case of general potentials.

III. THE PHOTOABSORPTION
AND ELECTRON SCATTERING CROSS SECTIONS
AND THE GENERALIZED OPTICAL THEOREM

We now use the results of Sec. II to derive expressions
of the total photoabsorption and electron scattering cross
sections valid in the MS formulation for the general po-
tential, which generalize the analogous expressions of Ref.
9 for muffin-tin potentials. At the same time we shall es-
tablish a generalized optical theorem for the wave-
function amplitudes B which will allow us to make con-
nection with the Green-function approach to the problem.

Following Ref. 9, the expression for the photoabsorp-
tion cross section by a cluster of atoms, of light polarized
in the @ direction is given, in the dipole approximation, by

a(E;e):% 4r*twa Y, | D (Eze) |t |,
“

where
Dp(E;€)=(Y[AE)|r€|y,)

and ¢;+(E) is the solution of the Lippmann-Schwinger
equation (2.1) with incoming wave boundary conditions,
energy E, and relative to an exciting wave L". The quan-
tity k/m, which comes from normalizing ¥[.(E) to one
state per Ry, has been explicitly factorized. Assuming the
initial state ¥, to be a core state localized at site i we need
only the expression for 17 at site i. Hence using Egs.
(2.18) and (2.22)

Dr(E;€)=3 3 CL(RL 1Yy, | 1€ thin)
Ly L

=kp})™'S 3 WiR1ABL(L")
Lf L,L’

X(Rli.fL |r-€| i),
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where B; (L") indicates that vector solution of the MSE

(2.40) relative to the particular exciting wave L", and L f

is the final L selected by the dipole selection rule.
Introducing the wave function

Rio=(kp})~" 3 RE (Wi R,
2

which is real for a real potential and matches smoothly to
S i W —ih* R AWj,R DL — ik
-~

=3 i(WInR D AWL,R DD —ny
2

and putting
My (e)=(R ifL Y., |r€| ),
we can write

olE;e)=4rktiva 3, T, My . ()[BL(L")]*
L” Lf,L

X 3 M, (e)Bi.(L").
e
Lf,L

(3.1

This is the generalization of the photoabsorption cross

section to the case of general potentials which we have

been seeking. To make contact with the Green-function

approach to the problem we should prove a generalized

optical theorem for the amplitude B; (L") analogous to

that already shown in the case of muffin-tin potentials.'2
The theorem takes the form

__Z[Bi(LN)]tBi'(Ln)
Fxz

=%‘{[(I”—“”l]ﬂ'}'—[(IHJ)"]’L‘w , (32

where, for short, we have indicated by T + H the MS ma-
trix in Eq. (2.40):

(T+H) L =UTHE +Tf 18,

+(1 =8 HYp +TH) . (3.3)

Using this theorem, the expression for the cross section
reads

o(Eie)=—dnkfiva 3 3, My (€Im[(T+H)'1,
Lf'LLf',L'

XMy,

(e) (3.4)
which is the generalization to non-muffin-tin cases of the
similar Green-function expression valid for muffin-tin po-
tentials.'>!3 We have used the fact that M; ,L(€) is real

for real potentials.

The existence of the theorem (3.2) rests on the possibili-
ty of a particular decomposition of the MS matrix (3.3) in
such a way that
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T+H=M—iA, (3.5 Under this assumption, from Egs. (2.40) we have
where M and A are Hermitian matrices and B’i(L”)= - ZU[(M_ié)_IIZL'(JiqL" +9%"L")
Js
Afp = +08 NIfL ) +(OFL)*]. (3.6) sothat
~
|
SIBLLPBLAL)=F| 3 ([(M—id) 1Kl Ty +Op))
L" L" |kL"
2 [~ iA) YL AT L+ O )
=[(M—id)~'AM+id) Y,
= (M +i8) " (M i) Y
1 " "
== UL+ ) ~[(T+E) "} 1) (3.7
N

which proves the generalized optical theorem. In deriving
(3.7) we have used the fact that

(M —i8) 7"V} =[M +id) ' o

which follows from the Hermiticity of M and A. That
the decomposition (3.5) is actually possible is shown in
Appendix B.

