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The three-dimensional diffusion in condensed material of a rotating and translating asymmetric-
top molecule is considered with use of three frames of reference: the laboratory frame (x,y, z), a ro-
tating frame (1,2,3)', and a moving frame (1,2,3). The frame (1,2,3)' has the same origin as (x,y, z),
but rotates with an angular velocity m, the molecular angular velocity. The frame (1,2,3) is defined
by the principal molecular moments of inertia, and its origin is therefore the molecular center of
mass. The molecular angular velocity ru is the same in all three frames. By writing a pair of simul-
taneous single-molecule Langevin equations, a rotational equation in (1,2,3) and a translational equa-
tion in frame (1,2,3)', a natural description of the molecular diffusion is obtained without the need of
friction cross terms. This description introduces into the analysis the center-of-mass position vector
r, and the forces obtained by transforming Newton s equation into a noninertial frame, i.e., by the
frame transformation (x,y,z)~(1,2, 3)' or vice versa. These are the Coriolis force 2mto&(v, the
centripetal force mac &((co)&r}, and the force mm)& r. The analysis also implies the consideration of
the velocity

msgr.

Here v is the molecular center-of-mass linear velocity, co the angular velocity,
and r the position vector of the center of mass. It is shown by computer simulation that autocorre-
lation and cross-correlation functions of these terms can exist both in frame (x,y, z) and in frame
(1,2,3), the moving frame. Examples are provided in the liquid state for the achiral asymmetric top
dichloromethane and for the enantiomers and racemic mixture of bromochlorofluoromethane at two
state points. The symmetry properties of some of the new cross-correlation functions are tabulated.
Finally, experimental methods are suggested for observing cross-correlation functions such as these
and for testing experimentally the detailed numerical paradigm provided by these computer simula-
tions. Examples of one method are given with reference to the far-infrared power absorption of the
tris(acetylacetonate) complexes of cobalt and chromium in the powdered crystalline state.

INTRODUCTION

The computer simulation' of molecular dynamics in the
condensed states of matter now allows the investigation of
many details that are obscured in the conventional theory
of molecular diffusion. At a fundamental level, it is
necessary to take into account the fact that, in general,
diffusing molecules (neglecting vibration) both rotate and
translate. The historical approach has relied on the "fac-
torization" of the molecular dynamics into "purely" rota-
tional and "purely" translational components. This
achieves a considerable mathematical simplification but,
as we point out in this paper, loses most of the available
statistical information. For example, the standard
translational or rotational Langevin equations cannot be
used to establish the nature of the statistical correlation
between rotation and translation on the basic, single-
molecule, level. This has opened a big gap between hydro-
dynamics and molecular dynamics which continues to ex-
ist to this day. It is necessary to use computer simulation
to begin to fill this gap because of the increasingly impor-
tant role played by Langevin dynamics in the theory of
fiocculation, sedimentation of lyotropic liquid crystals,
and colloid dynamics. It is essential to clarify matters at

a one-molecule level before developing techniques to deal
with two-, three-, and N-molecule rotational-translational
Langevin dynamics.

It is not obvious to us that the Langevin equation for
one-molecule "rotation-translation" has been written
down as clearly as possible. Several papers on the subject
are available in the literature, all of which attain a high
level of mathematical complexity but which contain fiaws
because the phenomenology [i.e., the (then) unavoidable
guess work] has not stood up to the test of time. An ex-
ample is the first substantial paper on this subtle and dif-
ficult subject: that of Condiff and Dahler. They seem to
have written a pair of interlinked Langevin equations
which give, in the laboratory frame, the result

(v(t)m (0))&0, t&0.
Equation (1) is now known to contradict the Berne-Pecora
theorem'

( v(t)co (0) ) =0, for all t .

Here v is the inolecular center-of-mass linear velocity,
and u is the angular velocity of the same molecule. Equa-
tion (2) follows because the sign of v is reversed by parity
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I. CROSS-CORRELATION FUNCTIONS BET%EEN
ROTATIONAL AND TRANSLATIONAL

MODES OF MOTION

The Langevin equation for the decoupled rotational dif-
fusion of an asymmetric top in three dimensions is well
known to be (in component form)

I1 ~&] ] (I2 I3 )~2t03+I]P](]31 I 1 ~ 1

(I3 I])t03~]+I2P22 —I2~ 2 &

0

I3e3 3 (I] I2 )]& lt&)2+I3P3~3 I3 ~3

(3)

where I], I2, and I3 are the three principal moments of
inertia, (0], co2, and t03 are components of the molecular
angular velocity in the moving frame of reference (1,2,3)

reversal, whereas that of oy remains the same.
The most complete theory seems to be that of Steiger

and Fox, whose results have recently been generalized to
include the memory-function hierarchy by Grigolini and
co-workers. Steiger and Fox suggest that there may be
some mathematical inconsistencies in the earlier papers by
Evans and by Hwang and Freed, ' and write down for-
mal equations of great complexity both for single-
molecule and X-molecule dynamics.

However, except in one very special case, they do not
seem to have attempted a solution of these N-particle
equations, either with computer simulation or with
analytical techniques.

A recent review article by Dickinson has emphasized
the importance of Langevin dynamics in several fields of
physics and chemical physics, but it seems that the nature
of the cross-correlation functions between rotational and
translational modes of motion has not come to light from
analytical considerations of the simplest type of Langevin
equation —that for one Brownian particle.

