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A local-spin-density-functional (LSD) scheme is developed using the normalization conditions for

an electron gas around a nuc1eus of charge Z. The correlation factor for electrons of parallel spin„

the Fermi hole, is decomposed into single-particle correlation factors. This leads to an orbita)-

dependent exchange-only density vnth no adjustable parameters such as the n of the Xa theory; the

parameters 8l, Bq, and a" are constant for all atoms once the shape of the Fermi ho1e is chosen.

These parameters are rigorously calculated &without assuming an approximate shape for the Fermi-

hole correlation factor. The exchange density using this unspecified Fermi-hole correlation factor

reduces exact1y to the homogeneous free-electron-gas exchange density at the high electron-density

limit. The theoretical relationship of this generalized exchange (GX) scheme to the Xa and free-

electron-gas exchange densities is discussed, and it is found that the Xa scheme needs a classical ap-

proximation to justify the use of a variable 0;. These schemes are compared numerically using the

total energies and eigenvalues for the atoms helium to krypton, and it is found that the LSD GX
scheme gives the most rehable results.

I. INTRODUCTION

The exchange potential in local-spin-density-functional
(LSD) theory is derived from free-electron-gas considera-
tions and has a density, n (r}'~3, dependence with an a pa-
rameter of —', . ' 3 An exchange potential of this form can
approximate the exchange potential of an inhomogeneous
electron gas, characteristic of the electron gas around a
nucleus of charge Z in two ways: (i) the exact exchange
potential of the free-electron gas can be used, and the in-

homogeneity either ignored or treated by various correc-
tion terms to the total energy, ~ 6 or (ii} the form of the
free-electron-gas exchange potential can be modified to
obey the correct normalization conditions for an electron
gas.

An exchange potential will be derived that is local in
nature, retaining the simplicity of the free-electron-gas ex-
change potential, and satisfying the correct normalization
conditions of the electron gas. This local exchange paten-
tial approaches the exact free-electron exchange potential
as the electron density around a nucleus gets high, because
an inhomogeneous electron gas with a high electron densi-

ty behaves like a free-electron gas.
The exchange functional is obtained from the exchange

density, U; (r), by multiplying it by the corresponding
one-electron density, summing over all the electrons and
integrating over all space. The exchange potential Vf (r)
is obtained by minimizing the exchange functional with
respect to a variation in the electron density. Hence, the
many-electron problem is discussed in terms of a quantity
from which is derived the tot'al exchange energy and the
one-electron exchange potential. Therefore, the exchange
density is the exchange energy per particle.

For the free-electron gas and Xa exchange densities,
the exchange potential is derived directly from

(n (r))= —,U (n(r)),

where n(r) is the total electron density. These exchange
densities are orbital independent and (1) does not apply to
orbital-dependent exchange densities. The a parameter is
reviewed to simplify the derivation of a new orbital-
dependent exchange potential.

II. THE a PARAMETER IN THE Xa THEORY

Dirac, ' Gaspar, and Kohn and Sham3 derived the ex-

change density of the free Fermi gas, and obtained the Xa
exchange density with an a of —', . Therefore, for an inho-

mogeneous electron gas around a nucleus of charge Z,
with the exchange density approximated by an n(r)'~~
dependence it can be assumed that an a different from —,

'
will account, in part, for the inhomogeneity. The degree
of inhomogeneity decreases with increasing atomic num-

ber, therefore the greater the number of electrons the
more they resemble a free-electron gas, and a should be
close to —', , implying a unique a for each atom.

In a homogeneous free-electron gas, the n(r)'~3 ex-

change density with an a of —', correlates the interactions

between electrons of parallel spin. The charge variation
around each electron over all space is the same for all
elo:trons. For an inhomogeneous electron gas, it is as-
sumed that the charge around each electron varies very

slovenly and that it is spherically symmetric out to a certain
radius. These radii can be averaged to simulate a homo-
geneous electron gas. This averaged interaction radius
will differ from the interaction radius of the true homo-
geneous free-electron gas, which is infinite, and therefore,
the difference between the homogeneous free-electron gas
a of —', and the a of the simulated homogeneous electron

gas must be related to the difference between the corre-
sponding radii of interaction These ideas ha.ve led to vari-
ous sets of a values ' being derived for the atoms.

Gopinathan, whitehead, and Bogdanovic, ' and
Gazquez and Keller ' derived theoretical a values using
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the one- and two-particle density matrices of McWeeny
and Lowdin and described the electronic interactions in
terms of a correlation factor f(r, r'),

n (r, r') =n (r}n (r')+n (r)n (r')f (r,r'), (2)

n(r, r ) is the pair-probability distribution function and
n(r) the total electron density. n(r, r') accounts for the
Coulomb repulsion through n(r)n(r') and the exchange
correlation interactions for all the interacting electrons
through f(r, r').

In spin-polarized form (2) becomes' ' '
n(r, r')=n (r, r')+n (r, r')+n;, (r,r')+n„(r, r'),
where n (r, r') gives the probability of finding a particle
at r with spin s when another is at x' with spin s', and
n, (r) and n, (r') are the s and s' spin densities, and

n~(r, r'}=n, (r)n, (r')+n, (r)n, (r')f~(r, r')

and similarly n (r, r') have correlation factors reflecting
the spins of the electrons and therefore f (r, r') and
f~(r, r'} are not the same. Similar equations define
n;, (r, r') and n„(r,r').

