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A connection is made between classical transport theory and the usual description of coHisional

presses in laser spectrmeopy. In classical tr~nsport theory, colhsional processes are described in
terms of either transport coef6cients or collision integrals. In analyzing the IAuence of coHisions on
laser spectrosmpic hne shapes, coHisions are often described in terms of coBision kernels. Two sets of
equations are obtained relating the collision integrals to the collision kernels. While these two sets of
equations are equivalent for any physicaHy realistic kernel, they need not be equivalent if one carries
out calculations using phenomenological kernels. If the two methods give similar colhsion integrals
for a phenomenological colhsion kernel, it may serve as a justi6cation for the use of that kernel. %e
show' that the Mo methods do give very si~i&ar results for the Keilson-Storer kernel but give dramati-
caHy differs results for a "cMerence" kernel (a kernel that is a function of the difference between
the initial and final velocity). The calculations, carried out for a low-density binary gas mixture, pro-
vide a link between classical transport theory and the coHision kernels commonly used in analyzing
experiments in laser spectroscopy. Implications of the results to experimental situations of current in-
terest, such as light-induced driit, are explored.

I. IMaQDUc&I. ON

In analyzing laser spectroscopic experiments one often
uses collision kernels and rates to characterize the col-
lisions occurring in an atomic vapor. On the other hand, it
is well known from classical transport theory that the
transport coefficients of diffusion, viscosity, and thermal
conductivity can also be used to characterize the collision-
al processes occurring in a vapor. Since the approach and
language used in the theories of laser spectroscopy and
classical transport theory differ significantly, it is not
surprising that there has been little cross talk between the
two disciplines. It is the purpose of this paper to bridge
this gap somewhat by providing a connection between the
collision kernels and the transport coefFicients. We con-
clude that transport theory can put serious constraints on
the fitting procedures used in the analysis of coHisionally
modified line shapes. Our discussion is particu~ly timely
in view of recent experiments on light-induced transport
phenomena. '

To simplify the discussion, we consider an atomic vapor
in which there are two types of atoms, "active" atoms (A )
and perturbers (P). The atomic density is assumed to be
sufFiciently low such that only binary collisions need to be
considered and the A-atom density is assumed to be much
lower than the P-atom density. As a consequence of the
latter assumption, any effects of A-A collisions can lN:

neglected relative to those of type A-P in considering
modifications of the A-atom distribution function. The
main objective of this study is to define the macroscopic
quantities which characterize the elastic A-P colhsions
occmTing in the vapor.

g(v ~v), defmed as the probability density in velocity
space pei unit time that A atoms have their velocity
changed from v' to v as a result of colhsions with P atoms.
The rate I'(v) at which A atoms of speed v undergo col-
hsions with the P atoms is related to the collision kernel by

I"(v)= I dv'K(v~v') . (1.1)

The collision kernel can be related to integrals involving
the differential cross section for A -P scattering. '

To experimentally determine the collision kernel and
rate in a typical laser spectroscopy experiment, one uses a
"pump" laser to selectively excite a velocity subclass of A
atoms. As a result of collisions with P atoms, the A atoms'
velocity distribution is modified in a manner that is
described by the shape of the collision kernel EC (v'~v).
A second "probe" laser monitors the change in the A-atom
velocity distribution and, in doin~ so, provides a measure
of the collision kernel K (v'~ v). In analyzing such data,
one has often resorted to the use of phenomenological col-
lision kernels.

tit should be noted that the collisional processes occur-
ring in a vapor cannot, in general, be described in terms of
a single collision kernel. Since the collision interaction
normally depends on the internal atomic states of the
atoms, a complete description requires a separate kernel
for each atomic state population and each coherence To.
focus the discussion, however, we assume that the per-
turbers (P) always remain in their ground state and
neglect, for the moment, any state dependence of the col-
lision kernel X (v ~v ) characterizing the A Pcollisions. ]-

The physical qiumtity related to A -P scattering that one
attempts to measure is the sowalled collision kernel

Transport phenomena such as diffusion, viscosity, and
heat conductivity are described by the corresponding
transport coeNcients or, equivalently, by the e6ective
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transport cross sections. These cross sections are matrix
elements of a linearized collision operator, but may also be
related to the so-called collision integrals of transport
theory which are integrals of the differential scattering
cross section, suitably weighted with respect to scattering
angle and relative velocity. Linear relations between these
collision integrals and the effective cross sections can be
found in various textbooks. The collision integrals have
been calculated for different model potentials and are tab-
ulated, for instance, in the book of Hirschfelder et al.