In this paper this equation is written in Sec. I for an
asymmetric top rotating and translating in three dimen-
sions. It is necessary to write this equation in rotating
frames of reference, "'2 and this introduces terms which
are shown by computer simulation to lead to new ways of
measuring the correlation between molecular rotation and
translation, and to new autocorrelation functions in rotat-
ing and laboratory frames of reference which do not ap-
pear in the "decoupled*' Langevin equations describing ro-
tation and translation separately.

In Sec. II these new cross-correlation functions are il-
lustrated by computer simulation with reference to 108
CH2C12 molecules at 296 K in the liquid state at equilibri-
um and in the presence of a strong, z axis, external, elec-
tric field. Such a field is known to break the parity-
reversal rule ' which leads to Eq. (2} and in this way in-
troduces new cross correlations'" in the laboratory and ro-
tating frames of reference. Results from computer simu-
lation are also provided for enantiomers and racemic mix-
ture of the chiral bromochlorofluoromethanes.

In Sec. III, finally, we suggest experimental methods,
based on spectra for chiral liquids and solids and on
electric-field-induced birefringence, to detcet these new
cross correlations in the laboratory frame of reference.

defined by the axes of the three principal moments of in-
ertia and whose origin is at the molecular center of mass.
The three friction coefficients p], p2, and p3 are properties
of the molecule, defined by the molecular symmetry
alone, and are scalars, invariant —to frame transforma-
tion. They are assumed to be diagonal in the same frame
as I, , I2, and I3 in the standard theory of rotational dif-

~ 2 ~

fusion. The Wiener processes W], W2, and W3 are de
fined as being, in frame (1,2,3), statistically independent,
so that for I, =I2 I3 (——the spherical top), the three equa-
tions reduce to one:

v+2a]Xv+a]Xr+o3X(aiXr)+p„(v+mXr) =W„

Equation (5} is written in a rotating frame of reference
whose origin is coincident with that offrame (x,y,z). We
denote this frame of reference by (1,2, 3)'. It is generated
from the standard laboratory frame translational
Langevin equation by'

[v]( y, )
——[v+2a]Xv+a) Xr+a) X(a) Xr)](] 2 3),

[v](x,y, x) [v+a3 X rl(1,2, 3)' &

[r](1 2 3) =[V](1,2, 3)'

In these equations

[ l(x,y, x) —[~](1,2, 3)'

(6)

is the molecular angular velocity, which is the same in a11

three frames because a) is also the angular velocity of
frames (1,2,3) or (1,2, 3)' with respect to frame (x,y,z).
This quantity appears in both the translational equation
(5), and the rotational equations (3). Therefore the com-
plete description of the rotational and translational molec-
ular diffusion in terms of one-particle Langevin dynamics
involves solving these equations simultaneously.

This is a formidable analytical problem, but consider-
able progress can be made with the aid of conventional
computer simulation, ' the subject of this paper.

The first step in this direction involves the recognition
of the existence in the frames (1,2,3) and (x,y, z) of
numerous auto and corss-correlation functions suggested
by the terms in Eqs. (6) and (7). In this respect these
equations suggest the existence of time autocorrelation
functions (ACF's} between the Coriolis acceleration
[2oyXv](] 2 3) the "nonuniform" acceleration [t&3Xr](] 2 3)
and the centripetal acceleration [to X (toXr)](] 2 3) togeth-
er with the ACF of the velocity [m Xr](] 2 3).

The existence of all these autocorrelation functions is
confirmed in this paper using the technique of conven-
tional and field-on' computer simulation for the asym-

to+pa]=W .

If the center of mass of the molecule is moving in the
laboratory frame there is an additional degree of "dif-
fusional freedom" and Eqs. (3) must be supplemented to
take account of this fact. This is our point of departure
froin the conventional theory of molecular diffusion be-
cause we write the supplementary translational Langevin
equation as
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metric tops dichlorom ethane and bromochloro-
fluoromethane in the liquid state. As far as we know
there is no simple analytical method available for their
analysis, and the only way to progress in this area is to
solve equations such as (3) and (5) on a computer.

Another important point is that these correlation func-
tions also exist in the laboratory frame of reference

(x,y,z). This becomes clear because the frame transfor-
mations [Eqs. (6) and (7)] are reversible:

[v](i z 3) [v+2aiXv+aiXr+X(roX r)](,y,

[v](i z 3)' —[v+ai Xr](,
using the results

( v(t) v(0) )(i 2 s) ~0 y

( v(t)' v( 0))( (2 iy&0,

(10)

it follows that numerous laboratory-frame autocorrelation
and cross-correlation functions must exist on the basis of
the elementary frame transformations (9) and (10). These
have not been explored before, and it is not clear to the
present authors whether the available literature indicates
their existence or not.

We introduce the use of two rotating frames„(1, 2,3) and
(1,2„3}', in order to try to clarify a difficult dynamical
problem. In this context we note that the frames (1,2,3)
and (1,2, 3)' do not rotate with respect to each other. An
observer rotating with the frame (1,2, 3)' would see only
the translational motion of the center of mass of each mol-

ecule, with the rotational motion "filtered out. " In the
frame (1,2, 3)' the Langevin equation describing this fil-
tered out or "residual" translational motion is Eq. (5).
The (ii term in this equation appears because the frame
(1,2, 3)' is rotating with respect to an observer in the labo-
ratory frame (x,y,z}at an angular velocity «i This is a. lso
the angular velocity of the frame (1,2,3) with respect to
(x,y,z), i.e., the molecular angular velocity itself. The
following is therefore true:

[to](1,2, 3)= [(i)1(),2, 3) = [to](x,y, s) ~

i.e., ro is the same in all three frames.
The presence of ro in a translational equation [Eq. (5)] is

explained naturally by the fact that the molecules are also
rotating; to is therefore governed simultaneously by two

equations [Eqs. (3) and Eq. (5)]. The diffusing molecule is
rotating in frame (x,y,z), and its center of mass is also
translating in frame (x,y,z). However, in frame (1,2,3),
which has its ongtn at the molecular center of mass, the
translational motion cannot be discerned, and in conse-
quence there is no direct translational term in Eq. (3).
Therefore, quid erat demonstrandurn, the molecular dif-
fusion is described comp/eteIy, in the context of the sim-
plest type of Langevin equation, by the simultaneous use
of Eq. (3) in frame (1,2,3) and Eq. (5) in frame (1,2, 3)'.
There is, apparently, no need for the friction cross terms
that have appeared in almost all the papers on this subject
known to us. ' Therefore the simultaneous use of Eqs. (3)
and (5) both clarifies and simplifies the general problem of
the diffusing asymmetric top.

It is relatively straightforward to build up the auto-

correlation and cross-correlation functions suggested by
the structure of these equations by standard running-time
averaging' on data from computer simulation.

A. Digital computer simulations of cross-correlation
functions

The first liquid-state cross-correlation function between
linear center of inass volocity v and angular velocity a)

was detected by Ryckaert, Bellemans, and Ciccotti" in
1981. In order to detect this they had to use the moving
frame of reference (1,2,3), because the simple eross-
correlation function used in their work, i.e.,

(v(t)to (0))

vanishes for all t in frame (x,y,z). Therefore, although it
may be obvious that the molecules in a liquid must have
their rotational and translational motion correlated statist-
ically, it is not at all obvious how. Furthermore, only a
few off-diagonal elements of the matrix (v(t)ai (0) )() 2 3),
discovered by Ryckeart et al., exist. In the case of the
molecule CHzClz, for example, only two exist. Therefore
it is necessary to be careful what frame one works in to
see anything at all, and it is significant in this context that
analytical theory prior to 1981 was not able to predict the
results obtained by Ryckaert et al. using molecular-

dynamics computer simulation. 's Therefore, to obtain
even the most basic theoretical knowledge of this type of
cross correlation in liquids, the choice of frame is critical-

ly important. Autocorrelations, such as those of 2vXai,
roXr, and roX(aiXr), exist, however, in both frames, as

reported elsewhere' and in this case the frame transfor-
mation provides a little less insight. Autocorrelation
functions always exist in all three frames, (1,2,3), (x,y,z),
and (1,2, 3)'.

The existence of cross correlations in the moving frame
is basically the reason why the translational Langevin
equation, well known in the laboratory frame, has to be

put in the unwieldy and highly nonlinear form of Eq. (5),
and solved simultaneously with Eq. (3). If this is not
done, there can be no analytical explanation of the large
bulkzo of results on cross correlations already available
from computer simulation in terms of Langevin dynam-
1cs.

In addition to this, further insights have become avail-
able recently about what can be learned experimentally
about the role of cross correlations in condensed matter.

Perhaps the most important of these is that cross-
correlation functions must be used' to explain why a
spectral band shape of an enantiomer (a left- or right-
handed molecule) is different from that of a racemie mix-
ture. This very well known ' experimental observation
has no natural explanation in terms of Langevin
dynamics —an oversight which was corrected only by the
discovery, by computer simulation in 19S3, that two ele-
ments of the moving frame matrix (v(t)m (0)) mirror
each other in time dependence for a left- and right-handed
molecule, and disappear for all t in the 50/50 (racemic)
mixture. ' If we had restricted ourselves to an analysis in
the laboratory frame (x,y,z) we would not have been able
to offer any explanation for this experimental observation,
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because in frame (x,y,z) the simple matrix (v(t)m (0))
uanishes for all t for the right-hand molecule, the left-
hand molecule, and the mixture. The exclusive use of the
laboratory frame in this case therefore leads us nowhere.
This is consistent with the well-known observation that
the physical properties of a right-hand and left-hand mol-
ecule in the frame (x,y,z) are always identical In the
moving frame {1,2,3), this is no longer true.

Secondly, it has been discovered, again by computer
simulation, that an external electric field promotes the
existence of two off-diagonal elements of (v(t)m (0))
directly in frame (x,y,z). For a z-axis field these are
(x,y) and (y,x). Again, there was no indication of this
from the analytical theory prior to its discovery, numeri-
cally, in 1985. This is another clear indication, therefore,
of the need for a new approach to the Langevin equations
themselves. The experimental importance of this electric
field effect is that it allows, in principle, the isolation of
cross correlations from autocorrelation functions using
techniques such as electric-field-induced birefringence.

So far, we have restricted the discussion to only one
type of cross-correlation function (v(t }m (0) ). The
structure of Eqs. (3) and (5) suggests, however, the ex-
istence of several more. Without actually solving these
equations, the technique of computer simulation is used in
this paper to establish the existence or otherwise of these
cross-correlation functions in frames (1,2,3) and (x,y,z)
and in the presence and absence of the electric field E. It
is shown in this paper that cross correlation is a highly
selectiue phenomenon, only a very few out of the types al-
lowed by the teasels in Eqs. (3) and (5) exist. Each and
every one of these types could be extracted by the com-
bined use of spectroscopy, electric fields, chiral materials,
and computer simulation. Typically, spectral data from
various sources would be matched as closely and as self-
consistently as possible using computer simulation, in the
presence and absence of the electric field, and the trajec-
tories thus defined used to construct the cross-correlation
functions.