The expectation value of the total interelectronic in-
teractions in terms of the two-particle density matrix be-
coIDes

2/~ r, —r, [)= —,
' J «(r, r'N2/~ r —r'

~

)&r'&r .j
ij (+i)

Units are rydbergs. The right-hand side of (5) equals the
general form, local or nonlocal, of the spin-density-
functional theory total interelectronic interaction, there-
fore

—,
' f n(r, r')(2/I r —r'1)dr'dr

= —,
' f n (r)n (r')(2/

~

r —r'
~

)dr'dr

S

+—,
' f gn;(r)U,"'(r)dr

g

+ —,
' f gn;(r)U, "'(r)dr,

where n; (r) is equal to f; ~
u; (r) (

. The density-functional
(DF) terms are in densities for clarity. The exchange-
correlation density U,"'(r) in {6) is independent of the
summation over i and is the exchange-correlation opera-
tor defined by Kohn and Sham. This will now be dis-
cussed.

The general form of the exchange-correlation energy
for electrons of spin s is

S

E,"'=—,
'

nz x Uj"' r r,

where UJ"'(r) is orbital dependent; it is dependent on the
summation over j and will be called the single particle-
exchange-correlation density. Multiplying and dividing
the integrand in (7) by the total density of electrons with
spin s,

gn;(r} g nj(r) UJ"'(r) gn;{r} dr.

Consequently, an orbital-independent
correlation density can be defined

U,"'{r)=g ni(r)Ug'(r) gn;(r) . (9)

Summation over j shows that this is a total exchange-
correlation density averaged over the total electronic den-
sity, and will be called the aueraged exchange-correlation
density. Kohn and Sham ' used the Hartree-Fock (HF)
exchange potential in (7) and (8) to define the averaged
HF exchange density from (9), which enabled them to
derive their n'r (r) exchange potential. Therefore, the
exchange-correlation density in (6) is the averaged DF
exchange-correlation density.

Equation (5} in terms of the parallel and antiparallel
spin-correlation factors' ' becomes

U,"'(r)= f [n,(r')f (r, r')+n;(r')f (r,r')]

The problem is to fin the shape of f„(r,r'), which de-
fines the Fermi-hole interaction, and of f„(r,r'), which
defines the Coulomb hole inter-action Because. the ex-
change and the HF theories include exchange-only in-
teractions, the Coulomb-hole interactions v@11 be neglected
and f (r, r') put equal to zero. These equations will be
evaluated using an unspecified Fermi-hole correlation fac-
tor.

The averaged exchange-only density for spin s electrons
from (10) is

U, (r)= f n, (r')f (r,r')(2/~r —r'~)dr .

Equation (11) will be evaluated using a set of conditions
which the Fermi-hole correlation factor must satisfy, de-
rived from the normalization conditions of the one- and
two-particle density matrix equations, ' ' (i) the Pauli
exclusion principle„ the probability of finding 2 electrons
at the same position at the same time is zero, hence

X(2/(r —r'~ )dr'. (10) f (r r)= —1, (12}

Therefore, the complete exchange-correlation density de-
pends on the correlation of electrons with paraOel spins
through f (r, r') and antiparallel spins through f„(r,r').

when
~

r —r'
~

equals zero; (ii) at large interelectronic dis-
tances,

~
r —r'

~
approaches infinity, the electrons move

independently, and the correlation factor will be constant,
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fIIld
1/N (13) a, = —,

' (H/12)'/ A, A

N, is the number of s spin electrons; and (iii) the sum rule

f n, (r')f„(r,r')dr'= —1, (14)

which shows that the charge density removed Pom the vi-

cinity of the point r is equal to the negative of the charge
density at the point r, if they have the same spin; two
electrons with spin s cannot exist near one another. This
defines the omni hole.

In LSD theory, the charge around the point r is as-
sumed to vary very slowly within a volume defined by a
radius rz A.ssuming the Fermi hole spherically sym-
metric, the sum rule becomes' ' '

r+
4irn, (r}f f~(r')r'2dr'= —1 . (15)

For a free-electron gas rr is infinity, therefore using a fi-
nite radius is an approximation.

The correlation factor can be written to reflect directly
the boundary conditions (12) and (13),

f (r') =(1/N, —1)h (r') —1/N, ,

where h (r'} equals 1 when r' equals zero, and equals zero
when r' equals rt;. Using this Fermi hole, the sum rule
(14) can be evaluated and solved for rF,

rF —f4 /I &n, (r)(1—+Bz/N, )]

with

A2 —— h(u)uzdu, u =r'/rF
Qp

and

(17)

Bi——( —,—Az)/Ag, (19)

X(1+82/N, ) / n,
' (r) (21)

and

h(u}udu, u=r'IrF
Qy

(22)

Bi ——( —,
' —Ai)/Ai .

The averaged exchange density has an n(r)'/ depen-
dence. %hen it is compared to the spin-polarized Xa ex-
change density,

where ur is the reduced Fermi-hole radius; r~ is constant
around the point r, and since it depends on N, it is an
averaged radius of the N, Fermi holes present at the point
r.

Using (17), the averaged exchange density (11) is„ in the
LSD approxlInatlon,

PF

U D(n, (r)) =8nn, (r) f f~(r')r'dr', (20)

f„(r') is the general Fermi hole (16}. Integrating (20)
gives

U (n (r))= —(32~)' A /I '(1+8 /N )

(25}

The Fermi-hale function h (r') must satisfy (25) to ensure
that the equation for a, has a single minimum as N, ap-
proaches infinity; the a value of an atom with N electrons
must be greater than the a value of another with N+1
electrons.

As 1/N, approaches zero, a, becomes

alim 8 (a2/12)1/3g g —2/& (26)

which should equal —', , the value derived by Dirac, ' Gas-
par and Kohn and Shams for the homogeneous, free-
electron gas.

The approximate Fermi-hole correlation factors' ' ' '

can be expressed using these formulas once the Fermi-hole
function h (r') in (16) is defined.

Slater' assumed the charge density uniform, i.e., homo
geneous, hence

hH(r'}=1, 0&r'&rF .