We do not need to prove the generalized optical
theorem in the presence of an outer sphere, since Eq.
(2.40) already describes the most general case. Hence the
theorem holds true also for the amplitudes B (L") solu-
tions of the MSE (2.50). The MS matrix to use in Eq.
(3.2) in this latter case is obtained after elimination of the
amplitude B} from the set of Eq. (2.50)

(T+H o =(THp 8 +HY (1-8,)+ T},
+ 3 Ui+ 0T + 0% T -
L",L"

X (JPhop: +©Fn ) (3.8)
remembering that the matrix elements T, now refer to a
reduced interstitial region.

The unpolarized electron scattering cross section by a
cluster of atoms is given in Ref. 9 as

UEs(E)=4‘IT 2 'Tfo |2 ,
L,L'

where the k? factor in the denominator of Eq. (48) of Ref.
9 has been incorporated in the definition of T7;., which is
the T matrix of the whole cluster defined as in Eq. (A2).
In the absence of the outer sphere this quantity is derived
from Eq. (2.31) by referring the intervening functions to
the origin of the coordinates using the appropriate expan-
sion theorems and following the same steps leading to Eq.
(2.37). The net result is that in the interstitial region and
for r,— o the wave function has the form

Y(r,)=¢,(r)
—i 3 bt (kr,) Y, (x,)
L

X | 3P +6%)BL.(L")+67
AL’

which shows, by comparison with Eq. (A2), that

TIC;L"—_ 2( 2 +6Y.)Bi.(L")+6%,.

In presence of outer sphere, using Egs. (2.42) and (2.46)
with A7 =8, . ~, one obtains

l o "
X;CZ(L )
1
——;%(W[—ih v Dt

B z‘ ( L r )
(kp?)
where B.(L") is to be derived by solving Egs. (2.50).
The generalized optical theorem of Eq. (3.7) can then be

used to derive the usual optical theorem for Tf; under
the form

S Ti(Tip) =
2

c
Tfp=

(W[ —ih*, )y

b

1
% ImTy,
so that

ops(E)=— 2T 2 ImT§L .
k L,L'

IV. THE MS EXPANSION IN THE GENERAL CASE

Starting from Eq. (3.4) a generalized MS expansion can
be set up for a non-muffin-tin potential similar to the one
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already used for the muffin-tin case. This expansion rests
on a particular decomposition of the MS matrix Eq.
(2.40),

Ti =0T +Tir 18y
EZL'=(HgL'+TgL')(1—8;j)

so that the matrix elements (4.1a) describe the nonpro-
pagating smooth part of the photoelectronic wave emanat-
ing from the photoabsorber located at site i.

Provided the condition p(T—'H) <1 is satisfied for a
certain energy range, where p(4) is the maximum
modulus of the eigenvalues of the matrix 4, we can write
in that range

(4.1a)
{4.1b)

(T+H) '=(I+T~

II_{)I—I

=3 (—)NT-'H)T,

4.2)

where the series is absolutely convergent relative to some
matrix norm. As a consequence the photoabsorption
cross section Eq. (3.1) can be expanded in an absolutely
convergent series

o(E;e)= i o,(E;e€),
n=0

(4.3)

where
]
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oo(E ;€)
=—drkfioa 3, 3, My ()Im(T YiL ,(6)
Ly, Ligr
(4.4)

is a smoothly varying “atomic” cross section, which takes
into account the contribution of the interstitial region and

o,(E;e)=—4rkfiwa(—1)"

X% 3 My, (e)Im[(T~ LT -1,
Lplrr

My, (€) (4.5)

represents the contribution to the photoabsorption cross
section coming from processes where the photoelectron
has been scattered n —1 times by the surrounding atoms
before returning to the photoabsorbing site. The presence
of an interstitial potential modifies the free amplitude of
propagation H}; . of spherical-wave components from site
i and angular momentum L to site j and angular momen-
tum L' through the appearance of the matrix element
TY,. in Eq. (4.1b).

In order to estimate this modification we write in Eq.
(2.38), referring to site i as origin (r=r;),

—ihj (kr,)YL(r,)_zj,(kr)YL(r,)HJL for [—r1;|=|Ry|>|1|

=—i§,hlﬂk’i)YL'(f¢'VE’L for |[r—r1;|=|Ry| < |r;] .