Without wishing to become too speculative, the ra idly
developing technique of analogue circuit simulation
could be used to solve Eqs. (3) and (5) directly, and the
cross-correlation functions from the analogue and digital
simulations compared directly. After this, direct compar-
ison between analytical theory and experimental data
%'ould be made.

The various autocorrelation and cross-correlation func-
tions computed in this paper are all constructed from the
terms appearing in Eqs. (3) and (5), and are as follows.

(1) The autocorrelation functions of 2vXm, mXr, and
mX(mXr).

(2) Cross-correlation functions, namely,

(2v(t) Xm(t) m(0) Xr(0) )
2( m2(0) )1/2( o 2(0) ) 1/2( '

2((})) 1/2 ( 2({}))1/2

(2v(t) Xm(t).m(0) X [m(0) Xr(0)])
2& '(o)&'"&"(o})'"( '(o)&&"{0})'"'

(2m(t ) Xv(t ) v(0) )
2(m2(0} ) '/'( U'(0) )

(2v(t)Xm(t) m(0)Xr(0))
2& '(o)&&"(o)&'"&"(0)&'" '

(r(t) Xm(t) m(0) X [m(0) Xr(0)])
(m'(0) ) '"(m'(o) ) (r'(0})

(m(t) xr(t).v(0) )
( '2(0))1/2(r2(0))1/2(~2(0))1/2

(r(t) Xm(t) m(0) Xr(0) )
Vil

(m'(0) &'"&r'(0) & (m'(0) &'"

(m(t}x[m(t)Xr(t)] v(0))
&m'(o) & &r'(o) &'"&U'(0))'"

(m(t)X[m(t)Xr(t)] r(0)Xm(0))
& '(o))'"& '(o)&& '(0)&

(v(t) m(0)Xr(0))
( 2({}) ) 1/2 ( 2(0) ) 1/2 ( r 2( {)) ) 1/2

A full theory of the diffusing asymmetric top must
therefore produce self-consistently ail these correlation
functions in any frame of reference.

Experimental confirmation of the existence of cross-
correlation functions such as (v(t}m (0)) has recently
been shown' to be possible by comparing spectra of indi-
vidual enantiomers (optically active liquids) with that of
their equimolar (racemic) mixture. The matrix
(v(t)mr(0)) exists for Opt g oo in the frame (1,2,3). It
has been demonstrated by computer simulation' ' that
two well-defined off-diagonal elements switch sign in one
enantiomer (e.g., the R enantiomer) compared with the
other. These cross-correlation functions are therefore
"mirror-image" functions of time. They disappear for all
t, however, in the equimolar solution (racemic mixture).
In terms of molecular dynamics, therefore, there is a
difference in the statistical behavior of two enantiomers in
frame (1,2,3), a difference which shows up in the symme-
try of the matrix (v(t)m (0))11221 and similar tensor
cross-correlation functions.

In terms of molecular dynamics, this is the only possible
reason why unpolarized spectra such as conventional far
infrared power absorption can be, and are, different in an
enantiomer and a racemic mixture, but are always identi-
cal in the two enantiomers.

The Fourier transform of the frequency-dependent far
infrared power absorption is always a time-correlation
function, and this difference can always be traced, with
the aid of computer simulation, to the cross-correlation
functions such as (v{t)m (0)) that are, in molecular
dynamical terms, responsible for the difference. This
theorem is perfectiy general, and is applicable to con-
densed chiral matter —liquids, liquid crystals, molecular
crystals, chiral polymers, amorphous chiral solids, and so
on. In this paper it is demonstrated experimentally with
reference to the b, and A enantiomers of the tri(acetyl
acetonate} complexes of cobalt and chromium and their
respective racemic mixtures in the solid state. The far-
infrared power-absorption spectrum of the b, and A enan-
tiomers are identical within the experimental uncertainty,
but that of the racemic mixture is distinctly and obviously
different. The spectra are reported for powdered crystal-
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line samples in Sec. III.
We also demonstrate the theorem computationally in

Sec. II with reference to several new autocorrelation and
cross-correlation functions of the enantiomers and racem-
ic mixture of bromochlorofluoromethane. For example„
the autocorrelation functions of the Coriolis and centripe-
tal accelerations are different in frame (x,y, z) for enan-
tiomer and mixture. Particularly subtle insights' are
given by using the moving frame (1,2,3) for both auto-
correlation and cross-correlation functions. Comparisons
with functions of this kind are made for the enantiomers
and the racemic mixture. These comparisons show clearly
that as soon as we start to consider rotation superimposed
on translation, a great amount of new information becomes
auailable. This can be established with the aid of comput-
er simulation, but it also becomes clear that the well-

known differences in the infrared spectra and general
physical properties of enantiomers and their racemic mix-
ture can, and must, be traced to cross-correlation func-
tions of time. There is no way of explaining the funda-
mental dynamical properties of condensed chiral matter
without this realization. This is also true for any spectro-
scopic techniques capable ' of providing information
on the molecular dynamics of chiral materials.

II. COMPUTER SIMULATION METHODS

A. Liquid dichloromethane

The ensemble considered in the computer simulation'6
consisted of 108 CHzClz molecules modeled with a 3X3
site-site potential made up of Lennard-Jones and partial-
charge terms as follows:

e(CHz-CH2)
=70.5 K, n(CHz-CHz) =3.96 A,

qcH,
——0.302

i
e i, =173.5 K,e(C1-Cl)

0(C1-C1)=3.3S A, qc& ———0.151
~

e
~

.

