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We investigate the linear response of a nonrelativistic hydrogenlike atom to a harmonic uniform
electric field, which is switched on adiabatically. For the electron initially in an arbitrary bound
| nlm ) state, the first-order correction to the wave function has been written in terms of a vector
function w,,,. We report an exact closed-form expression of the vector w,,, that we have derived
using the Coulomb Green’s function. Our general analytic results prove to be useful in a systematic
study of two-photon processes involving the hydrogen atom.

I. INTRODUCTION

The problem of determining the linear response of the
hydrogen atom to a monochromatic electromagnetic plane
wave was investigated by Podolsky' soon after the
creation of quantum mechanics. Assuming a stationary
| nlm ) state as the initial atomic state, the specific ques-
tion was how does one get an analytic expression of the
corresponding first-order perturbed wave function. The
electric dipole approximation (DA) to Podolsky’s problem
consists in calculating the linear response of the hydrogen
atom to a harmonic uniform electric field. This is the
subject considered in the following.

In his paper, Podolsky has treated only the ground-state
case in the DA, expressing the first-order correction 1[1(1}},
to the wave function as an infinite series of orthogonal
functions, the Coulomb Sturmian functions. With his
noncompact result Podolsky has obtained the dynamic di-
pole polarizability of the hydrogen atom in the ground
state.

Much later, a simple closed-form expression of 1)) has
been derived by Luban, Nudler, and Freund.>® The
linear-response function for the ground state has been
given as an integral representation, strictly valid for field
frequencies below the first excitation frequency. This re-
sult has been extended to higher frequencies not, however,
exceeding the photoionization threshold.

It is worth mentioning that for the hydrogen atom in
the presence of a static electric field, Jhanwar and Meath*
have derived a compact expression of the first-order
correction to any energy eigenstate | nlm ). Using these
corrections they have written general formulas for the
atomic static dipole polarizabilities.

All the quoted results! —* have been obtained by solving
appropriate inhomogeneous differential equations with
adequate boundary conditions.

Recently’ we have reconsidered the linear-response
problem, using the Green’s-function method. In the
ground-state case we have taken into account retardation,
giving the exact solution of Podolsky’s problem. In the
same work we have derived the DA corrections ¥}, cor-
responding to the excited states with n =2 and 3.

Meanwhile, we have generalized our DA results to any
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excited | nlm ) state.® The analytic formulas obtained are
very convenient for calculating the matrix elements of
two-photon transitions.’ In analytic work, this method
has never been used as yet, although in numerical work
the calculation of the first-order perturbed wave func-
tions, as a first step for evaluating two-photon matrix ele-
ments, has been applied for a long time.’

The purpose of this paper is to present our general non-
relativistic DA formulas for the linear-response functions
Y- The method of derivation relies on the consistent
use of the Coulomb Green’s function. Mathematical de-
tails are omitted and will be given in a separate paper. An
alternative method of derivation, using Podolsky’s dif-
ferential equations,! will be also described elsewhere.

In Sec. II we point out that the correction 1), is en-
tirely determined by a vector function w,;, which in its
turn includes two radial scalar functions &, (I'=1+1).
In Sec. III we write the functions & ,; as closed-form in-
tegral representations, while in Sec. IV they are expressed
in terms of Humbert functions ¢,. In particular, we ex-
amine the result corresponding to the ground state. The
detailed expressions of the functions %, for the excited
states with n =2 are also given. In Sec. V the static limit
of the linear-response problem is briefly discussed. Sec-
tion VI summarizes the results and stresses their impor-
tance for applications.

II. THE FIRST-ORDER CORRECTION o),
AND THE VECTOR FUNCTION w,;,,

The unperturbed system is an electron in the Coulomb
field of a point nucleus of charge Ze. The external per-
turbation is a weak electric field

& (1)=& ycos(wt) , (1)
that we describe by the potentials

=0, A(t)=— i&’osin(wt) . )

The corresponding interaction Hamiltonian (with the A?
term neglected) is

4641 ©1986 The American Physical Society



4642

e
m.c

HY(1)=

AP, (3)

where m, is the electron mass, and P denotes the momen-
tum operator. We suppose that the electric field is
switched on adiabatically, i.e., for ¢ <0 the operator (3) is
multiplied by a factor exp[(e/#)t], with e— +0 eventual-
ly. In the remote past (z— — oo ) the atom is assumed to
be in a stationary | nlm ) state,

Yigm(1,) =exXp Upim (1) . @)

i
—=E,t
Hon

Then the first-order correction to the wave function (4),
given by time-dependent perturbation theory, has the
form

ie
2m,w

i

— E,,t]