Hence, remembering that T;(r,r')s0 only for r,r’ EAQ
Tiv=k | pi

+fR:"2d"E T (r ' — ikt (ke ) WPy

R[' ss
r2dr[ — ikt (kr)] fp‘ r2dr' S Th o (r g ke ) H Yy
1 Lu

T(r,r')=3 Y (O)T[.(r,r)Y, (1) (4.6)
LL
and use the reexpansion theorem
4.7)

where the upper limit of integration is to be changed accordingly in presence of on outer sphere. If the muffin-tin con-
stant ¥, can be chosen in such a way that ¥;(r)— 7, it =y pn V. (r)Y,.(r) is weak enough, then to a reasonable approx-

imation T;(r,r')=8(r—r')¥;(r) and

TiL(rr)= ;;au —) 3 PArICE.
<

in Eq. (4.6), since 3, L CE Y r)= Y (r)Y[ (r). Substitution into Eq. (4.7) gives

Th =k 3 f,,

L L™

+k 2 sz r2dr[ —ihit (ke YV )] — ik (k) JCEn pod Py .

To proceed further, we use an approximation expression for the quantities HY;. and J

been shown'* that to a good approximation
HL,L' =~ —41TYL (R,‘j )YLI(R,‘J‘ )f(R,j )lI =r
so that

ridr[ — it (k)Y P)jpd kr)CFoup wH Yooy

4.8)
B =(i/2)[HY, —(Hf',)*]. It has

(4.9a)
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Il ~ —4m Y[ (Ry) YL (R;)Im[f (Ry)i' ="

where
172

B 1
(kR;;)

(2kR;)?
and B=2[1(/ + D) +1I"(I'+ D).

f(R,'j)z

1+ exp |ikR;;

Remembering Eq. (2.12), the first integral in (4.8) becomes

B
I+ —=—

Ri' = e _qe
—4r 3 fpi’rzdr[—ih,+(kr)]VL(r)j1m(kr)f dQ YL ( Q)Y Q)Y ()Y (R YR )F (R i !

Le,.L"
. = . ikrR
=47 [y, @ L= YL (P ()™

=[4mi'YER)I™' [y, o \@r[ =il kD] Y0P (D)e

i

ikr-R

YF(Ry)YL(Ry)i~F
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(4.9b)

dl
gy, (4.10)

where A(p;,R;;) is that part of the interstitial region comprised between the two concentric spheres of radii p; and R;;.
A similar derivation shows that the second integral in Eq. (4.8) yields

—[4mi' YRR [, A [ =ikt kO] (OPOHF (- R)I,
i

where #(r-Ryj))=—4r Y, i'* o (kn) Y ()Y, (R;;) and
¢ A’(R;;) denotes the interstitial region outside the sphere
of radius R;; centered at site i. In this region we can use
the asymptotic expansion for h;* (kr)~i~"*+Ye* /(kr) so
~ that the quantity in (4.11) becomes roughly
eZikr
(kr)?

where the integral is to be taken along the line connecting
the two centers i and j.

The two expressions (4.10) and (4.12) provide a useful
estimate of the order of magnitude of the correction terms
due to the presence of a nonconstant interstitial potential.
They represent the zero-order term of a series expansion
originated by the Born series for the interstitial T matrix
T;=37_oVi(G3 V)", assumed to be convergent.
Higher-order terms can then be evaluated along the same
lines as above, exploiting the multicenter expansion of the
free Green function G§. We expect the correction terms
to be relevant for open structures (with large interstitial
volume) and for energies of the final-state photoelectron
which are not too high (< 100—150 eV).

(— DI+ f;:rzdr Vir R (4.12)

V. NUMERICAL IMPLEMENTATION
AND COMPARISON WITH OTHER METHODS

All major theoretical methods devised up to now to cal-
culate molecular photoabsorption or electron-molecule
collision cross sections and even in the more sophisticated
version of the multichannel scattering theory, sooner or
later reduce to the solution of a system of coupled
second-order elliptic differential (integro-differential)
equations of the Schrddinger type in a local (nonlocal) po-
tential whose essential peculiarity is its multicenter aniso-
tropic nature. Usually for the solution of this problem a
single-center expansion of the wave functions and of the
potential is used. The disadvantage of this approach is
that only small molecules with light atoms (except
perhaps the central one) can be treated, since a reasonably

(4.11)

I

manageable single-center expansion is usually not suffi-
cient for reproducing the singularities of the potential far
away from the center or for representing wave functions
well localized around a distant nuclear charge.