The electron gas around a nucleus of charge Z is actually
inhomogeneous and the charge density in the Fermi hole
varies, albeit slowly, for the LSD approximation to be ef-
fective. Gopinathan, Whitehead, and Bogdono vie'
(GWB) assumed a linear variation,

h (r')=1 r'Irp, 0—&r'&rF . (28)

Gazquez and Keller ' modified an expression derived by
Wigner et al. 5'~ for the correlation factor of electrons in
a metal,

h (r')=exp( br'IrF)[1+br'IrF+—b(r'/rF) J, (29)

b is a constant determined by (25).
These Fermi-hole functions can be used to evaluate the

Ai and Az integrals (22) and (18}. The reduced Fermi-
hole radius in the Fermi-hole function (29) is defined as
br'IrF and the integration limits of (22) and (18) are zero
to —b. Subsequently, the 8~ and 82, and hence the
theoretical values of a are calculated using (24).

Table I gives A i, A2, Bi, Bz,, and a™,defined by (26).
The homogeneous Fermi-hole function H does not giue
uanable theoretical values of a; a is constant at its limit-
ing value of 0.866173 because both Bi and 82 are zero.
This value of a was derived by Slater' who concluded
that, since it was derived from a rough estimate of the
shape of the Fermi hole and lay between his original value
of 1 and the free-electron value of —,', a variable a parame-
ter was justified. However, the constant a value of

x (1+8 i /N, )(1+82/N, )

Therefore, the a, depends on N, and on rF through the
factor ( I+Bi/N, ) /, and consequently varies with Z,
justifying the use of a as a variable parameter.

The o;H" values derived by Schwarz ' decrease
smoothly with Z, therefore a, should approach a con-
stant, limiting value as N, approaches infinity. Differen-
tiated (24} with respect to I/N„which is then set equal to
zero
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TABI.'E I. The A „A2, Bi, 82, and a" values calculated us-

ing the homogeneous, H, G%'8, %'igner, and the free-electron
1imit (FEL) Fermi holes.

FEL

specific Fermi-hole shape, which have the corot free-
electron limiting value of —,. The a" expression (26) is

set equal to —,',
(30)

A(
Ag

8)
82

Iim

0.500000
0.333333
0.0
0.0
0.866 173

0.166667
0.083 333
2.0
3.0
0.727 539

0.142256
0.069 849
2.514776
3.772 147
0.698 526

0.119647
0.057 785
3.178952
4.768 428
0.666667 ( —,

' —A i )/3 i ———,
'

( —, —A i ) /A p . (31)

The condition (25) can be expressed in terms of Ai and
A2 using the definitions of 8, and Bz, (23) and (19),

'The b value was determined to be 5.02905 (Ref. 21).

0.866173 means that the homogeneous Fermi hole is not
suitable for systems with a large number of electrons and
does not fit the general physical description of the a pa-
rameter; it does not vary with atomic number. The GWB
and the Wigner Fermi holes give variable theoretical a
values, and the latter gives a limiting a value closer to —', .

Theoretical a values can be derived, without using a

a,„=(N,a, +N, a, )/(N, +N, ) . (32)

The results are in Table II along with the a,~" of Manoli
and Whitehead, ' ' which are very close to those ca1cu1at-

Equations (30) and (31) are solved for Ai and A2. These
values, and the Bi and 82 values, are given in Table I
under the heading FBI., the free elect-ron limit Fermi hole.

The theoretical a, and a, values for the GWB, Wigner
and FEL Fermi holes can be spin averaged,

TABLE II. The a,~", a,„,a,„,a,„"values for the atoms helium to krypton.

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36

Atom

He
Li
Be
8
C
N
0
F
Ne
Na
MN

Al
Si
P
S
Cl
Ar
K
Ca
Sc
Tl
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Cia
Ge
As
Se
Br
Kr

HF tt
SP

0.772 981
0.771 659
0.768 230
0.762058
0.753 272
0,745 217
0.741 199
0.735871
0.730811
0.730205
0.729 132
0.728 109
0.726738
0.725 440
0.724 314
0.722968
0.721 771
0.720 853
0.719832
0.718241
0.716977
0.715498
0.712 793
0.712 646
0.711298
0.710314
0.709 097
0.706 806
0.706 735
0.706 797
0.706 673
0.706 515
0.706275
0.705 985
0.705 740

G%B b
Qav

0.866 173
0.815 349
0.789 938
0.774 296
0.764305
0.757 531
0.751 805
0.747 644
0.744 568
0.742 233
0.740288
0.738760
0.737 534
0.736 533
0.735 526
0.734707
0.734030
0.733 462
0.732 952
0.732 517
0.732 143
0.731 819
0.731 620
0.731 285
0.730998
0.730750
0.730 533
0.730 342
0.730 174
0.730023
0.729 889
0.729 767
0.729 642
0.729 530
0.729 428

~c
Qav

0.866 173
0.807 316
0.777 888
0.758 872
0.746 387
0.737 771
0.730901
0.725 685
0.721 724
0.718 661
0.716 108
0.714073
0.712422
0.711062
0.709 724
0.708 620
0.707 698
0.706 918
0.706217
0.705 615
0.705 095
0.704 642
0.704 349
0.703 890
0.703 495
0.703 149
0.702 846
0.702 578
0.702 340
0.702 127
0.701 935
0.701 761
0.701 584
0.701 424
0.701 279

FEL
&av

0.866 173
0.799 297
0.765 859
0.743 240
0.727 977
0.717248
0.709 188
0.702 796
0.697 803
0.693 866
0.690 584
0.687 925
0.685 742
0.683 926
0.682 182
0.680 722
0.679 488
0.678 434
0.677 486
0.676 666
0.67S 9S3
0.675 327
0.674 901
0.674 284
0.673 7¹S
0.673 272
0.672 853
0.672 482
0.672 149
0.671 850
0.671 580
0.671 33S
0.671 086
0.670 861
0.670 657

'References 19 and 20, see also Ref. 27.
Reference 17.

