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Thermal fluctuations around inhomogeneous nonequilibrium steady states of one-dimensional rig-
id heat conductors are analyzed in the framework of generalized fluctuating hydrodynamics. The
effect of an external source of noise is also considered. External fluctuations come from tempera-
ture and position fluctuations of the source. Contributions of each kind of noise to the temperature
correlation function are computed and compared through the study of its asymptotic behavior.

I. INTRODUCTION

In recent years a great deal of attention has been paid to
the study of fluctuations about nonequilibrium steady
states.! This interest lies in the fact that away from
equilibrium the study of fluctuations introduces a great
variety of differences with respect to fluctuations about
equilibrium states.? For example, in steady states, the
equal-time correlation functions are long ranged in con-
trast to correlations at equilibrium which are §-correlated.
Moreover, such correlations contain the external gra-
dients, imposed to generate a nonequilibrium steady state,
which sometimes appear in the form of expansion param-
eters. The stationary states have been normally assumed
to be simple functions as linear temperature or velocity
profiles.

Nonequilibrium steady states introduce an essential
feature: To maintain the steady state, energy must be sup-
plied through the boundaries of the system. The conse-
quence is that sometimes the nature of boundaries should
be taken into account in the analysis of fluctuations. This
is what happens, for example, when absorbing walls are
considered;’ then one shows that the presence of fluctuat-
ing boundaries modifies the spectrum of light scattering.
Another example is the displacement of the onset of
Bénard instability due to a random surface temperature.*
A review of results concerning the role of external fluc-
tuations around homogeneous systems has been given in
Ref. 5.

Our aim in this paper is precisely to incorporate the ef-
fect of external fluctuations to the study of fluctuations
about nonequilibrium steady states. To this purpose and
for the sake of simplicity we will treat a problem of one-
dimensional heat conduction. Then our system consists of
a thin solid rod in which heat may flow by conduction
and radiation to a thermal bath. By considering the prob-
lem as one dimensional we can obtain analytical expres-
sions for the temperature correlation function coming
from different sources of noise, which for higher dimen-
sionality could not be achieved.

On the other hand, it is well known that, in general, far
away from critical points, fluctuations are quite small.
However, our attention is not focused on the size of such
fluctuations but on the form in which nonlinear profiles
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affect the temperature correlation function or on compar-
ing the different contributions to the temperature correla-
tion function due to external and internal sources of noise.
Our analysis could be, of course, extended to more general
situations.

The distribution of the paper is as follows. In Sec. II
we introduce our physical system obtaining the stationary
solution and we study internal fluctuations around it.
Section III is devoted to external noise. Finally, in Sec. IV
we compare temperature correlation functions obtained
with both kinds of noise.

II. THERMAL FLUCTUATIONS
AROUND NONEQUILIBRIUM STEADY STATES

Our system consists of a thin solid rod surrounded by a
heat bath kept at constant temperature. In such a situa-
tion the temperature along the rod varies according to®

c T (x,t)
a

where c is the heat capacity per unit length of the solid,
J(x,t) is the heat flux along the rod, and Q(x,?) is the
heat flux interchanged by radiation at the surface. These
fluxes obey the following linear phenomenological laws:

d
- axJ(x,t)—Q()c,t) ) (2.1

J(x,t)= —A—Q-T(x,t) , (2.2)
dax
Q(x,t)=q[T(x,t)—Tg], (2.3)

A being the heat conductivity of the rod that, in principle,
depends on the local temperature. Equation (2.3) stands
for Newton’s law of heat interchange between the system
and a heat bath kept at a temperature Tp. Without loss
of generality this temperature can be taken to be zero in
such a way that in what follows all the temperatures will
be measured taking the bath temperature as reference.
The coefficient q is related to the surface conductance’
and depends not only on the nature of the rod and of the
surrounding medium but also on the geometry of the rod.
In this paper, for the sake of simplicity, the heat con-
ductivity A and the coefficient g will be assumed to be
constant along the temperature range to be considered.
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Inserting (2.2) and (2.3) into (2.1) one obtains

3T (x,t) T (x,t)
=a
ot ox?

where the thermal diffusivity a and the heat-transfer
coefficient B are defined by

a=>A/c,

B=q/c .

It is easily seen from Eq. (2.4) that the stationary solu-
tion depends on p=(B/a)'/2. The inverse of this quanti-
ty can be interpreted as a decay length which compares
the importance of diffusion along the rod and radiation
into the heat bath.

Obviously, the stationary solution depends on both the
geometry and the boundary conditions. In heat conduc-
tion problems, boundary conditions are related to a heat
source supplying a constant flux or maintaining a point at
a fixed temperature. In the present paper we are going to
consider a heat source located at x =0 maintaining this
point at a fixed temperature T,. Such a position of the
source allows us to consider long rods without losing the
effect of boundary conditions.