The multicenter expansion method that is typical of the
MS approach to the problem corrects for this drawback,
since the expansion is made around each singularity of the
potential. Hence bigger molecules with heavy atoms can
be successfully treated. Another advantage over the exist-
ing methods is that it is a non-basis-set method that
directly solves the Lippmann-Schwinger equation for any
energy of the final-state electron. As a consequence, ques-
tions regarding the completeness of the basis chosen are
automatically bypassed.

As is apparent from the derivation of Sec. II, the MS
method breaks the solution of the problem into two steps:
finding the individual T, matrices for the various poten-
tials ¥,(r) and ¥;(r) or the T; matrix for ¥;(r) and then
solving the algebraic equations for the coefficients B} .

The numerical solution of Eq. (2.14) inside the atomic
spheres does not pose any major problem for local poten-
tials. By putting R;; (r)=(1/r)X;(r) [R(r)=(1/r)X(r)
in matrix notation] and introducing

G(r)=Gypp(r)=

I(I;Ll)__E
r

8LL'+ VLL’(r)

the system of coupled Schrédinger equations
X'"(r—G(rX(r)=0

can be solved very efficiently by using the matrix
Numerov procedure

[1~%h26(r,,+1)]X(r,,+1)
=[2I+h*G (r,))X (r,)
—[I —5h*G(r,_ )X (r,_y), (5.1)

where h =r, —r, _, is the mesh size and I is the unit ma-
trix. Actually, the number of operations involved can be
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further reduced, with a consequent reduction of computa-
tional time, by putting

Y(r)=[I —h*G(n]X(r)
and rewriting Eq. (5.1) as
Y(ry 1) =12[1 —5h*G (r,)17 'Y (r,)
—[10Y(r,)+ Y (r,_1)]

so that at each step both Y(r)
—1h2G(r)]7'Y () are calculated.

By using the asymptotic form of the matrix solution at
r—0 for the atomic spheres or at r— « for the outer
sphere [see Egs. (2.16) and (2.43)] one can generate by out-
ward or inward integration of Egs. (5.2) the wanted solu-
tion from which to calculate the atomic #{;. matrices.

The numerical computation of the quantities T, 7
(©%,.) is best achieved by solving for the quantity ¥/}
(¢} ) satisfying the equations

YL (r)=—ihiT (kr)) Y, (1))

(5.2)
and X(r)=[I

+ [, 68 (r=r Wi WL, (5.3a)
Y7 (r)=jilkr,) Y, (1,)
+ [, GF (r=r Wi Wi (r), (5.3b)

which are denved from Eq. (2.31) by putting B} =80,
[B,_ =0 and 47" Y, (k)=8;;] at the pomts of a Gauss-
ian quadrature using a single-center expansion for all the
functions involved and a linear-algebraic approach along
the lines of that suggested by Schneider and Collins'® for
a similar problem, the electron molecule collision. The
solution at such points can then be used to evaluate, by
the same technique of single-center expansion and Gauss-
ian quadrature at the same points, the integrals

Th = [ [ —ih ke 1YL (e V(O A)dr
Ofr= [, [~ ik kr) 1YL (x)Vi(r W An)dr

We notice that the expansion of V;(r)=3, V/(r)¥.(r)
around the center of the cluster should not in principle
cause much trouble in this case, since now V;(r) has only
finite size discontinuities at the sphere radii p; and p,.
Such discontinuities can even be reduced in strength, if
necessary, by introducing ¥, as discussed in Sec. II [see
Eq. (2.41) following]. Also, at the price of adding empty
spheres, one can minimize the effect of the interstitial re-
gion, if this is needed.

Regarding the convergence of the L angular momen-
tum expansion, there is a natural cutoff given by the size
of the potential V;(r), so that around each center j the
maximum / needed at energy E is roughly kp;. Similarly,
for the outer sphere and the interstitial region [,, is the
order of kp,. This is due to the fact that a spherical wave
with angular momentum / and momentum k is not scat-
tered by a potential of radius p if its classical impact pa-
rameter kp <l. These cutoff values are quite low for
atomic spheres (for a typical value p=3 a.u. and a pho-
toelectron energy as high as 16 Ry, /., ~12). For the
outer sphere, assuming a rather large value of 10 a.u., at
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the same energy [, ~40, a typical value used in the
single-center expansion calculation for small molecules.