'Reference 21.
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FEL
to satisfy the Pauli exclusion principle,

f' (r, r') = —n;(r)/n, (r} . (34)

If (34) is summed over i, this gives {12).
(ii) As the distance between two charge densities at r

and at r' approaches infinity,

f,' " (r, r') = n—;(r)n;(r')/n, (r)n, (r') . (35)

3 6 Q 12 1B
Ng

FIG. 1. A plot of the FEL, %'igner, GAB, and 8 Fermi-hole
radii in umts of [4nn, (r}] ' ' versus the number of spin s elec-
trons N, .

ed by Schwarz. ' The u,„are considerably higher
than the a»" values„and hence the LSD total energy will
be too negative with these a values. In contrast, the a,„"
values are considerably lower than the a,~ values, and
hence the total energy will be higher than the HF total en-
ergy. The a,„values reproduce the a» trend quite well,
especially for the transition metals, in spite of the in-
correct limiting a value.

The a values depend on rr. Figure 1 is a plot of r~
given by (1'7} for the H, 6%8, Wigner and p'hL Fermi
holes in units of [4nn, (r)] '+ versus N, The rt.; is con-
stant, as expected for a uniform electron gas distribution,
and has the smallest rtidius for all atoms, while the largest
is the rP . As rt; increases, the a value decreases as does
the magnitude of the exchange energy.

III. THE GENERALIZE EXCHANGE
LOCAL-SPIN-DENSITY-FUNCTI{ONAL THEORY

The Xtz exchange density is orbital independent. The
electron gas around each nucleus of charge Z is described
in terms of an averaged Fermi-hole correlation factor that
depends on N, . The a parameter is a direct consequence
of this averaging process.

A LSD orbital-dependent exchange density will be de-
rived by averaging the Fexiai-hole interactions around one
electron, instead of averaging ail the Fermi-hole interac-
tions around al/ the electrons, to give an "orbital-
dependent a value" which is closer to the exact descrip-
tion of electronic interactions.

The Fermi-hole correlation factor in (4} is written as a
sum over one-particle Fermi-hole correlation factors,

This is not equal to (13) when summed over i. However,
it will be shown to equal the limit of the HF Fermi-hole
correlation factor.

(iii) The sum rule becomes

J
S

g [n, (r')f' (r, r')+nt(r')n;(r)/n, (r)]dr'=0 .

A single partic-le sum rule is obtained by setting each in-
teg, ral to zero,

Pfz f ~ F,f r= —/l; I' If' I' (37)

Summing over the i gives (14). Therefore, (37) shows that
the charge density removed from the vicinity of the
charge density at the point r, n, (r), is the charge density
of the ith electron, n&(r). As

~

r —r'
~

approaches infinity,
the total charge density removed from the Fermi hole in
the sum rule (36) equals in magnitude but opposite in sign
to the self-interaction charge density. This ensures that a
particle does not interact with itself; selfinteraction is re
moved. This is why the boundary condition of the single-
particle Fermi-hole correlation factor (35) does not equal
the corresponding limit of the total Fermi-hole correlation
(13) when summed over i

Writing (34) like (16) to reflect directly the boundary
conditions (34) and (35),

f' (r, r') =[n;(r)n;(r')/n, (r)n, (r') n; {r) l—n, (r)]h (r, r')
—n;(r)n;(r')/n, (r)n, (r'), (38)

h (r, r') approaches 1 as
~

r—r'
~

approaches zero, and ap-
proaches zero as

~

r —r'
~

approaches infinity. Using (38)
in the single-particle sum rule (37) gives

f n, (r') {[n;(r')/n, (r') —1]h (r, r')

n;(r')/n, (r') j—dr'= —1 . (39)

The n;(r)/n, (r) factors cancel exactly.
The equations deueloped so far are in principle exact

Now, however, the LSD approximation will be used to
simplify evaluating the single-particle sum rule (39). If
the total density at the point r is very slowly varying, the
LSD approximation gives

n (r, r') =n, (r)n, (r')+n, (r)n, (r') g f' (r,r') . (33) n, (r') =n, (r)

so that

(40)

This two-particle density matrix must satisfy the normah-
zation conditions used to derive the boundary conditions
of the total Fermi-hole correlation factor, rewritten in
tams of onwelectron densities. The single particle-
Fermi-hole correlation must satisfy the following condi-
tions.

(i) As the distance between electrons approaches zero,
the pair-probability distribution function approaches zero

n;(r') -=n;(r) . (41}

rF ——{47TA2[n, (r}+Bin;(r)]] (42)

Equation (40) is a direct consequence of the LSD approxi-
mation and (41) a natural extension. The Fermi hole is
assumed spherically symmetric and localized within a ra-
dius rt;. The sum rule (39) is evaluated and solved for rr,
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The Az and B2 factors are exactly those derived before
but the Fermi ho-le radius rz is now orbital dependent.
Therefore, at every point r, each electron has its own
Fermi-hole radius.

The total interelectronic interaction energy of electrons
of spina s is expressed using (33) in an equation similar to
{5). This gives the sum of the Coulomb repulsion and ex-
change energies in DF theory,

= I n, (r) n, (r')(2/~ r—r'
~

)dr'dr

n)rU(r r.

X [n, (r)+Bin;(r)] (47)

where a", ideally, should equal —', . The exchange density

(47) will be called the generalized exchange (GX) density
Any Fermi hole can be used, hence the name general-

ized exchange. The 0, G%8, %'igner, and Fhl. Fermi
holes give specific Bi, Bi, and a" that are constant;
there are no adjustable parameters like the a "of the Xa
theory. Since the exchange density of large electronic sys-
tems should approach the free-electron exchange density,
the best Fermi-hole parameters are the FEI..