C. Colbsion kernels —transport theory

The collision integrals and collision kernels share a com-
mon language at the level of the differential scattering
cross section. Using this fact, it is possible to relate the
collision integrals of classical transport theory to integrals
of the collision kernel K(v'~v} over v' and v with vari-

ous weighting functions of v and v'. This integral relation-
ship between the collision integrals and the collision kernel
provides the bridge between the two disciplines. We shall

give two different integral relationships between the col-
lision kernel and the collision integrals, the first which we
derive from well-known expressions of transport theory
and a second which we formulate in this work. Although
these two different sets of equations are formally
equivalent for any physically acceptable collision kernel,
they need not be equivalent for phenomenological collision
kernels. The equality or near equality of transport coeffi-
cients calculated by the two different methods for a
phenomenological collision kernel may provide some justi-
fication for use of that kernel.

The relationship between the coHision integrals of trans-
port theory and the collision kernel can also be used to
place constraints on the "free" parameters that are used to
fit laser spectroscopic line shapes in which colhsions play a
role. Since there exists a wealth of data on transport prop-
erties and theoretical methods for calculatin transport
coefficients from a given interatomic potential, the incor-
poration of transport data in fitting laser spectroscopic line
shapes represents an important component of a consistent
analysis of the line shapes and leads to a more sensitive
measure of the collision kernels.

In Sec. II, formal definitions for the collision kernels,
rates, integrals, and transport coef5cients are given. The
connection between the collision integrals and the collision
kernel is established in Sec. III, where two sets of integral
relationships connecting these quantities are found. In
Sec. IV, the two methods of calculating the collision in-
tegrals from the collision kernel are applied to a physicaHy
acceptable (hard-sphere) kernel and two phenomenological
kernels (Keilson-Storer and "difference" kernels). It is
found that the difference kernel leads to drastically dif-
ferent results for the collision integrals calculated by the
two methods, but that results obtained with the Keilson-
Storer kernel are nearly identical, perhaps justifying its use
as a model kernel. As anticipated, the two methods yield
identical results for the hard-sphere kernel. The results of
a recent article by Snider on the eigenvalue expansion of
the Keilson-Storer kernel simplify some of the calculations
needed in this section. In Sec. V, some experimental impli-

cations of the results are discussed and various extensions
of the theory are explored.

II. COLLISION KERNELS, RATES,
CROSS SECTIONS, INTKGRALS,

AND TRANSPORT CORI i ICIENTS

This section is organized as follows. Section II A gives
the definitions of Boltzmann collision operator, collision
kernel, and colhsion rate; Sec. II 8 the definition of col-
lision integrals of transport theory; Sec. II C the definition
of effective transport cross sections in terms of matrix ele-
ments of a linearized collision operator; Sec. II D the defi-
nition of transport coefficients; and Sec. II E the relation-
ship between the collision integrals and the effective cross
sections.

A. Laser spectroscopy: Collision operator, kernel, and rate

The time evolution of the A-atom velocity distribution
p„(v, t) as a result of collisions with perturbers (P) is
determined by

dpA (v, t)

Bt
i coll

=W„pp„(v,t), (2.1)

Xu„dQ vz,
de

(2.2)

in which v„=
~
v —v~ ~

is the A -P relative speed, dtrld 0
is the A-P differential scattering cross section in the
center-of-mass frame, v and v~ are the A- and P-atom ve-

locities, respectively, before a collision, and v' and v~ are
the corresponding quantities after the collision. Implicit
in Eq. (2.2) is the fact that v, v', v~, and v~ satisfy the con-
ditions for conservation of energy and momentum. Al-
though the label has been suppressed on d cr Id 0, it is to be
assumed that all cross sections refer to A-P scattering Ow-.
ing to the assumption that the A-atom density is much less
than the P-atom density, one can neglect the effect of A
collisions on the P-atom distribution function. It is now
assumed that pp(v, t) is a time-independent equilibrium
distribution of the form

pr(v~, t) =Np W~(v~ ) =N~(mu~ ) exp( Uz lu~ ), —
(2.3)

with N~ and u~, respectively, the P-atom density and most
probable speed.

The collision operator can be recast in terms of a col-
lision rate I ( U) and a collision kernel E ( v' —+ v }as

with Wzr the Boltzmann collision operator for A-P col-
lisions. The Boltzmann collision operator can be ex-
pressed as

pq(vv( f(f [p„(v,', (=(pv(vv, (( p„(v(lp—v(vv()'(, ,
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=W„zpz —— —I (u)pq(v, t)+ f dv'K(v'~v)pq(v', r) .
coll

(2.4)

The kernel K ( v'~ v), which gives the probability density per unit time that A atoms have their velocity changed from v
to v as a result of colHsions v~ith P atoms, is of the form

K( v'~v) =N
1P

p

'3

dv', dv, S~(v' —v„')u, '5 (v, —v„')——(v —v') 5(u„—u„') (u„',
i

v„' —v, i ),rI r ~
I ~

~
r

~
~ 1

I

1~ rI ~~~ ~ I

I

1~ rI

d ~
~

1

1I t rI ~ r }
P Vr

(2.5)

cr(u, )= f dQ„(u„', iv', —v,
~

)
&r

(2.6b)

is the total A -P scattering cross section. Note that I (u) is
just the collision rate in the center-of-mass system aver-
aged over the P-atom velocity distribution. It will also
prove useful to define a velocity-aver~ed collision rate