Yy (1, )= exp

fi

X &g [exp( —iwt)Wpp, (Q4;1)
—explit) Wy, (Qo;1)] . (5)
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The vector function w,,, is defined by the equation

(un‘l’m’ | Punlm )

w,,;,,,(ﬂ;r)sj 2 E,—Q

n' U',m’

un’[‘m‘(r) ’ (6)

where the summation is extended over all the energy
eigenstates (bound and continuum) of the electron in the
Coulomb field. The parameters 2, and (2, in Eq. (5) are

Q=E, +#w+ie, Q=E,—Hw . (7

We notice that the linear-response function (5) is com-
pletely determined by the vector function w,,,.
Equation (6) can be written alternatively as

Waim (0= — [ d3%'G(5,03Q)P (1), 8)

where G (r,r’;Q) is the Coulomb Green’s function.
Using the definition (6) we decompose the vectors w,,,
in terms of vector spherical harmonics, ?

. 172 172
im 1+1 r 1 r
Waim (1) = ﬁ' [_ T ] B o111V L 1im !7 ]+ ml B i1 1)V _11m ?I , 1>0. 9)
I
For | =0 only the first term exists, so that RA'= fow dr R, (rR (7). (15)

":‘ (44r)—"259,,m(a;r)f ) (10)

W,,oo(ﬂ;l')=

The radial functions #,;(Q;r) in Egs. (9) and (10),
(I'=1%1,if I >0, and I'=1, if [ =0), have the following
expansion in terms of Coulomb radial eigenfunctions:

on’
B i\ Q;r) = } E,,,"— o Rerlr) (11)
with
"y o 1+A,.
on'= [ drriRu(n) [%-}- LL Ry, (12)

and

Ayprg=—WU+1), 1>0,
M=l 1>0.

(13)

The sum in Eq. (11) is extended over energy eigenvalues:
negative values E,., with n’>/’, and the positive values.
For E > 0 the energy eigenfunctions are normalized in the
energy scale. An alternative form of the expansion (11) is

n'l'

R
B o (Q;P)=rRy(r)—(E, — Q) j EL
¥ E,

—a Ryp(r)y, (14)

where we have used the standard notation’

Equation (14) displays some analytic properties of the
radial functions &, in the complex Q plane, namely,
their behavior in the vicinity of the poles Q=E, <0
(n's£n), and the compact expressions of Im% ,; along
the cut Q=E > 0.

III. THE RADIAL FUNCTIONS # i
AS INTEGRAL REPRESENTATIONS

We have found a closed form of the functions
B (Q;r) using Schwinger’s integral representation of
the Coulomb Green’s function in momentum space.'’
This starting point was adopted for the first time by
Gavrila!! and proved to be very efficient in the study of
two-photon processes.

We have first calculated the function

7@ hmn=— [ dax'G(r,r';ﬂ)’,lTexp

i, 1,
ﬁq-r—-ﬁkr},

(16)

depending on the real parameters q and A >0. Then, by
suitable operations, we have derived the functions (11)
from their “generating function” (16). The explicit rela-
tionship between & ,;r and %, as well as the details of the
calculation, will not be presented here. We have eventual-
ly found the following integral representation of % ,;:
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joim here k, =Z /nay, a, is the Bohr radius, and
.@,,,f(ﬂ;r)=(2x,,)1/2 ,‘e where «, nag, ag 1s the Bohr radius, an
2sin(7T)
0+)
-7 ' . ik
x [, dpp~ bartp,mr) X=(—2m, Q)" (ReX>0), r=—1, (18)
scexp | — +7—(n—7)p Xr X
P Hnr P
(17 N =n+7+(0—T)p, (19)
|
172 -2
(n +1)' ‘/V: -7 I
by YTyl )= -
P TI= 0 [ ——Dizm | e Karne)
XA _ (' —n 20+ 22,1 ) +dE T S 42— 0,20+ 2,267, 0] (20)

with ¢ denoting the confluent hypergeometric function,
and

4n?
= 2,7 @
2KpTn ¢ A KT
dit" ' =(n +1+1)(n+1+2),
ditb'=1, 22)
dpi'=—d", .

One notices that the two confluent hypergeometric func-
tions in Eq. (20) are in fact proportional to Laguerre poly-
nomials of the variable (21). It is remarkable that the gen-
eral formulas (17) and (20) are valid for any value of the
parameter T, i.e., for any field frequency.

We shall now discuss in some detail the ground-state
case. By taking n =1 in Eqgs. (20)—(22) one finds

(23)

b101 =27/2T—‘ﬁ‘—2k'lr .