For the H FerIDi hole, the I SD GX exchange energy is

E,'"=—(9c/2)(0. 866 173 )

The exchange density U, ;(r) is the single-particle,
orbital-dependent exchange density (7). This reduces to

U, ;(r)n;(r)/n, (r)= f n, (r')f~(r, r')(2/
~
r—r'

~

)dr' .

(44)
Substituting (38) gives

Ut (r)= J n, (r')I[n;(r')/n, (r') —1]h(r, r')

—ni(r')/n, (r') I (2/
~
r—r'

~

)dr' . (45)

As in the sum rule, the n;(r)/n, (r) factors cancel. If the
LSD approximation is used, and the Fermi hole assumed
spherically symmetric, equations (40)—(42) give

U; (r)= —4(m/2)'~ diaz [n,(r)+Bin;(r)]

X[n,(r)+Bin;(r)] '/'. (46)

This U; (r) must approach a n'~i(r) as N, approaches
infinity. It should approach the Xa exchange density
with a, equal to —,'. Therefore, differentiating U; (r) with
respect to n;(r)/n, (r) and setting n;(r)/n, (r) equal to
zero gives exactly the same condition that the total
Fermi-hole correlation factor had to satisfy, Eq. (25).
Hence, the orbital-dependent, single-particle exchange
density U; (r) can be written in terms of the limiting
value of (26),

U; (r)= —9ca" [n, (r)+B,n;(r)]

the Xa exchange density with an a of 0.866173. Conse-
quently, the LSD GX theory is a generalization of the
traditional Xa theory based on single-particle Fermi-hole
interactions.

IV. COMPARISON SET%EEN
THE LSD GX AND Xu EXCHANGE DENSITIES

The difference between the LSD GX and Xa exchange
densities is the replacement of 1/N, factor in the theoreti-
cal a, expression (24) by n;(r)/n, (r) in the LSD GX ex-
change density.

A physically correct total Fermi-hole correlation factor
must satisfy the sum rule (14) and the boundary condition
(12). The theoretical a values are derived using these
equations and the boundary condition (13). It is (I3) that
giues an orbital-independent a Ualue E.quation {13)was
first used by Gopinathan, Whitehead, and Bogdanovic. '7

They used the results of Kutzelnigg, Del Re, and
Berthier 4'2 who proposed that for c1assica! point charges

1/N, =n;(r)/n, (r)

is valid at large interelectronic distances. This shows that
the use of an a uarying with atomic number in the Xa
theory is based on a classical approximation which makes
the expression for ct a function of the total number of
electrons.

The LSD GX exchange density is derived from the
correct single-particie Fermi-hole correlation factor which
satisfies the sum rule (37), the boundary condition (34),
and the boundary condition (35) which gives an orbital-
dependent exchange density. There is no classical approxi
mation to the boundary condition (35).

The Xa exchange density with the theoretical a, ex-
pression (24) is obtained when (49) is used as a classical
approximation in the LSD GX expression for the exchange
density and summed over i. When this approximation is
used in boundary condition (35) it gives boundary condi-
tion (13). Hence, the use of the single-particle correlation
factor to describe exchange interactions is more accurate
than using the total Fermi-hole correlation factor because
the classical approximation (49) is not used. In addition,
the single-particie correlation factor obeys the same
boundary conditions as the HF correlation factor, Appen-
dix A. Therefore, the LSD GX exchange density should
be closer to the correct exchange density of the electron
gas around an atom.

V. THE FREE-ELECTRON-GAS LIMIT

An important limiting case of the LSD GX exchange
density is the free-electron (l'8, ) gas hmit. This limit is
the high electron density limit; the total electron density is
Inuch greater than the single-particle electron density, the
number of electrons is very large.

Because a free-electron gas is homogeneous, it might
seem natural to use the H Fermi-hole correlation factor to
derive the FE exchange density. However, this leads to an
exchange density which has the correct form, a n,

' (r)
dependence, but with an o, value of 0.866 173 and not —,',
the correct a value for the FE gas exchange densi-
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ty. 'l' ' Why does the H Fermi-hole give the incorrect
FE gas a value' ?

The H Fermi hole in the presinlt formuhsm gives a fi
nite rr. In contrast, for the I"'E gas, the correct rF is in-
finite. The assumption of a finite rf ensures that the ex-
act FE exchange cannot be derived directly using the

fH(r) 1,3,29,30
SS 0The a value of 0.866173, obtained from f (r) and the

sum rule, describes an electron gas which is assumed

homogeneous within a finite Fermi hol-e radius which

obeys the normalizatt'on conditions of an electron gas.
Gutmarsson and Lundqvistl' and Langreth and Per-

dew concluded that the FE-gas exchange density
does obey the sum rule wt'th an infinite Fermi-hole radius.
This means that the Xa and LSD GX schemes attempt to
account for the inhomogeneity of the electron gas around
a nucleus by using a finite rF. Therefore, the LSD FE
scheme will underestimate the exchange energy of the in-
homogeneous electron gas since (Fig. 1) the larger the ra-
dius of interaction the smaller the magnitude of the ex-
change energy.

The FE-gas exchange density can be indirectiy derived
from the LSD GX exchange density; at the high electron-
density limit nt(r)/n, (r) approaches zero, and the LSD
GX exchange density reduces to

Uox"'(n, (r))= —9c-', n,'"(r) (50)

since a" equals —, for the I EL Fermi hole. This is ex-

actly the I'8-gas exchange density. Therefore, though the
LSD GX exchange density was derived within the finite
Fermi-hole radius approximation, it has the correct Fj:-
gas limit.

VI. THE ONE-ELECTRON EXCHANGE POTENTIAL

In the Kohn and Sham schemel the total energy is min-
imized with respect to a variation in the one-electron

]

eigenfunctions u;(r) which preserves the normalization
condition

g ft(u;(r) I
u;(r})= I n, (r)dr=%, .