Finally, the point group symmetry of the cluster around
the photoabsorber can be effectively used to reduce the di-
mensions of the secular matrix to be solved. Details of
the symmetrized version of the MS equations will be
given elsewhere. The extension of the MS method to a
nonlocal potential does not present conceptual difficulties,
it only adds greater complication. In this case one has to
solve a set of integro-differential equations inside the
atomic spheres and many methods of solution are avail-
able in the literature for such a problem. For the intersti-
tial region one can still use the method of Ref. 15 which
was originally devised to treat this more general case. It
is clear, however, that the use of a local potential greatly
facilitates the solution of the ionization problem. Hence
in the context of the MS method the choice of the local
density potentxal of the type proposed by Hedin and
Lundgvist,'® based on the free-electron- -gas approximation
of the Dyson self-energy of the real system under study,
comes in very handy. This potential is energy dependent
and incorporates the effect of the free-electron-gas ex-
change, the Coulomb correlation hole, and the screened
exchange. Its complex part describes in an average way
the inelastic processes that damp the photoelectron wave
in the final state. Simpler versions, always in the spirit of
the local-density approximation, are the Xa potential and
the Dirac-Hara free-electron-gas exchange potential, used
by various authors to calculate photoionization and
electron-molecule cross sections for small molecules (see
Lane for a review!”).

An improvement on thls approach has been proposed
by Zangwill and Soven,'® in that they incorporate in a
self-consistent way the effect of the time-dependent field
induced by the external radiation field on the photoioniza-
tion cross section. This approach, known as the time-
dependent local-density approximation, takes into account
polarization-type many-body effects influencing the pho-
toresponse of small electronic system. The method has
been applied to rare-gas atoms but it is clear that it can be
extended to molecules, provided the multicenter peculiari-
ty of the induced field is taken into account. The
multiple-scattering method presented here can readily
cope with such an extension. It is difficult to assess the
relationship of the local-density method to other methods
currently used to solve the photoionization problem, like
the Stielties moment theory by Langhoff'® or the
Schwinger variational method by McKoy et al. (see Ref.
20 for a review). These latter methods, although with dif-
ferent techniques, both try to solve the Hartree-Fock (HF)
equations for a continuum orbital in the static exchange
approximation, in which interelectronic correlations are
neglected but the nonlocality of the exchange and the
orthogonality constraints are fully taken into account at
the HF level. The assessment of the accuracy of the ex-
change approximation in the local-density methods rela-
tive to its nonlocal HF counterpart is not easy; it requires
careful comparison between model results in both cases.
Also, the local-density methods can include in an average
way electron correlation effects which are neglected at the
HF level. As a general rule we expect that the two ap-
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proaches give qualitatively similar results in the semiclas-
sical regime, i.e., at those energies of the final-state elec-
tron where the density of the available final channels is so
high that an average description of the system is appropri-
ate. At low energies where the effect of a single final-
state channel is important at the quantum level both ap-
proaches are insufficient although the treatment of ex-
change is more realistic in the HF approximation. A mul-
tichannel extension of the scattering problems is essential
in such a case. It turns out that it is possible to extend the
Schwinger variational principle in this direction®® and cal-
culations have been performed on small molecules using
this method. No such extension exists, to our knowledge,
for the local-density method. The next step is to extend
the MS method to this general case.
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APPENDIX A

We show here the equivalence between the expression
(2.23) for the atomic T matrix (T.) relative to the poten-
tial V;(r) and the expression for the similar quantity as
defined by Evans and Keller® in their Appendix 1.

For a single center i we have to match smoothly the
general solution inside the sphere Q;

U= ¢, ()Y, (r)=3 CLRAD)Y (1) (A1)
L LL'

to the general solution in the external region & (2;

tﬁk(r)—-ZAL zj,(kr)YL(r)—tkzz R Ty Yodr) |,

(A2)

where, by definition, Ty, is the atomic 7 matrix.
The exciting amplitude AF is determined by requiring
that

1/1k(r)=eik"+f(k,k’)ei"’/r
asymptotically, so that AX=4rY}(k). The suffix k
refers to the direction of the incident wave.
Equation (A2) can be rewritten as
(1) z ALY (kr)—iBER (kr)]Y L (x) , (A3)
where
(A4)