1,7

Equsations (10), (17), and (23) then give our previous re-
sult

. 12 Y .
Wioo( ;1) = fm 2 (2n) rre—Xr/h_te
’ i (42 2sin(77)
o) o= [2(1—1)p Xr
X dpL——ex —
J v 9P M, P\, &

(24)
To O, and Q, having the expressions (7) correspond 7,
and 7, defined by Eq. (18). At frequencies below the ioni-
zation threshold, & = | E, | /%, one has 1 <7< o and

l

I

1>7,>1/V2, while above the threshold 7, becomes pure-
ly imaginary and 7, decreases monotonically from 1/v2
to zero. Equation (24) is valid both below and above the
threshold.

For real values 0 <7<2, the integration path in Eq.
(24) may be reduced to the interval [0,1] on the real p
axis. Then, with the change of variable
p=[(14+7) /(| 1—7)][s /(s +1)] (r1), we get the in-
tegral representations given by Luban et al. [Egs. (20) and
(23) of Ref. 3]. The quoted formulas, unlike our result
(24), hold only below the first excitation frequency,
wy=(E;—E,)/#, where l <7y <2 and 1 >7,>2/V7.

As a further example, we list the functions (20) for the
first excited states, with n =2,

2—7+(2+7)p 4p
baor =2""21p2x,r - 2or|, (29
‘/’/g,f '/’/g,-r
219/2 2
baa="Si77 75 (2ar Y, (26)
2,7
by = 21172 | 3r1—p?)  6p[2—7+(2+7)p] 27
31/2 ‘/V;,r J’/‘g’f
160" o
+ (26,7 ) | . 27
ey

IV. THE EXPLICIT FORM OF THE RADIAL
FUNCTIONS %

Equations (17)-(22) lead to the following compact ex-
pression of the function %

U4t n 2 (n — )n—-l'—2 ,
B o Qr) = 172(2n) (n +1)! . fem
() = (e Y Dl [ —I—Dian | Ta1=r (n gy eret 2Kar)e
X 3 diyMn—7)Kn )itk
k=—1,1
Xy |'+1—15—n —7+1+k1I'+ 14k —n2I'+2;I'+2—1; ”2:7',
(n47? n—r 2n
2n(n—7)" 2r 26nt, n -—sznr] ' .
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In Eq. (28) ¢4 is a generalized hypergeometric function
with five parameters and four variables, defined by its ex-
pansion into a double series of Humbert functions ¢,

dula;by,by,b'sc5x1,%,,x,y)

=33

p=0v=0

(@)1 b2y iy XhY”
(Qpsd’)y, pW

Xéila +p+v,by+u,c+p+v;x,,x)

(|x3] <1). (29)
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We note that the third parameter in the functions ¢y
occurring in Eq. (28) is a negative integer or zero. It fol-
lows, according to Eq. (29), that the function £ ;. can be
expressed in terms of a finite number of Humbert func-
tions ¢, depending on the variables

n—71 n
En= y M=

-7
2k, r .

27

(3D

We write now the detailed expressions of the functions
R i for the ground state (n =1),

2471
(@), is Pochhammer’s symbol and the function ¢, is the & ,o,(Q;r)=x12—1— exp _&}
sum of the double power series 2—7 | 147 fi
® & (a) (b)) x™ yn
$ilabeixy)= 3 3~ I 3 X2 r ¢, (2—1,—1—1,3—736,m) ,  (32)
m=0n=0 (C)m+,, m: n!
which converges when | x | < 1.2 and for the excited states with n =2,
|
3471
)} 2 T ar
B 101 ;1) =kK> 2 | 24r exp | — P 2k,r
2
X 46127, —2—7,3— 1362 m2)+ (23+_:’ $13—1, —1—1,4—T:69m,)
= 3y a3 —7, =27 d—75m,) |, (33)
1 a I’ X
Bl BN =TT (= | exp | =50 (2 (3—1,—2— 4= miymy) (34)
4 I X
B Q; = 1/2._7-___ _r __’:_
2l EN="Ts (2er | |
48 37(2 2
X =1t —n—2=r2—rgm)+ TG 5 rrare )
2
—62K2r) [ 41(2—7, —2— 1,3 =1 1y) Ty (37, — | =4 —7iby)
16 R
+ 3_T(2K2f)¢|(3—T,—2—T,4—T;§2,7]2) . (35)

Equations (32)—(35) result from Eqgs. (28) and (29); how-
ever, some transformations are needed in order to get Eq.
(35).