I = f dv W(v)I'(u)= f dvdv'W(v'}E(v' v) (2.7)

where m is the A-atom mass and p, is the A-P reduced
mass. The collision kernel is the differential scattering
cross section for A-P collisions transformed back to the
laboratory frame and averaged over the P-atom velocity
distribution consistent with conservation of momentum
and energy (as expressed by the 5 functions). Note that the
second term of the right-hand side (rhs) of Eq. (2.4} with
the kernel (2.5) corresponds to the first term of the rhs of
Eq. (2.2}, the only dMerence is that conservation of
momentum and energy is implicit in (2.2) and explicit in
(2.5).

The speed-dependent collision rate calculated from Eqs.
(1.1) and (2.5) or, equivalently, from (2.2) and (2.4) is

Pu) =N~ f dv~ W~(v~ ) )
v —v~ ~

o( ( v —v~ ( ), (2.6a)

where

' 1/2

g(I,s)

2&@

y 2e be ~y~+ 1 —cos'X b,y

(2.12)

where I and s are integers, X(b,y) is the scattering angle in

the center-of-mass frame, b is the impact parameter, and

3'=
~r

(2.13)

Equation (2.12) can be recast in a form that will make the
connection with the collision kernel somewhat more ap-
parent. Equations (2.10) and (2.11) are used to rewrite it

Q"'=
—,
' f W„(v„)u„

Qr

2$

Q'"(u„)dv„, (2.14)

S. Classical transyort theory: Comsion integrals

In transport theory the collision integrals for spherically

symmetric interaction potentials are defined by

W(v)=(iru2) ~ exp( —u /u ) (2.8}

and u is the most probable A-atom speed. Using Eqs. (2.3),
and (2.6)-(2.8), one can easily show that

[the second equality following from Eq. (1.1}] in which
W(v) is the A-atom equilibrium distribution assumed to
be of the form

Q'"(u„)=2ir f b db [1 cos'X(—b, u„)] .

The fact that

do b db

d Q siBX dX

is used to rewrite (2.15) as

(2.15)

(2.16)

I=X~ v, S', v, U, u„ (2.9) Q' '= f dQ (1—cosiX), (2.17)

where W„(v„) is the A -P relative velocity distribution

W, (v, )=(~„~) '~iexp( —~ uu/„)~ (2.10)

where d Q =2m (sinX)dX. It then follows from (2.9),
(2.14), and (2.17) that

and u„ is the most probable 3 -P atom relative speed, i.e.,
&.Q'""=ll= .' f .d'-dW(')~( -vv),

(2.18)

2kg T
Qr =Qp+9

p
(2.11)

where kz is Boltzmann's constant and T is the absolute

t pe t

where I is the velocity-averaged collision rate given by
(2.7) and (2.9). This establishes a first integral relation be-

tween a collision integral and the collision kernel. A gen-

eral relationship between the Q"' and the collision kernel

is estabhshed in Sec. III.
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1
Np—9Pgp ——Wgp W, (2.19)

where W(v) is the A-atom equilibrium distribution (2.8}
and Wqi is the operator (2.2). Although Wzz is non-
linear in transport theory, it becomes linear when evaluat-
ed for an equilibrium perturber distribution (2.3). The
transport equation (2.4) is in effect, just the operator (2.19)
acting on the distribution function pz(v, t). It then be-
comes convenient to expand the distribution function in
terms of some complete set of orthonormal basis func-
tions. s A choice of basis functions which proves particu-
larly useful (see the following) is

C. Classical temsyort theory: Matrix elements

of the collision operator

In Sec. II D, the collision integrals ~i11 be related to
transport coeNcients which can, in turn, be related to ma-
trix elements of a linearized colhsion operator. In this sub-

section, these matrix elements are defined.
In first-order Chapman-Enskog theory, the Boltzmann

equation is linearized with respect to the deviation of the
distribution function from a Maxwellian. A hnearized col-
lision operator 9F&r can be defined by

set of basis functions. ' Clearly, the matrix elements in

Eq. (2.25) have units of (velocity Xcross section) and it be-
comes convenient to define effective transport cross sec-
tions 6( I „)describing the influence of A -P collisions on
the A-atom velocity distribution. For isotropic scattering,
the effective cross sections are m independent and may be
defined as'

u„S(/ „")=(4'q"~9P„p+q" )5qq,

where

SkT = I u, W(v, )dv, == 2
(2.27)

In Sec. IIE, the 6(/ „" ) are related to the collision in-
tegrals.