The stationary solution of (2.4) with the above-
mentioned condition is not physically acceptable since the
temperature would grow when moving away from the
source. However, this problem is avoided by obtaining
solutions in each side of the rod. Assuming that the tem-
perature of the end points is equal to that of the bath,
which will be a good approximation for long rods,® one
obtains a general solution

sinh[pu(L — |x |)]
sinh(uL)

which is not a stationary solution of (2.4). This is solved
by adding a new term to the equation satisfied by the sta-
tionary temperature

d*T,(x)

dx?
which is a common feature when a located source is
present such as, for example, in crystal growth,’ in nu-
clear reactors,!° or when a fluid is in contact with absorb-
ing walls.’

The stability of the system can be studied through the
stability of a small perturbation from the steady state. On
this perturbation one imposes the same kind of boundary
conditions as those for the stationary solutions, conclud-
ing that any perturbation, and the stationary solution as
well, is stable.

Once the stability is demonstrated, it is possible to
study fluctuations around stationary states. Internal fluc-
tuations are incorporated by adding stochastic currents JX
and QR to the linear phenomenological laws (2.2) and
(2.3) in the form

—BT(x,1), (2.4)

(2.5)

T(x)=T, (2.6)

=a —BT(x)+2uaTy[coth(uL )]6(x) , (2.7)

Tt = — T, +IR(x,0) 2.8)
dox

Q(x,0)=¢T (x,0)+Q%(x,1) . 2.9)
It is known that fluctuations of macroscopic variables

are small far from critical points. For this reason the lo-
cal temperature in Eq. (2.4) can be linearized around the
stationary temperature. Taking into account (2.8) and
(2.9) one arrives at

BT (x,1) _ 3T (x,1)

3 P> —B8T (x,t)
1aRx,0) 1.

i CQ (x,8), (2.10)

where temperature fluctuations are defined as

8T (x,t)=T(x,t)—T,(x). According to the extension of
Landau-Lifshitz fluctuating hydrodynamics,'! the sto-
chastic currents have zero mean and are not cross corre-
lated. Moreover, their autocorrelation functions are

(TR, R(x",t") Y ng=2Akp TH(x)8(x —x")8(t —1t') ,
(2.11)

(QR(x,nQR(x",t") )N =2gkp T2(x)8(x —x")8(t —1') ,
(2.12)

where kjp is the Boltzmann constant. In Egs. (2.11) and
(2.12), (--- )ng stands for nonequilibrium averages.
Henceforth, the symbol NE will be omitted.

Notice that, in principle, the temperature appearing in
the fluctuation-dissipation theorems (2.11) and (2.12) is
the absolute temperature, whereas the stationary tempera-
ture coming from Eq. (2.6) is taken in a scale whose origin
is the heat-bath temperature. This fact does not introduce
any problem since, in our temperature scale, the tempera-
ture correlation function measures how temperature fluc-
tuations around an inhomogeneous steady state differ
from fluctuations around a state which is at thermal
equilibrium with the heat bath.

By introducing Fourier transforms, as usual, Eq. (2.10)
becomes

R
8T(kw)=—-®)_ _ Gk FRw),  (2.13)
ak“+pB—iw
where FR is the total stochastic current
FR(k,w)= —c ~[ikJR(k,w)+ QR(k,w)] (2.14)

and G (k,w) is the Green function describing the propaga-
tion of fluctuations.

Notice that the Fourier integrals defined above are
applicable to a finite system when the length of the sys-
tem is much greater than a characteristic length.!! This
fact introduces a restriction in the value of wave numbers
in the sense that our expressions are not valid for small
wave numbers. However, integrals over all the values of &k
can be performed since the leading contribution to the in-
tegral containing the Green propagator introduced in
(2.13) occurs for values of k close to the pole of such a
propagator.

The temperature correlation function in k-w represen-
tation can be obtained from (2.13):

(8T (k,w)8T (k" w'))

41rv,9 2
=3 8(w +w)g — Ak Tk +K')

XG(k,w)G(k',w') , (2.15)
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T2(k) being the Fourier transform of the square of the
stationary temperature.