Making use of Eqgs. (29) and (30), the function (28) can
be written as a double power series. The resulting expan-
sion is particularly useful in deriving approximate formu-
las valid at low field frequencies. One can also take ad-
vantage of it in a numerical evaluation of the functions
& nll’

V. THE STATIC LIMIT

The analysis of the linear response at low frequencies
requires special caution. Without going into details, we

only mention here the two steps to be made in order to get
correct wave functions in the low-frequency range.

First, Eqgs. (3) and (5) show that perturbation theory us-
ing the gauge (2) fails as w—0. It is easy to overcome this
difficulty, replacing the gauge (2) by the following one,

¢'(r,t)= — &y rcos(wt), A'=0, (36)
and carrying out the corresponding gauge transformation
of the wave function.’ Nevertheless, in our general calcu-
lation we have preferred the gauge (2), because it
originates in the one with retardation included® and intro-
duces the basic functions w,,,.

Secondly, as pointed out by Chung,'* conventional per-
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turbation theory does not exhibit the right static limit in
the excited-states case. Accordingly, it is necessary to “re-
normalize” the wave function (see also Ref. 14), and to
use, as proper initial states, the energy eigenstates in para-
bolic coordinates.

When taking into account the above-mentioned points,
we have to replace, in characterizing the linear-response
functions, the vectors (6) by the similar ones

Vaum( =3} Y
" % 'm'
The significance of the prime on the sum over the energy
eigenvalues is to exclude the contribution of the level E,.

The angular dependence of the vectors (37) is similar to
that described by Egs. (9) and (10),

xr

r

|

(I>0), (38

<un’1’m' l TUpim )

Z.—0 Uppm(r) . (37)
' —

172

141 ,
+ Lt (B 1im

Voim (1) = — LTEY

I 172
ml A oyt AV i

| ™

+

~

J

Q) (n +1I)!

R e
; E,—E, ""T4E,| @'+

n

with

CHV=—Ltn+I+D)n+1+2)n+1+3), Cl7"=—

(n—1—1)12n
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v;.oo(a;r)=<41r)—Vw;,o,m;ﬂ-;— . (39)

The radial functions o ,;(Q;r) in Egs. (38) and (39)
(I'=1+1if 1 >0, and I'’=1 if 1 =0) have the eigenfunc-
tion expansion

’ ’ R:Ill’
d,,,p(ﬂ,r)=£ T Rerln) (40)
From Eqgs. (14) and (40) we get
OB i R

nl
= g(E ;r)= X' ———R,p(r) .
EYe) Q=E, nl"\En ; E,—E, n'l
(41)

Therefore, when Q is close to the energy E,, the function
B r(Q;r) has the behavior

B i (E, +80;7)=B yy Ep;t) + o oy (Ep;r)8Q
+0((60)) . (42)

Making use of Eq. (28), written as a series, we have de-
rived the following compact expression of the radial func-
tion (41):

172

2
e ",V S ClTRe( 414k —n, 20 +2;26,7)
k=-2

(I'=1£1if 1 >0, and I'=1if I =0), (43)

sn+14+1),

CliMl'=(n+1+1D)n+1+2)n +1+43), CitM'=n—-1+2,

CHY=(n +14+1)n —1—1)21 +5), CIT"°=—(21-3),

Crik=clk; (k=1,2).

In their work* Jhanwar and Meath have calculated the
z-axis component of the vector v,,,(E,;r), which deter-
mines the linear response of the atom to a static uniform
electric field. Our sum rules, Egs. (43) and (44), are
equivalent to their results, contained in Eqgs. (19), (20),
(23)—(28), (31), and (32) of Ref. 4.

VI. SUMMARY AND CONCLUSIONS

We have presented in this paper the solution of
Podolsky’s problem in the dipole approximation, for an
arbitrary | nlm) state. The linear-response correction
P, Eq. (5), is completely determined by a mathematical
object that we have studied, namely the vector function
Wpim» defined by Eq. (6). Its expansion in terms of vector
spherical harmonics [Eqgs. (9) and (10)] has coefficients
proportional to the radial functions & ,;, Eq. (11). Our
main results are the integral representation of the func-

(44)

[

tions & , [Eqs. (17) and (20)] and their explicit expres-
sion (28).

Finally, we emphasize the importance of the vectors
W,m, beyond characterizing the linear-response wave
functions. Our Egs. (9), (10), (17), and (20) allow a
straightforward calculation of the Kramers-Heisenberg
matrix element for hydrogenic atoms.’> We think that
with our results, two-photon bound-bound, bound-free,
and free-free transitions in the DA can be treated in a
general and unitary manner. Work on these lines is in
progress.
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