D. Classical trln~IIort theory: Transyort coef5cients

Both the 0"' integrals and the 6(/ „" ) cross sections
can be related to the transport coefHcients of a mixture.
For diffusion, these relations arei

'I
2

el"(v)=a,„v4~ —" L,„'+'" ', r„(e-„,p),
Q M

(u) ks T

Npu„S( i 0)
(2.2S}

(2.20)

where I-„'+' are the associated I.aguerre polynomials,
I'lq are the spherical harmonics, and Bi„ is a normalized
factor

D (0) 3 AT
16 pNQP

(2.29)

&~n = nt
21'(I +n 4-3/2)

(2.21)

(f (v) ig(v) ) = I f'(v)g (v)W'(v)dv (2.23)

for any functions f (v ) and g ( v ).
The 4'q" are exact eigenfunctions of the operator A„z,

evaluated for a repulsive A -P interaction potential varying
as r (Maxwell molecule interaction). Denoting by 9t~~
the linearized operator for the Maxwell molecule interac-
tion, one can write the eigenvalue equation

I~

where I' is the gamma function. The 4&~" satisfy the nor-
malization

( @ql"(v)
~
C qI'"'(v ) & =ALII S„„Sqq, (2.22)

where the ( ) imply an integration over v with 8'( v), i.e.,

ka T 1 5k' T
6(' ') Sn"" ' (2.30a)

th D[u) the first-order approximation to the diffusion

coef5cient. This first-order approximation is implicitly
dependent on the assumption that 4q is an exact eigen-
function of the collision operator. The viscosity and heat
conductivity of s mixture are not only determined by the
A -P potential in which we are interested, but also by A -A

and P-P collisions. Therefore the expressions for the heat
conductivity A,( 1 and the viscosity q}( ) of a mixture are
rather complicated and will not be ven here. Instead, we
will give an expression for Af l, q}( in a hypothetical one-
component gas in which the interaction potential is identi-
cal to the A-P interaction potential. Again in first-order
approximation and neglecting internal degrees of freedom
one obtains3'

~hl @la(v) P @In(v)

in which Pl„are the eigenvalues given by

P,„s„s„„.f„=& e,"."'
~

~~,e,'") . (2.25)

[o] 5k~2 T &
7'5k~~ T

2rnu 6(' ') 32m Q' ' ' (2.30b)

From Eqs. (2.1), (2.19), snd (2.24), it foHows that s distri-
bution function pz(v, t) a: 4q"(v) would undergo a simple
decay with rate Nr P~„.

For a realistic interaction potential, the exact eigenfunc-
tions are not kno~, but the C~" may stiH serve as a good

K. Relation between 0"'and S(~' „" )

The relationship between the 6(/ „" ) and the collision
integrals can be estabbshed in the following manner. First,
one can relate the 6(/ „" ) to the square bracket integrals
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u 6(1 0) 16 ~f1(l, 1)

3
'I

u 6(2 0) 16 ~ 2 12 II(1,))+ 3 ~ O(2, 2)
3 pg

TIRED
5

I

(2.31a)

(2.31b)

given by Chapman and Cowhng. These quantities differ

by a multiplicative factor only, the precise relationship
given in Appendix A. Since Chapman and Cowling have
already related their bracket integrals to the collision in-

tegrals, ' one can use their results, along with the results
of Appendix A, to show that the first few 6((' „") are
given by

—6(1 0) 16( 2 )1/2 ~ ( SIC()1) II(12))
U» (2.31c)

where m~ is the P-atom mass.

III. RELATIONS SET%'EEN COLLISION
&t.j,j;GRAIL AND KERNEL

The question remains as to how to relate the collision
integrals 0( "[or effective cross section 6()' „")] to the
collision kernel K(v'~v). Two methods are proposed
below.

Method 1. The first method consists of an exphcit
evaluation of the effective cross sections. Using Eqs.
(2.26), (2.23), (2.19), {2.4), (1.1), (2.20), and the addition,
theorem for spherical harmonics, one can obtain

N u, 6(()„".)=B,„B,„.f dvdv' 8'(v')K(v'~v)

' 2l )2 t2

L I+1/2 ~ I I+1/2X p$ N 2
Q Q Q

'I
&2 2

I )+)n I )+)n P&(cos8)
Q Q Q

(3.1)

where P( is a Legendre polynomial and 8 is the angle be-

tween v' and v, i.e.,
I=V—V (3.3d)

v'v
cos8=

UU

(3.2)

The relations (3.3) along with the inverse of Eqs. (2.31),
1.e.)