The CH2 group is therefore represented very simply as
a unit of mass 14, with two Cl atoms of mass 35.5 each.
The molar volume used was 8.0)& 10 m at 296 K.

In order to build up the correlation functions 2700 time
steps were used, each of 5.0X10 ' s. One segment for
the correlation-function computation therefore consisted
of 900 records, each separated by three time steps.

Each correlation function was computed both in the
molecular moment of inertia frame" ' (1,2,3) and the lab-
oratory frame (x,y,z), using a running-time average'
over data stored on disk or magnetic tape on Control Data

Corporation CDC-7600 and Cyber-205 computers.
The simulations were repeated with an intense electric

field of force in the z axis of the laboratory frame, using
the recently developed technique of field-on computer
simulation, as described elsewhere. ' After applying the
field, heating effects, if any, introduced by, the presence of
a constant external electric field of force are dissipated us-

ing the standard methods of molecular-dynamics simula-
tion." The standard temperature rescaling routine was
utilized with the temperature allowed to fluctuate by 25 K
either side of the mean input temperature of 296 K.
Therefore after equilibrium has been reached in the field-
on case there are no extraneous heating effects, other than
those normally encountered in the standard simulation
method. The only effect of the electric field is to increase
the potential energy, i.e., to make it less negative. The
kinetic energy remains the same in the field-off and field-
on cases because the sample is thermostated by the
temperature-rescaling routine.

The effect of an external electric field of this kind is to
break the symmetry of the Hamiltonian to parity reversal.
This invalidates the Berne-Pecora theorem [Eq. (2)] and
means, in effect, that time correlation functions may ex-
istz in frames (x,y, z) or (1,2,3) in the presence of an elec-
tric field that would vanish otherwise. This is crucial in
devising an actual experimental method to probe the na-

ture of specific cross-correlation functions between rota-
tion and translation, as shown later in this paper. In the
following section the correlation functions described
above are illustrated in the field-off case, and at field-on
equilibrium in the presence of an electric field strong
enough nearly to saturate the Langevin function. A field
of this strength helps to define the extra effects more
clearly and to cut down the "statistical noise" defined as
the difference between consecutive segments in computed
correlation functions.

B. The enantiomers and racemic mixture
of liquid bromochlorofluoromethane

It has been shown recently' that the comparison of
spectra from enantiomers and their racemic mixture pro-
vides information on the matrix correlation ( v(t)c0 (0) )
in the moving frame of reference, because two elements
out of nine in matrices of this type are mirror images for
the R and S enantiomers and disappear in the mixture. '

For the purposes of investigating the new correlation
functions derived in this paper the R and S enantiomers
and racemic mixture of bromochlorofluoromethane were
simulated with a 5XS site-site potential consisting of
atom-atoin terms and point charges as follows:

e(C-C)/k =35.8 K, cr(C-C) =3.4 A, qc ——0.335
~

e
~

e(H-H)/k =10.0 K, cr(H-H) =2.8 A, qH =0.225
~

e
~

e(Br-Br)/k =218.0 K, o(Br-Br) =3.9 A, qa, ———0.160
~

e ~,
e(C1-Cl)/k =158.0 K, o(C1-Cl) =3.6 A, qci ———0.180

~

e ~,
e'(F-F)/k =54.9 K, cr(F-F) =2.7 A, qF ———0.22

~

e
~
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The simulation was carried out: (i} for 108 (R } and (S}
CHBrC1F molecules; and (ii} 54 molecules each of (R}
and (S}CHBrClF—the racemic mixture. The input tem-
perature was 296 K and input molar volume 1.20X 10
A /mole. The site-site parameters were taken from the
literature, and assumed to be the same for both 8-R and
8-S interactions. There are no experimental indications
to the contrary, because the true pair potential is un-
known.

After equihbration, the autocorrelation functions of
2tttvXm, mmX(mXr}, and tttrXm were evaluated with
running-time averages in the usual way, using 1000 time-
step segments (500 records separated by 0.01 ps}. Cross-
correlation functions were evaluated as for di-
chloromethane using this method.

C. Results and discussion

l. Liquid dichloromethatte: field off

The autocorrelation function of the Coriolis accelera-
tion, 2mXv, exists in both the laboratory and moving
frames of reference, and these are illustrated in Fig. 1.
Similarly (Fig. 2}, the autocorrelation functions of the
centripetal acceleration, m X (m Xr}, and of the accelera-
tion m X r (Fig. 3}exist in both frames, the former reaches
a plateau level as tabac and the latter has a negative
overshoot. These autocorrelation functions in themselves
provide new ways of correlating statistically rotational
motion and translational motion, through the intermedia-

cy of the angular velocity m, its derivative m, translational
velocity v, and the center-of-mass position vector r.

Curves 1 and 2 of Figs. 1 and 2 are different in time
dependence because they are compared in different frames
of reference (x,y,z} and (1,2,3} for an asymmetric top.
The frame-transformation relations near components of
any such ACF in the moving frame will not be isotropic
in time dependence, in contrast to their counterparts in
frame (x,y,z}. The curves 1 and 2 would be identical for
a spherical top.

It is difficult to find in the literature much reference, if
any, to the role of the position vector r in the analytical
theory ' based on the single-particle Langevin equation.