E

This gives
r

f„+y f;(u;(r')IIu;(r'))+ V"'k(r)
I uI, (r))

(51)

Vk (r}=—,
' 5 g f;&ut(r)

I
U,"'(r)

I u;(r) & Snk(r) . (53)

The kth electron has spin s and the U;"'(r) is the single-
particle exchange-correlation density (7). Expression (52)
is the one-electron eigenvalue equation to be solved self-
consistently in DF theory; the orbital eigenvalue ek is the
Lagrange multiplier in the minimization procedure.

Slater and Woodl and Janak 7 proved that ek is ob-
tained directly by evaluating the derivative of the total en-

ergy with respect to the occupation number of an orbital at
full occupancy. This imphes that the total energy is a
continuous function of the occupation n'umbers, since the
partial derivative can be evaluated for any value of fk.
This concept seems unphysical, but is a powerful tool
used to calculate various one-electron energies such as
electronegativities. ' 38 ~

Using this approach, the LSD GX one-electron ex-
change potential is

=&k
I
uk(r) &, (52)

f„ is the kinetic and nuclear-attraction energy operator
—7; —2Z/

I
r I, and

I I
represents the interelectronic

repulsion operator 2/
I
r —r'

I
. The one-electron potential

Vk'(r) is

P

Vk (r)= —(9e/2)a" g [n, (r)+Sin&(r)] z~ln;(r) ——,
' g [n, (r)+Bin;(r)][n, (r)+Bzn;(r)] '~in;(r)

+[n.(r)+2&ink(r)]fn. (r)+&ink(r)] '"—l&2[n.(r)+&ink(r)][n. (r)+&ink(r)] '"nk(r}

(54)

which is used in (52).
The exchange potential (54}reduces to the ga exchange

potential when tile H Fermi-hole parameters are used.
Setting Bl and Bz equal to zero,

V» (n, (r)}= 6ca" n,—' (r), (55)

quads 0 866 173 In contrast, usulg Ole c?assi
«& approximation (49),

(n, (r))= 6ca, n,'~'(r), —
where a, is given by a theoretical expression which is a
function of N„and depends on the Fermi-hole parame-

1

VII. RESULTS AND DISCUSSION

A. Computational notes

Calculations were done on the atoms helium to krypton
using (i) the LSD GX scheme with the I'1:L, Wigner, and
GWB Fermi-hole parameters (henceforth called the GX-
FEL, GX-W, and GX-GWB, respectively), (ii) the Xa
scheme with the a,~" of Manoli and Whitehead'9 20 27 and
(iii) the LSD FE scheme.

The Herman-Skillman program' was extensively modi-
fied to permit spin-polarized calculations for all schemes
and orthogonalization of orbitals with the same azimuthal
quantum number, because the I.SD GX exchange poten-
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tial is orbital dependent.
The units in the calculations were rydbergs; self-

consistency was achieved to an accuracy of 10 for every

point in all the eigenfunctions. The results are in eV; the
conversion was I Ry to 13.605 eV.

8. Total energies

The HF total energies are the basis for comparison be-
tween the total energies because the LSD exchange poten-
tials only include Fermi-hole interactions; they do not
contain correlation, i.e., Coulomb-hole interactions, and
the schemes should be compared to exchange-only calcu-
lations.

Table III gives the total energies of atoms helium to
krypton in the LSD GX schemes in eV. They are com-
pared to the LSD FE total energies and to the HF total

energies given by Clementi and Roetti. ' The Xa total
energies are equal to the HF total energies.

The LSD GX total energies are overestimated because
the LSD GX exchange density contains too much pure-
exchange density. In contrast, the LSD FE total ener-

gies are underestimated because the electron gas around a
nucleus is inhomogeneous. The GX-FEL total energies
are significantly closer to the HF total energies than the
LSD FE total energies, because the finite Fermi-hole ra-
dius approximation in the GX-FEL scheme attempts to
account in part for the inhomogeneity of the electron gas.
In addition, the FEL Fermi hole has the correct high
electron-density limit, and does not assume a specific, ap-
proximate shape of the Fermi hole.

The effect of the different Fermi-hole parameters can
be seen in Table IV, which compares the calculated ex-
change energies. In general, the larger rz the smaller the

TABLE III. The negative of the total energies in eV of the ground states of the atoms helium to
krypton calculated using the LSD GX scheme and the FEL, signer, and GAB Fermi holes compared
to the HF and LSD FE total energies.

Atom
Negative total energies (eV)

%'jgner G%'8 FE

2
3

5
6
7
8
9

10
li
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28

30
31
32
33

35
36

He
L1
Be
8
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
T1
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr

81.25
207.89
404.74
677.59

1037.6
1494.0
2051.0
2722. 1

3516.3
4424.3
5453.7
6605.1

7884.8
9297.0

10843.6
12 531.2
14 364.2
16 334.6
18448.0
20707.5
23 121.4
25 693.6
28429.6
31 328.3
34 393.2
37 631.3
41046.4
44643.4
48 422.5
52 378.6
56 516.8
60 839.4
65 346.3
70042. 1

74 929.2

81.25
207,94
404.88
678.07

1038.7
1496.1
2054.0
2726,2
3522.1

4431.3
5461.9
6614.7
7895.9
9309,9

10858.2
12 547.8
14383.0
16355.2
18470.6
20 732.5
23 149.0
25 724. 1

28 463.6
31 365.2
34433.3
37 674.8
41 093.5
44694.9
48477.6
52437.3
56 579.3
60905.8
65 416.5
70 116.2
75 007.4

81.25
207.98
405.02
678.54

1039.8
1498.1
2056.8
2730.3
3527.7
4438.0
5469.8
6623.9
7906.6
9322.4

10872.3
12 563.7
14401.0
16375.0
18492.2
20756.4
23 175.4
25 753.2
29496.1

31 400.3
34471.4
37 716.1
41 138.2
44743.7
48 529.7
52492.9
56 638.3
60968.5
65 482.7
70 186.2
75 081.2