Although Eq. (3.1) may appear comphcated, it is an easy
matter to explicitly carry out the integrations to show that
the first few 6(I „" ) are given by the relatively simple ex-
press1ons

N&6(i 0)= — f dvdv' W(v')K(v'~v)(v' s),
3Q U~

(3.3a)

N&6(z 0)= f dvdv' W(v')K(v'~v)
15Q u,

II(),1) 3 u
~ 6( 1 0)

» 1 0

p p m

'1/2 '

II(),2) 1 u
~ 5 6( 1 0) 6{i 0}

p

(3.3e)

(3.36

(3.3g)

X[s u' —4(s v')u' —3(s v')2],

Nq6(1 ('))

(3.3b)

z 2~/2
Q U»

t2

X f dvdv' W(v')K(v'-+v) —— v'.s,
Q

give the explicit relationship between the collision kernel
and the collision integrals for the first few 0"'. Similar
expressions can be generated for higher order 0"",but
the 0"' given in (3.3) are the ones which enter in the
lowest-order theory of diffusion and thermal conductivity.
Equations {3.3) achieve the objectives of this work —the
colhsion integrals have been directly related to the col-
lision kernel.

For large I one can drop the second term in the rhs of
Eq. (3.1). It then follows from Eqs. (3.1), (2.20), {1.1), and
(2.23}that

(3.3c)
hm Nzu„6(( „")= lim ((Pz™

~

I (u)(P&"),
I~ co I~ co

(3.4)

which implies that N~u„6(„"„"} is identically equal to I if



P. R. BERMAN, J. E. M. HAVERKGRT, AND J. P. %'OERDMAN 34

G~( —— V V' U' I V —V' 'j V'~V O' V' (3.5)

where q and 1 are integers. One notes immediately that
Goo ——I =8N~Q'"'o'. By considering various values of q
and I, one can show that the Gvi generate linear combina-
tions of the 0' '"'. In Appendix B, an explicit calculation
of the first few G~i is presented which leads to the results

Goi ——16(p/m )u 2%~0"", (3.6a)

G =32(p, /m) u N (20" ' —0' ' ') (3.6b)

I'( u ) is independent of u.

As an aside, we may note that Eqs. (3.3e}-(3.3g} can be
calculated from Eqs. (3.3a)-(3.3c) when the definition (2.5)
for K(v'~v) is used. This method of deriving Eqs.
(3.3e)—(3.3g) provides what appears to be a less laborious
alternative to that given in standard texts relating the ef-
fective cross sections to the collision integrals.

Method 2. It is seen in Eq. (2.18) that one of the col-
lision integrals 0'"' ' is related to an integral of the col-
lision kernel. Values of0""for 1+00 depend on integrals
containing a factor cos'X [see Eq. (2.12}1. We have found
that alternative expressions relating the collision integrals
to the collision kernel can be generated by considering ex-
pressions of the form

phenomenological collision kernel is used to calculate the
G's and 6's may serve as an indication as to whether or
not one is justified in using such a kernel. This point is
pursued in the following section.

IV. CALCULATION OF THE COLLISION
INIKGRALS FOR SPECIFIC KERNELS

wllei'e

2 '2
&p~&O&p ZP, S V' l

exp —s +
3/2P2u 2$ m& P2u 2 (4.1}

(4.2)

A calculation of the 6's, G's, and 0's is now given for
one physically correct kernel (hard-sphere kernel) and two
phenomenological kernels (Keilson-Storer and difference
kernels}.

A. Hard-Sphere kerael

The differential cross section for hard-sphere scattering
is ro/4, where ro is the sum of the radii of the two hard
spheres undergoing a collision. When this cross section is
substituted into Eq. (2.5) one finds a collision kernel

&Hs(v'~v)

x n""=
P

x n,""=
P

01

16(elm�

)u

u Goi
3 p
2 Hap

'2

G„=16(I /m}u'X —" 0""+~0~'"
2 mp ln

These equations may be inverted to yield

(3.6c)

(3.7a)

(3.7b)

up

Q

Using Eqs. (3.3) and (4.1), one can obtain
r

N u S(i o)= ~ I

(4.3)

(4.4a)

Go2+4Gii —6 u GP 2

N~u„S(22 o)=—
3 Ptl

p 3 ~
771 5 PlP

(4.4b)

x n,""=
P

32

'2
u4

(3.7c} 1/2 '

Nqu 6(i o)=—2 2
3 5

(4.4c}

where, for convenience, we rewrite Eq. (3.5),

6&I= dV V 0 ~ V —V E V~V g V

where the average collision rate I'Hs, as given by Eq. (2.9),
IS

(3.7d)
2

Hs=&@~res=&p up harp .2

m'
(4.5)

We now have two apparently difFerent sets of equations
relating the collision integrals to the collisions kernels
[Eqs. (3.3) and (3.7), respectively]. As must be the case,
however, these two sets of results are entirely equivalent
provided one calculates the G and 6 appearing in these
equations using physicaOy correct kernels; that is, kernels
which are of the form given by Eq. (2.5). If one uses some
phenomenological collision kernel in calculating the G's
and 6's, there is no longer any guarantee that the two sets
of expressions (3.3) and (3.7) win yield the same set of col-
lision integrals 0"". In fact, the difrerence in the values
of 0"' calculated using Eqs. (3.3) and (3.7} when a