1.0

0.5

0

I I

0.3 0.6 p

The vast majority of papers deals with the rotational
equation alone, where r is undefined, or the translational
equation, where it appears only through a conjugate vari-
able, its time derivative v. In the translational approach
m is undefined. Figures 1—3 now show that the three ac-
celeration terms introduced by a full consideration of the
trajectory in three dimensions of the asymmetric top have
their own autocorrelation functions whose time depen-
dence is determined by the various types of statistical
correlation between translation and rotation.

Therefore to bridge the gap between molecular dynam-
icsi's'2s and hydrodynamics ' ' ' requires full considera-
tion of these basic, single-molecule properties before
proceeding to more complicated N-molecule dynamics.

'.0

FIG. 2. Autocorrelation functions C2(t) of the molecular
centripetal force, normalized to unity at the origin. 1, frame
(1,2,3); 2, frame (x,y,z ). Dichloromethane, field off.

(m(t)X[m(t)Xr(t)] m(0)X[m(0)Xr(0)]}
( [m(0) X [m(0) X r(0)]]'&

I

0 0.3 0.6 ps
FIG. 1. Autocorrelation functions of the molecular Coriolis

force, normalized to unity at Ci(t)=(2v(t)Xm(t) 2v(0)
Xm(0) }/ ([2v(0) Xm(0)] }. 1, frame (x,y,z); 2, frame (1,2,3).
Dichloromethane liquid, field off.

0 0.3 0.6
FIG. 3. Autocorrelation functions C3(t) of the molecular

force u)& r, due to the nonuniformity of the molecule's rotation-
al motion. In the actual examples herein has been replaced by
the torque ( T& ) for computational convenience. 1, frame
(x,y,z); 2, frame (1,2,3). Normalization to unity at the origin.
Dichloromethane, field off.

( m(t ) Xr(t ).m(0) X r(0) }
([m(0) X r(0)]'}
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exists in the frame (1,2,3) of the molecular principal mo-

ments of inertia but vanishes in the laboratory frame

(x,y,z). Figure 4 shows two ACF's computed with two
different segments of 900 records each (2700 time steps).
The difference between two segments is one acceptable in-
dication of the level of noise, and this is the hatched area
in Fig. 4. The function C(;;;) is therefore an interesting
new way of looking at field-off cross correlation in the
moving frame (1,2,3). In this respect it supplements mov-

ing frame ACF's

C„„=(v(t)ro (0))MF

used in Eqs. (1) and (2}. Up to now this function seems to
have been the only way of measuring's cross correlation of
this type on a single-molecule level.

For CH2C12 ljqujd at 296 Q the function C(;;;) jn the
moving frame of reference (1,2,3), reaches a maximum of
0.205+0.05 within the noise, and has a positive nonvan-
ishing slope as t~0, unlike the function C„. Physically,
it measures the statistical time correlation between the
Coriolis acceleration at a time t and the center-of-mass
linear velocity at t =0 for the same molecule.

In this context it is interesting to note that the superfi-
cially similar cross-correlation functions (a)
(ro(t) Xv(t) tts(0)), (b) (ni(t)xr(t) v(0)), (c)
(co(t)xr(t) v(0)), and (d) (v(t)Xco(t).r(0)) Uanish in
both frames of reference, but the correlation function

(ai(t) x r(t).r(0) )
(~2)1/2(r2)

exists in the moving frame (Fig. 5} and vanishes only in

the laboratory frame (x,y, z)
The moving frame C,„attains a maximum of

(0.330+0.005) at 0.15 ps, and seems to be longer lived
than its equivalent in Fig. 4. Again the cross-correlation
function does not have a zero slope at t =0

There is a class of cross-correlation functions which ex-
ist in both frames of reference, and this is typified by

(r(t) Xco(t) ai(0) Xr(0))
(„2)( 2) i/2( 2) i/2

0 0.3 0.6 ps
FIG. 8. As for Fig. 6, dichloromethane, field on.

frame {x,y, z ); ———,frame {1,2,3).

applied in the z axis of the laboratory frame (x,y, z)
strong enough nearly to saturate the Langevin func-
tion. ' ' 2 At field-on equilibrium the average (ei, ), for
example, is (0.93+0.02). Here ei is a unit vector in the 3
axis of frame (1,2,3) and ei, is its z component in frame
(x,y,z). The result (ei, ) =0.93 means that there is signi-
ficant alignment of the 108 molecules produced by the ap-
plied electric field. This section deals with the effect of
this alignment on cross-correlation functions of the type
introduced in Sec. II.

The cross-correlation function (vii) is affected (Fig. 8)
in such a way that its behavior in frames (1,2,3) and
(x,y, z) becomes almost identical. In comparison with
Fig. 6 the envelope of the oscillations introduced by the
electric field survives for a longer time. This can be un-

derstood in terms of the Grigolini decoupling effect,

which is illustrated in Fig. 6. [In the actual coinputation
in Fig. 6 ro(0) was replaced for convenience by the torque
vex:tor. ] In physical terms C(„;;;) is the cross correlation
between the velocity r&(cu and the acceleration u&r due
to the nonuniformity of the angular motion of the mole-
cule.

Finally Fig. 7 demonstrates the existence of

(r(t) X~(t) m(0) X[m(0) Xr(0)])
( ')( '&( '&'"

in the rotating frame (1,2,3), but not in the laboratory
fraine.