74.11
195.93
387.02
654.77

1009.8
1461.4
2013.3
2679.5
3469.0
4371.1
5394.4
6540.1

7814.2
9221.2

10762.1

128.A.A 3
14272.1

16236.5
18 343.9
20 598.2
23 006.9
25 574.0
28 305.8
31 198.5
34 258.4
37491.6
40901.8
44494.9
48 268.1

52 218.6
56 351.4
60668.7
65 170.0
69 860.5
74 742.2

77.87
202.24
396.53
667.44

1025.5
1480.2
2035.6
2704,9
3497.8
4104.2
5431.5
6581.5
7859.7
9271.0

10816.1
12 502.5
14 334.7
16303.3
18 414.6
20 672.4
23 085.1

26 655.9
28 389.7
31287.8
34 351.1
37 588.3
41 001.9
44 596.2
48 375.2
52 331.9
56470.5
60 793.6
65 300.3
69 996.1
74 883.4

'Reference 41,
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TABLE IV. The negative of the exchange energies of neon, argon, and krypton calculated using the

GX-FEL, GX-%, GX-GAB, and the LSD FE schemes compared to HF exchange energy. All energies

are given in eV.

Negative exchange energies (eV)
GX-%' GX-G%'B FE HF'

346.93
849.96

2596.4

353.45
869.96

2677.8

359.78
889.20

2754.7

297.60
755.75

2407.5

329.5
821.3

2561.9

magnitude of the exchange interaction and since the LSD
GX overestimates the pure-exchange interaction, the Fer-
mi hole with the largest rt; gives the smallest exchange en-

ergy. The GWB Fermi hole gives the worst exchange en-

ergy because it oversimplifies the shape of the hole, and
hence has the smallest radius. The Wigner Fermi hole
gives better results because it is based on a very good ap-
proximation to the correct Fermi hole, with a larger
radius, but neither are as gotid as the FEL results, because
the GX-FEL exchange density has the largest Fermi-hole
radius. The LSD Fh exchange energies are underestimat-
ed because the electron gas is not homogeneous.

Gunnarsson and Jones~i have shown that the exchange
energy is insensitive to the shape of the Fermi hole but
very sensitive to the size of the hole. Therefore, it is not
surprising that, even though the shape of the FEL Fermi
hole is not defined, the GX-FEL exchange density gives
very good total energies.

C. Eigenvalues

Table V compares the eigenvalues of argon calculated
using the GX-FEL, GX-W, and GX-GWB schemes with
the HF eigenvalues. Most of the GX-GWB eigenvalues
are negligibly more negative, and hence closer to the HF
eigenvalues than the GX-FEL and GX-W eigenvalues.
The GX-FEL ls eigenvalue is negligibly more negative
than the GX-W and GX-GWB 1s eigenvalues. However,
overall there is no significant difference between the LSD
GX eigenvalues compared to the HF ones regardless of
the Fermi hole used to calculate them. Calculations on all
the atoms helium to krypton have been performed and the
satne trends have been observed.

Table VI compares the eigenvalues of the GX-FEL,
LSD FE, and Xa schemes with the HF eigenvalues for

the krypton atom. The GX-FEL ls eigenvalue is a con-
siderable improvement over the LSD FE and Xa ls
eigenvalue. Indeed, calculations on the atoms helium to
krypton show that the ls eigenvalues of all the atoms are
improved.

The remaining orbital eigenvalues are very close to each
other; there are only slight differences. The LSD FE
eigenvalues are only slightly worse than the others and the
GX-FEL and Xa eigenvalues are generally very close to
each other. Calculations on the atoms helium to krypton
give the same trends, however the LSD FE eigenvalues for
small atoms are significantly different from the GX-FEL'
and exchange ones. When compared to the HF eigen-
values, all the LSD schemes give uery bad eigenvalues
The main reason is the lack of self-interaction correction
in the LSD exchange densities.

Since the LSD GX exchange potential is orbital depen-
dent, the eigenfunctions will not be orthogonal to each
other once self-consistency has been achieved. Table VII
compares the eigenvalues for krypton calculated using
orthogonal and nonorthogonal eigenfunctions. The effect
of orthogonalizing the eigenfunctions is very small, and
hence the eigenvalues in Tables V and VI were obtained
without orthogonalizing the eigenfunctions. Furthermore,
the orthogonalization procedure would not affect the
trends ia the calculated eigeavalues.

D. Overa11 trend

The best overall trend in the eigenvalues and total ener-

gies is given by the GX-FEL scheme; while other schemes
give better numbers in certain cases, the GX-FEL scheme
would give the most reliable results if it were used to cal-

TABLE VI. Comparison of the eigenvalues of krypton calcu. -

lated using the GX-FEL, LSD FE, and Xa schemes and the HF
scheme. All energies are given in eV.

—F2P
—&3s

GX-FEL

3139.9
294.04
230.48
23.42
9.59

3139.2
295.15
231.59
23.72
9.88

GX-G%8

3138.4
296.25
232.68
24.01
10.16

3227.4
335.29
260.44

34.76
16.08

TABLE V. Comparison of the eigenvalues of argon calculat-
ed using the GX-FEL, GX-%, and GX-GV/8 schemes and the
HF scheme. A11 energies are given in eV. —&Is

—&2s

—
EgP

—&3s

—K3P

FE

13 874.1

1801.7
1631.1
251.76
191.13
81.97
20.99

8.16

13 891.3
1806.4
1636.3
253.56
192.89
83.52
21.53

8.61

13996.8
1805.9
1637.1
252.12
191.49
82.37
21.67

8.63

HF'

13959.2
1821.5
1652.8
261.00
200.44
90.42
23.46
10.24

'Reference 41. 'Reference 41.