Similarly, by using Eq. (3.5), one may obtain

601 4 (4.6a)

'2

G„=32 ~ u'r„, ,
Pl

(4.6b)

(4.6c)

For this physically correct kernel, one can ca1culate the
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collision integrals from either Eqs. (3.3) or Eqs. (3.7). In
each case, one Gnds &,0""(@)=&,0""(6)= —(1—n)1 „,, (4.12}p p

(4.7)

EKS(v'~v }= I'i~s
&

—(v-av } /e
(~~2 )2/2

where

(4.8a)

in agro~nent with the results of Chapman and Cowling. l

8. Ke&&mn-Storer kernel

A phenomenological kernel proposed by Keelson and
Storer has the form

X 0""(e)
p

5 m m(1—a) (1+a)— (1—a) I Ks,16 p mp

X 0""{6)
p

T

9 m m(1—a) (1+a)— (1—a) I its,32 p mp

~ 0""(e)= —(1—a)1 „,,

(4.13)

(4.14)

(4.15}
~2 ( 1 ex2}u2 (4.Sb)

aild 0—ee & 1. This kcrilcl llas nlaily advailtagcs. It is easy
to work with, it satisfies detailed balance, and it can simu-
late both stroiig collisiolls {c~0) or weak collisions
(a = 1 }. Yet the Keilson-Storer kernel is not a physically
correct kernel since it carmot be derived from an equation
of the form (2.5). Thus, there is no guarantee that the two
methods for calculating the 0 inte-rais will yield the saine
results.

The 6's may be calculated directly from Eqs. (3.3) and
(4.S}. Although such a calculation is not very dif6cult, an
even simpler method is available. Snider' has shown that
the Cis" are eigenfunctions of the Keilson-Storer kernel
with eigenvalues I'Ksa'+2", i.e.,

+I+2m In +8'( )v

X 0""(6)
p

'I

3 m
(4—a)+ (1—a) (1—a)1'„s .

32 p mp

(4.16)

Quite incredibly, the two methods give identical results for0"" and the s une functional form for 0' ' '

[0' ' '(6)/0' ' '(6) 1.11]. This might suggest that the
Keilson-Storer kernel can be used with some justification
to describe diff'usion, viscosity, and thermal conductivity
in vapors. The collision integrals 0"2'{6)and 0' (G)
differ in functional form, but if one correlates the value of
ee with the ratio of m/mz, Eqs. (4.15) and (4.16) will not
difFer greatly (between 6 and 20%).

(4.9) C. Difference kernel

&piT.S( I oO) =I its(1 —ex),

&j,&,@(2 0)=I Ks(1 —a2),

N~U„S(I 0')=0.

(4.10a)

(4.10b)

(4.10c)

Combining this result with Eqs. (2.26), (2.19), {2.4), (2.23),
and (2.22) immediately yields

(V&~V) I „[~(6u}2~
—2/2C —

~
v—v'

~
'/{Su)' (4.17)

To describe small-angle scattering in laser spectroscopy,
one often uses 8 difference kernel that is a kernel which is
8 function of

~
v —v'

~
only. All the features of such a ker-

nel can be illustrated by choosing a specific difference ker-
nel of the form

The 6's may be calculated from Eqs. (3.5) and (4.8) as

Goi ——31'its( 1 —a )u

602 ——151 Ks(1 —a) u

Gii ———', I'Ks(4 —a)(1—a)u

(4.1la)

(4.11b)

(4.11c)

We now obtain the coUision integrals using both Eqs
(3.3) and (3.7). We use an argument "8"to indicate an 0
calculated from Eqs. (3.3) aild an 81'gllincilt "6"io iildl-
cate an 0 calculated from Eqs. (3.7). It is an easy matte~
to obtain

@(i og)=6(2 0)=@(i 0)=0 (4.18)

while the various 6's can be obtained fioin Eqs. (3.5) and
(4.17) as

with {5u)«u. Although a difference kernel does not
satisfy detailed balance, it has been used successfully in ex-
perimental situations in which the atoms cannot achieve
thermal equilibrium during the coherence time of the ex-
periment. As such, the detailed balance violation is not
important on the time scale of the experiment.

For a kernel of the form (4.17), it follows immediately
from Eqs. (3.3) that
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Goi =-', I d(5u}'

602 ———", I d(5u)

Gii ———', Id(5u) u

TlM corresponding collision l11tegrals aIC
t 2
5u

dX n""(G)=

~ II(2 2)(G) 3 Pl
3

5u 5 IB 5u

32@ u 4p u

(4.19a)

(4.19b)

(4.19c}

(4.20)

physically correct kernel, there is no such guarantee for a
phenom enological one. The degree to which a
phenomenological kernel produces identical collision in-

tegrals by the two methods can serve as some justification
for its use. W'e have shown that a Keilson-Storer kernel
produces nearly identical co)lision integrals while a
"difference" kernel produces very different ones.