2. Field on cross cor-relation -functions
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It is known' ' that the apphcation of an external field

of force results in the appearance of two new off-diagonal
elements of the matrix (v(t)r0 (0)) in the laboratory
frame of reference, thus invalidating the field-off
theorem (2). In this section an external electric field is

FIG. 9. As for Fig. 5, dichloromethane, field on.
frame (1,2,3);, frame (x,y, z). [In this figure, we have
used the triple product r{t))&co{t ) r{0), which accounts for the
sign reversal in the frame (1,2,3).]
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there exists a statistical cross correlation between the
Coriolis acceleration and the linear velocity v in frame
(1,2,3), but there is neuer any cross correlation between the
Coriolis acceleration and the angular velocity m in any
frame of reference, either in the absence or presence of an
external electric field.

The pattern is repeated for the type Cz(t) in Fig.
11(b), where A—=mXr. The field-off equivalent to Fig.
11(b) is Fig. 7. In both figures the cross-correlation func-
tion exists in frame (1,2,3) but vanishes for all t in frame
(x, y,z). The field-induced oscillations in Fig. 11(b) show
an interesting pattern of alternate large-amplitude and
small-amplitude peaks. The overall envelope of these
field-induced oscillations follow the Grigolini decoupling
rule 9 in being longer lived than the field-off equivalent in
frame (1,2,3) (Fig. 7).¹neof these cross-correlation functions are described
by state-of-the-art analytical theories of decoupled rota-
tional or translational molecular diffusion in any frame of
reference. This shows how much information is lost by

the traditional one-particle approach, and leads us to
question its usefulness Uis a Uis computer simulation.
Analytical methods of solving Eqs. (3) and (5) of Sec. I
are necessary to begin to remedy this problem.

The symmetry properties of the cross-correlation func-
tions are summarized in Table I, where a plus sign denotes
the existence of the ACF for t &0. The ACF's fall into
various classes or types, and five types are exemplified in
the table. It is interesting in this context to compare types
II and V, a tensor ACF and vector ACF respectively. It
is known' ' that the off-diagonal elements of
(v(t)m (0)) exist for t &0, but the diagonal elements all
vanish, so that the "trace" (v(t) m(0)) also vanishes.
This has been confirmed independently in this work and
reported in Table I as type V. The importance of this
comparison is that off-diagonal elements of the tensor
products equivalent to the vector products in Table I may
exist for t & 0, providing a very large number of new ways
of correlating the various types of motion in a molecular
liquid.

TABLE I. Symmetry classification of cross-correlation functions: Achiral asymmetric tops
(CH2C12). All the autocorrelation functions of the vectors in this table exist in both frames for 8~ 0.

Type Examples

(r(t ) Xm(t ).m(0) X r(0) )
(r2) (m2) 1/2(m )1/2

(m{t)Xm(t) m(0))
(m2) 1/2(m 2)

(x,y, z) (1,2,3) (x,y,z)+E (1,2, 3)+E

(v(t)m (0))
( v(0)m (0) )

(A(t) Xm(t) A(0))
(g2)( 2)1/2

( A—:v;cour;r)
(m(t ) Xr(t ) m(0) X [m{0)X r(0) ) )

(m')'/2(m2) (r')

IV (m(t)Xv(t) m(0))
(m2 ) ( U2)1/2

(v(t)Xm(t) r(0))
( U

2 ) 1/2 ( ~ 2 ) 1/2 ( r 2 ) 1/2

(m(t) Xr(t).v(0))
( m 2 ) 1/2 ( 2 ) 1/2 ( U

2 ) 1/2

(m(t)Xr(t) v(0))
( ~2 ) 1/2 ( r 2 ) 1/2 ( U

2 )1/2

(v(t)xm(t) m(0)xr(0))
( U

2 )1/2 (m 2 )1/2 ( m 2 ) 1/2 (r 2 ) 1/2

(v(t)Xm{t).m(0) Xr(0))
( U2)1/2( 2) ( r2) 1/2

(m(t ) X [m(t ) Xr(t )].v(0) )
( 2) ( r2)1/2( 2) 1/2

(v(t ) Xm(t ) m(0) X [m(O) Xr(0)])
( U2) 1/2(m2)1/2( m2) ( r2) 1/2

(v(t) m(0)
( 2) 1/2( 2) 1/2
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compared with their equivalents for dichloromethane in

Fig. 4. The overall symmetry pattern is the same, i.e.,
ACF exists in frame (1,2,3) but vanishes in frame (x,y, z),
and this is true in general for all the types of ACF's in
Table I. That is to say, the overall symmetry classifica-
tion in Table I is valid both for chiral and achiral asym-
metric tops. However, the situation for tensor ACF's
such as & v(t)m (0) ) would be significantly different.

Figure 15 shows that the vector ACF's illustrated there
seem to be different for enantiomer and racemic mixture
in frame (1,2,3). This type vanishes in both enantiomers
and mixture in frame (x,y,z).

Finally in this section similar results are illustrated in
Fig. 16 for one other type of vector ACF that exists in
frame (1,2,3). The overall (field-offl pattern is similar to
that for the achiral dichloromethane summarized in Table
I. There does not seem to be an accessible analytical
method in the literature with which to follow these re-
sults, and it is necessary to devise a method for solving
our new equations (3) and (5) for this purpose. The com-
puter based "semianalytical" technique of "Langevin
dynamics" (not to be confused with conventional molecu-
lar dynamics simulation') seems to be the only way for-
ward at present, although it might be possible to extend
Morita's fully analytical tour de farce solution ' of Eqs.
(3) to involve the extra equation (5). This contemporary
lack of analytical technique highlights the role of comput-
er simulation in describing with increased precision the
molecular dynamics of the condensed phases of matter.