Bf =k 3 T AL .
X
The matching conditions at the radius p; of Q;

g RipCr=i'lALjitkp;) —iBERit (kp)] (A5a)

%;RiL,CL:i’[AL Jjitkpi)—iBERT (kp;)] , (A5b)
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where the prime indicates derlvatlon with respect to 7,
determine the coefficients C; and Bf.
In matrix form they read

Gx =d ,
where
RLL’ Ih1+(kp,)
iljij(kp))  Jilkp;)
G= RiL‘ ih1+'(kpi) ’
iljjkp)  jitkp;)
CL Af
x=|oc | d= &
By AL
By introducing
. M N

we can write the solution x as x =G

Co= (M +Np )AL,
<

-4, or

Bf =3 (Pri+ Q1AL
“
By comparison with Eq. (A4) we get

T = %(PLL"FQLL')
which is the solution by Evans and Keller.

We can, however, solve Eqs (AS) in an alternative way
by eliminating in turn A¥ and B in Eq. (A5a) as ob-
tained from Eq. (A5b). The result, is remembering the
definition of the Wronskian given in the text,

-l
§ Wi, Rep ACL-= W jy, —ih; T 1i'BE = kL{BE , (A6a)
1
S Wl—ih", Ry 1CL = —WLji, —ih Yi'AL
<
I
R 2AL . (A6b)

By introducing the matrices of the Wronskians as in
Eq. (2.21) we solve for the C; in (A6b) and substitute in
(A6a), to obtain

S (WL, RD AW —ih*, R\ Af = —Bf
L'\L"

or

1 .
Tpp=— * S (WLHLRD AW —ih* R
<
or
(T Ypp=—k 3, (W[—ih *,RD AW [j,RDE
“

which is the expression (2.23) apart from the factor — k.
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APPENDIX B

We show here that the multiple-scattering matrix
T+ H in the presence of a nonconstant interstitial poten-
tial can be decomposed as

IT'+H=M-ih,

where M and A are Hermitian matrices and
Al =3 +OLL NI +(Of )]
I
=P +OYL+(Of L)+ 07, (OF ) .
I
(B1)
The second step follows from the Hermiticity of

J¥ =f.1)*, which is a consequence of the definition
(2.27), resulting from the validity of the sum rule

T =S Tl U ) =3 I8, (B2)
r L

which is a consequence of (2.24), (2.26), and the property
of the exponential

eik-rie —ik-rj —e ik-(r; -—rj)

as shown in Ref. 2, and from the fact that

Ofr =3 Or i) =3 67 Jtiy
L" L"

(B3)

which is a consequence of the definition (2.39) and the re-
lation (2.26).

The MS matrix T+ H, following Eq. (2.40), can be
written as

(T+HY L =(TH 8y +H2L'(1—8ij)+TEL' .
Now, according to the definition (2.11), remembering
that — i/t =n; —ij;, we can write
Hpp =Ngp —iJgp, (B4)
where JJ;. is defined in (2.27) and N};. is similarly de-

fined by making the substitution j,—n;. They are both
Hermitian matrices.
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Moreover the atomic T matrix (T.);; is known to be
related to the Hermitian atomic K matrix (K, ).+ by the
relation®

(TH=KH —i .

Finally, to accomplish a similar decomposition for T
we first observe that

T=4(T+Th—ip(T'-1),

where +(T+T") and (1/2i(T'—T) are Hermitian.

Moreover,
Lr+th=—2(r+Th+(0+6N-i(0+6h),

the last step following from the definition (2.38) for T
and the fact that —ih;" =n;—ij;, having introduced, in
analogy with (2.39), the matrix

0=0Y =k [ [, [—ih r)]¥} (r)Ty(x,x)
Xnp(kr;)YpA(r} )d3rd3r .

Remembering that J;.=38,,, we finally achieve the
decomposition

(T+H){p =KD 8 +(1—8,)NJ,. — ~(T +Thi,.

+©@+0h, —ilil. +©+ehi,.

+ (Tt 1y,
2i

=M —iAY,

where the matrix AY;. is identical to the expression in
(B1), taking into account that the optical theorem for the
T matrix for any potential, and in particular for the inter-
stitial potential, reads?

1 " ) )
ST =3 6. ef.)* .
<

This last step completes the proof.
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