(2) Having decided that a given kernel is reasonable, it is
then possible to reduce the number of free parameters ap-
pearing in the kernel by making use of available transport
data. For example, suppose that we have an independent
value for the diffusion coefficient

(4.21) SD ——S(i o) (5.1)
'2

5u
d

Q
X n""(G)= (4.22)

L

X 0""(S)=N0' ' '(S)=N 0" '(S)=0 . (4.23)=
p

At first glance, one might say that these results are an
indication that one should not use a difference kernel to
model collisions in a vapor. This conclusion is certainly
true if the time scales are such that thermal equilibrium
can be established —in that case a difference kernel leads
to incorrect results. On the other hand, the difference ker-
nel can be obtained as a limit of the Keilson-Storer kernel
in which

a=1; co =(1—a )u =2(1 a)ut~—(5u)

Since we have already shown the Keilson-Storer kernel to
be a "reasonable" one, one might also expect that the
difference kernel can adequately describe diffusion, viscos-
ity, or thermal conductivity, provided the time scale of an
experiment is such that thermal equilibrium cannot be
reestablished. In this case, however, the G's must be used
to obtain the collision integrals, since the 0"'(S)'s are
identically zero.

V. MSCUSSION

In analyzing collisional processes in atomic vapors, one
quickly appreciates the fact that the collision kernel, rather
than the differential scattering cross section, is the quanti-
ty of practical interest. One also quickly appreciates that
it is much easier to adopt a phenomenological kernel rath-
er than attempt to calculate the collision kernel from first
principles. ' " One is then faced with the problem of how
to make an intelligent choice for the kernel.

In this paper, we have shown that transport theory can
be used as a building block in constructing an acceptable
kernel. Basically, two steps are involved. First one has to
choose a specific kernel and second one needs to specify
the adjustable parameters.

(1) One must decide whether or not a given phenomeno-
logical collision kernel represents a "reasonable" choice.
By having derived two sets of equations relating the col-
lision integrals of transport theory to the collision kernels
[Eqs. (3.3) and (3.7},respectively], we have a means of test-
ing whether or not a phenomenological kernel gives rise to
identical or nearly identica1 collision integrals by the two
methods. %'hereas identical results are guaranteed for any

and wish to fit some line-shape data using a Keilson-Storer
kernel. The cross section S~s——I'its/N~U„ is no longer a
free parameter since it is related to SD [see Eq. (4.10a)] by

Srcs =So /(1 —a), (5.2)

(5.3a)

added to a difference kernel [see Eq. (4.17)] with parame-
ters

6„=58A', =0.39
Q

(5.3b)

with uncertainties of 10—20%. Using Eqs. (4.10a), (4.20),
(2.31a), and the definitions

~r.s
+Ks=

X&U„

one obtains a total diffusion cross section

(5.4)

1 5u
Sn ——( 1 —n )Sxs+ — Sd =39 A

2 Q
(5.5)

where a is the strength parameter [see Eq. (4.8)]. More-
over, if a is chosen to its equivalent hard-sphere value, the
second free parameter in the Keilson-Storer kernel is also
eliminated.

In order to make use of transport data, one must have
values for the transport coef6cients. Experimental values
for the coefficients can be found for many ground-
state-ground-state A-I' interactions, but are rarely avail-
able for excited-state-ground-state A -I' interactions. The
latter enter into systems of practical interest in laser spec-
troscopy and light-induced drift. If such experimental
values are not available, it is possible to calculate the trans-
port coefficients' whenever the A -P interatomic potentials
are known from other sources (e.g., ab initio calculations
or beam-scattering experiments). Fitting a Keilson-Storer
kernel without any adjustable parameters to experimental
data provides a rather severe test of the validity of the ker-
nel. Presently, we are using this method to fit collision
data relevant to the light-induced drift effex:t."

We can apply these ideas to an experiment of Aminoff
et al. ' who studied collisions between ground-state sodi-
um atoms (A) and ground-state neon perturbers (P).
They fit their data using the sum of two collision kernels, a
Keilson-Storer kernel with parameters'

SKs ——55 A, a=0.37
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again with an uncertainty of about 20%. On the other
hand, one can use available curves for the interatomic po-
tentials" to calculate a diffusion cross section of ground-
state sodium atoms 16 neon

Sg) ——16 A

The large difFerence between these two values of Sz indi-
cates that the 6t of AminofF et al. does not seem to be
consistent with available transport data, this despite the
fact that the agreement between theoretical and experi-
mental line shapes was excellent.