III. EXPERIMENTAL METHODS

The results from computer simulation described in this
paper may be taken as a "numerical paradigm, " i.e., an
elaborate hypothesis, but one still needing experimental
confirmation. The original hypothesis of Langevin's
diffusional equation received support —in the first half of
this century, support now known' to be superficial—
from data such as dielectric loss and its frequency depen-
dence. However, the emergence of, literally, many hun-
dreds of highly selective cross-correlation functions, as
demonstrated in this paper, requires a careful reappraisal
of the original Langevin hypothesis. One of the first
questions to be asked is how will it be possible to measure
cross correlations experimentally, i.e., how do we isolate
the specific effect of statistical cross correlation of this
type from the ever-present autocorrelations of "primary"
dynamical variables such as v and ai. In this section we
consider two methods and provide experimental data from
one.

1. Comparison af enantiomers and their racemic mix
ture. As mentioned already this is general and easy to ap-
ply, and is therefore a potentially powerful way of estab-
lishing the nature of statistical cross correlation. The
physical properties of enantiomers and their racemic mix-
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FIG. 16. The cross-correlation function
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for the S enantiomer and racemic mixture.

FIG. 17. Far-infrared power-absorption coefficient (in neper
cm '} for the A and 5 enantiomers of powdered crystalline
tris(acetylacetonate} complexes of cobalt and chromium in the
powdered crystalhne state at 4 cm ' resolution. The lowest

curve in each case is for the racemic mixture.
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ture are, of course, well known, and well known to be dif-
ferent, ' but it requires the additional realization that
these differences are due specifically to statistical cross
correlation before progress can be made in the context of
molecular dynamics .There is no method of accounting
for this difference using Langevin's original approach,
represented for rotational diffusion in Eq. (3). The ex-
istence of this difference implies that molecular diffusion
can neuer be purely rotational or purely translational.

However, to interpret an experimental spectrum such as
that illustrated in Figs. 17 and 18 in terms of cross-
correlation functions between rotation and translation is a
task requiring the immediate aid of computer simulation,
because, as we have mentioned, there is no adequate con-
temporary analytical technique.

Figure 17 is a careful comparison of the far infrared
power absorption coefficient of the A and 6 enantiomers
of metal complexes with their racemic mixture in the
powdered crystalline state. Examples are provided for the
tris acetylacetonate complexes of cobalt and chromium at
4 cm ' resolution. A more precise comparison is made at

' resolution for the cobalt complexes in Fig. 18.
These spectra were taken on carefully prepared samples
with a Crubb-Parsons/NPL "cube" interferometer, 2 at
room temperature.

The obvious differences between the power absorption
of the racemic mixture and of each enantiomer (whose
spectra are identical within the experimental uncertainty
and in which there is an extra phonon mode) would be in-

terpreted traditionally in terms of the different packing
symmetry 'Ho. wever, in terms of molecular dynamics,
this begs the question, leaving all unanswered, because
packing symmetry is a purely static concept. The dynam
ica/ information in these spectra is to be found in the fre-
quency dependence of the power absorption coefficient,
and to describe this needs the use of statistical cross corre-
lation between rotation and translation.

It is beyond the capability of contemporary simulation'
to give a direct interpretation of Figs. 17 and 18 in this
way, but this may be possible soon with a simple chiral
molecular liquid such as 2 chloro-butane, where there is a
9-K range of temperature where each enantiomer is a
liquid but the racemix mixture is a solid. Considerations
of packing symmetry alone are insufficient to describe the
molecular dynamics in this range of temperature, and in
this respect, the simple Langevin hypothesis is not useful.
%e have to consider statistical cross correlation, and to
recognize fully that the molecules rotate and translate. In
this range of temperature the role of this type of cross
correlation is therefore basic. The range of temperature
between the melting points of enantiomers and racemic
mixture can be as much as 42 K (in the canadines' ), and
as little as a tenth of a degree Kelvin or less (in the cam-
phors) The fact. that we do not know why exposes starkly
the limits of our contemporary understanding of the
dynamical principles of molecule diffusion.

2. E/ectric field induced b-irefri—ngence This met. hod
makes use of the appearance' ' of the (x„y) and (y,x)

200-

100—

50
FIG. 18. As for Fig. 17, 1 cm ' resolution for the enantio-

mers and racemic mixture of the cobalt complex. As in Fig. 17
the lowest curve is the power absorption of the racemic mixture,
which has one less phonon mode than that of either enantiomer.

components of the cross-correlation matrix (v(r)co (0))
in the presence of a static electric field E in the z axis of
the laboratory frame. It has been shown elsewhere' that
measurements of the far infrared power absorption per-
pendicular and parallel to the electric field leads in princi-
ple to the experimental isolation of these elemental
laboratory-frame cross correlations of (v(r)co (0)), both
for chiral and achiral asymmetric tops.

CONCLUSIONS

A consideration of molecular diffusion involving simul-
taneous rotation and translation leads to a number of new
correlation functions with which to describe the complete
trajectory. The autocorrelation functions exist both in the
laboratory (x,y, z) and moving (1,2,3) frames of reference.
Some of the cross-correlation functions exist in the mov-
ing frame (1,2,3) and vanish in the laboratory fraine
(x,y, z), others exist in both frames, and still others vanish
in both frames. A table summarizing these symmetry
properties is provided in this paper. The overall symme-
try pattern in this table is similar for achiral and chiral
liquids, although extra information is available from a
comparison of enantiomers and racemic mixture.

By extending the analysis of Table I to tensor cross-
correlation functions, several hundred new ways become
available of looking at the correlations between vectors
such as r, v, and w.
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