4638 S. MANOLI AND M. A. %'HITEHEAD 34

Orbita1

—c 4',GX-FEL) (eV)
Orthogonal Nonorthogonal

1s
2s
2p
3$
3p
361

4s
4p

13968.6
1806.4
1637.8
252.20
191.58
82.44
21.67

8.63

13966.8
1805.9
1637.1
252.12
191.49
82.37
21.67

8.63

TABLE VII. Comparison of the GX-FEL eigenvalues, —e.

(GX-FEL) in eV, of krypton calculated using orthogonal and

nonorthogonal eigenfunctions.

of the gradient-expansion technique. The results ob-
tained using the LSD-GX scheme, which contains no gra
dienf correcfion since A& and A2 are constants, are very
close to those of Perdew. Therefore, it may be possible to
improve the LSD GX scheme using Perdew's step-
function scheme.

The I.SD GX theory can also be improved by correct-
ing the exchange density for self-interaction, and will be
presented in a forthcoming paper. Another forthcoming
paper will deal with ionization potentials, electronegativi-
ties, and electron affinities using both the LSD GX and
the self-interaction corrected LSD GX schemes.
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culate an unknoivn system; the price to be paid for a negli-
gible improvement in the eigenvalues by using the GWB
Fermi hole is a gross overestimation of the total energy.

The Xa scheme could not be used because it requires a
HF calculation to deteaaxiine the a " value. It must be

emphasized that the LSD GX results were obtained
us'thout the use of adjustable parameters such as the aH";

Bi, 82, and a' are the same for all atoms.

VIII. CONCLUSIONS

The LSD GX scheme represents a significant improve-
ment over the Xa and LSD FE schemes for two reasons.

(i) Theoretically, the LSD GX scheme is based on the
correct normalization conditions for an electron gas and
this leads to an exchange potential that does not contain
any adjustable parameters. In contrast, the LSD FE
scheme contains the homogeneous free-electron gas ex-
change density which is not a good approximation to the
exchange potential for an elcetron gas around a nucleus of
charge Z. The Xu scheme tries to correct this deficiency
by using an adjustable parameter a that is empirically
determined, therefore theoretically this scheme is not suit-
able for calculations on unknown systems. In addition,
the use ofa variable a value can only be theoreticallyj usti-
fied using classical arguments [approximation (49)].
Furthermore, the FEL Fermi-hole parameters were de-
rived without assuming a specific shape of the Fermi hole
and the GX-FEL exchange density reduces to the correct
LSD FE exchange density as the number of electrons ap-
proaches infinity. Therefore, the LSD GX scheme with
the FEL parameters gives a completely rigorous exchange
density, within the I,SD approximation.

(ii} Numerically, the GX-FEL scheme gives the best
overall trend in the total energies compared to the HF
scheme. Only the GX-FEL 1s eigenvalues are significant-
ly better than the I SD FE and Xo; ls eigenvalues when
compared to the HF eigenvalues. The eigenvalues of the
other orbitals are very much the same, and they are all far
from the corresponding HF eigenvalues.

Perdew has proposed a gradient expansion of the Fer-
mi hole with a step function to ensure that the sum rule is
obeyed. This scheme successfully corrects the deficiencies

APPENDIX A: THE BOUNDARY CONDITIONS
OP THE HARTREE-POCK PERMI HOLE

CORRELATION FACTOR

Using the HF exchange-only potential in (7) and (8) and
coiilparllig with (1 1) gives

fH"(r, r') = —[1/n, (r}n,(r')]

X g P,'(r)Pi (r')P&(r)P;(r') (A 1)

showing that the HF total Fermi hole is the sum of
orbital-pair exchange interactions, each an orbital-pair
Fermi-hole correlation factor; each electron has a Fermi
hole.

As
~

r —r'
~

approaches zero,

f„(r,r') = —[1/ng(r)n, (r)]

X g f,'(r)PJ'(r)Pi(r)P;(r) . (A2)

Since the electron density is

X g P,'(r)P,'(r')P;(r)P;(r'),

which is rewritten as

f '" (r, r') = —g n;(r)n;(r')/n, (r)n, (r') . (A5)

n, (r)=g (Pt(r)(', (A3)

summing (A2) over j gives (34) exactly, the boundary con-
dition the unspecifiixl single-particle Fermi-hole correla-
tion factor had to satisfy. If (A2) is summed over both i
and j, this gives (12) exactly, the boundary condition the
unspecified total Fermi-hole correlation factor had to
satisfy.

As
~
r—r'

~
approaches infinity, the exchange terms in

(Al) approach zero; the only nonzero terms are the self-
interaction terms. Consequently, at this limit, the HF
Fermi-hole correlation factor reduces to

f "'" (r,r')= —[1/ n(r) n(r")]
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Decomposing (A4} into individun) electron boundary con-
ditions gives boundary condition (35} exactly; the
boundary condition that the unspecified single-Jparticle

Fermi correlation factor had to satisfy. The only way to
derive the corresponding boundary condition for the total
Fermi-hole correlation factor is to assume that at large in-

terelectronic distances the electrons act like classical point
charges and hence approximation (49} can be used. This
will give boundary condition (13). Therefore, as in the
case of the LSD GX exchange, the HF exchange does not
include any classical approximations.

Substituting the total HF Fermi-hole correlation factor
into the sum rule given by (14) gives

which is rewritten as

r J r J r ' r r n r

The one-electron wave functions can be assumed ortho-
normal with no loss of generality, and therefore, the only
nonzero integrals are the self-interaction ones. Further-
more, these integrate to 1 for singly occupied spin orbi-
tals, leaving

(AS)

which is exactly the definition of the electron density
given by (A3). Therefore, the total HF Fermi-hole corre-
lation factor satisfies the sum rule (14). Removing the
summations over i from (A7) and (AS) shows that the
single-particle HF Fermi-hole correlation factor satisfies
the single-particle s)im rule (37).
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