Finally, we should like to discuss some possible exten-
sions of the theory. We first note that the collision kernel
is an inherently richer quantity than the transport coe6i-
cients. The transport coef6cients are related to iittegrals
over the collision kernels and, as such, are related to vari-
ous moments of the coihsion kernel. The transport coef6-
cients caimot give detailed information on the collision
kernel unless some specific form for the kernel is assumed.
On the other hand, the colhsion kernel completely deter-
mines all the transport coef6cients.

The theory can be extended to derive transport coef6-
cients for quantities other than ground-state elastic scatter-
ing. In laser spectroscopy, one often measures collision
kernels relating to inelastic scattering, Zeeman coherence,
and optical coherence for atoms in both excited and
ground states. Using techniques similar to the ones em-

ployed in Sec. III, one could define collision integrals and
transport coefFicients for these qnantities and relate them
to the collision kernels.

The theory can also be extended to account for a col-
lisional process in which atom A enters the collision with
velocity v' and atom P leaves the collision with velocity v.
This type of process leads to an exchange kernel involving
an average over the initial velocity distribution of the P
atoms and a sum (integration) over all the final velocities
of the A atoms. In a single-component gas where one can-
not distinguish the A and P atoms, this exchange kernel
contributes to the transport phenomena and must be in-
cluded in the analysis —a fact well known in classical
transport theory. It might be noted that there have been
experimental measurements of such exchange kernels in
Kr-Xe and I Ne-IINC collisions. 's's

APPENDIX A: RKI-A,TING THE 6(g," )
TO SQUARE BRACKEN@ IIi 1zGRALS

Chapman and Cowhng use the notation

n'„(I)=n"' . (Al)

They also give square bracket Integrals in their Table 9.6
which are related to the 6( I „" ) as follows:

lci Cilia=-', &.@(i 0»

t&i&i Cl&il=-', I.@(z 0»
' 1/2

[Ci ~I')z«i)C|]=
2 2

U.@(i 0) .

(A3)

APPENDIX 8: RELATING THE 6'qI 's

TO THE 0'~ "'s

The starting point for the calculation is Eq. (3.5),

Gel ——J dvdv'{u') &
~
v —v'~ K(v'~v)W(v') . (Bl)

One then substitutes Eq. (2.5) for E(v'-+v) in Eq. (81),
uses the fact that

$~(v' —v„')W(v')= W„(v,') Wz (y),
wheie W„W, and W„are defined by (2.8), (2.3), and
(2.10), respectively,

2/ 2

W (y)=(Iru ) e

2ks T
Qz =

M
M =m+mz

(83)

I
V — V„

PFE

(85)

and performs the integration over v and v„ to obtain

Gei=N~ J W„(v„')v„'Rv(v', )FI(u„')dv'„,

where

(86)

(Itr is the most probable speed associated with the A P-
center-of-mass distribution),
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2q

)(,( ', )= I y+~ ', ))' (y)dy

F&{U„')=f (U„'v„—v,')
PFt

X (U„',
i U,'v, —v„'

i )d Q„.dcT

V~

For spherically symmetric interaction potentials, one can
llsc thc I'clatlonships d 0'/d 0=( b /SIIlX )db /d X slid
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~
v, —v',

~

=2v„sin(X/2) to rewrite Eq. (88) as

21

Ro(v„)=1;
(812}

Ft(v„')=2tt 2v„' f b db sin ' —, {89)
0 2

L

~here b is the impact parameter of the collision and 7 is
the scattering angle in the center-of-mass frame (X is a
function ofb and v, ).

By choosing different values for q and l one finds that
the Get given by Eqs. (86), (87), and (89) are linear com-
binations of the Q"' defined by Eqs. (2.14) and (2.15). As
an example, we calculate Go~, 602, and GI&.

q=0, I=l U. sing the relationship sin (X/2)
=(1—cosX)/2, it immediately follows from Eqs. (86),
(87), (89), {2.14), and (2.15) that

F (v' )
—4 W (v' )4( Q{2)+2Q(1})

Goz ——32 u N (2Q" ' —Q' ')
m

(813)

R i(v,') =—,'ur +
2

(v,')' . (814)

q=I, /=I. The quantity Fi(v„') is still given by Eq.
(810},but now we need

Ro(v,')=1; Fi(v„')=2 (v„') Q"' (810)
Inserting R i(v„') and Fi(v„') into Eq. (86) and comparing
with Eq. (2.14), one finds

Gui =16 ~ u N Q
m

q=0, 1=2. By writing

sin (g/2) =—,'[ —(1—cos X)+2(1—cosX)]

it is again an easy matter to derive

(811)

I

G„=16 ~ u N, —' P Q(l, l)+ & Q(1,2)
m ~ 2 m~ m

4

(815)

Other collision integrals can be generated in a similar
fashion. This method for generating the Q'" integrals
seems less cumbersome than those in classical texts3 on
this subject matter.
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