As stated above, the rod with a source located at the
origin permits one to take the limit L — « without losing
the effect of the source. In this case the stationary solu-

tion (2.6) becomes
T,(x)=Tge *I*I . (2.16)

|

k
(aT(x,t)z;T(x',z)>=%T}(x)&(x —x')—

[lkBT(z) +
—— [ dpp
me —w

Fourier transforming the square of (2.16), one obtains

4uT}

TXk)=———,
S 4#2+k2

(2.17)

and the equal-time temperature correlation function can
be written

) eip(x +x’)e —(p24p) 2| x —x'
2)3/2

(2.18)
(P2 +pu

The integral appearing in this last expression can be evaluated for small separation between x and x’.'? Defining

y =x —Xx', one obtains up to second order in y /x
(8T (x,t)8T (x —y,t))

k
=2 T2x)8(y)

2ukp T}
+ B+ 0
Cc me

+2u|x Ky (2u|x])

where K, and K, are modified Bessel functions of zeroth
and first order, respectively. Equation (2.19) shows the
long-range behavior and no translational invariance of
temperature fluctuations. The violation of translational
invariance is an expected result coming from the presence
of a point heat source. In general, this fact occurs for
temperature correlation functions due to any source of
noise.

III. INFLUENCE OF AN EXTERNAL
SOURCE OF NOISE

As the external heat flow is supplied by a source that
maintains the origin at temperature T,, external noise
must be related to this source. In this case, two origins of
external noise can be considered, namely, a temperature
fluctuating source and a fluctuating position of this
source.

As shown by Horsthemke and Lefever'’ the effect of
internal and external sources of noise are in general cou-
pled. This is the case when both are represented by
Ornstein-Uhlenbeck processes. However, these authors
also show that in the white-noise limit, that is, the case we
are going to analyze, this coupling disappears. As a
consequence, temperature correlation functions coming
from external noise do not contain the steady-state tem-
perature profile. Moreover, both sources of external noise
are assumed to be independent.

A. Effect of a fluctuating temperature of the source

First of all, we will compute the equal-time correlation
function when the temperature of the source is no longer

T, but may fluctuate around this value, such that
To()=To+T§() . 3.1)

The random temperature is described by means of a
Gaussian white-noise process in the form

1
1——
2

—Ko(2u | x | X(142uxy + 3u?)

—2u|x| , (2.19)

Y
P 1—
x uy

12, @ Ax]
+oHY Z#Iyle X ]

[
(T&@))=0,

(3.2)
(TRTR ()Y =280 —1) ,

where ¥ is the intensity of the noise. Bearing in mind that
the source temperature can be maintained by Joule heat-
ing of an electric device, a fluctuating temperature of the
source could be easily produced by an electric noise gen-
erator.

The effect of a time-dependent source temperature is
included in the local temperature by the generalization of
the effect of a point source as we did in Eq. (2.7). Thus
Eq. (2.4) becomes, in the case of an infinite rod,

T 3T

L oSS BT +2uaTy(18(x)

ST =5 (3.3)

in such a way that the random part of the source tempera-
ture leads to temperature fluctuations around the station-
ary state,

8T(x,N=2ua [ drGix,r)TR(t—1), (3.4)
0

where G(x,t) is the Green function which is nothing but

the Fourier transform of G(k,w) defined by (2.13),

e—Ble —x2/4at
(4mrat)’?

From (3.2) and (3.4), the equal-time temperature corre-
lation function reads

(8T (x,t)8T(x",t))

G(x,t)= (3.5

2
=iq7rZH—K0(p{2[x2+(x’)2]}”2), (3.6)

where one can see that not only the intensity of the noise
but also the inverse of the correlation length u and the
thermal diffusivity a determine the intensity of tempera-
ture fluctuations.
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B. Effect of a fluctuating position of the source

As we have considered a point source of heat kept at a
fixed temperature, we can also study the effect on correla-
tion functions of temperature fluctuations due to a ran-
dom position of the external source. As we did above, the
effect of a point source in local temperature is performed
by adding a new term in Eq. (2.4). In the present case we
consider a source whose position fluctuates in such a way
that Eq. (2.4) can be rewritten

aT _ ¥T

31 —a§—3T+2uaT08(x —e(1)),

(3.7

where €(z) is the random position of the source. Up to
linear order in the fluctuating position one arrives at

8T(x,t)=2yaTo—§; f0°° drG(x,ne(t—7),  (3.8)

where G (x,t) was defined in (3.5).

As in the previous case we assume that the random po-
sition of the source is described by a Gaussian white-noise
process with zero mean, and variance

(e(t)e(t') ) =2v8(t —1') , (3.9)

where v is the intensity of the noise. Taking into account
(3.9), the equal-time temperature correlation function
coming from the fluctuating position of the source, (3.8),
can be written

(8T (x,t)8T (x',1))
_ 8'V(Z[.l4T(2) xx'

T x2+(x')?

Ky(p{2[x>+(x")? ]},

(3.10)

which shows the long-range behavior proper of fluctua-
tions about nonequilibrium states.

IV. COMPARISON BETWEEN INTERNAL
AND EXTERNAL NOISE

Our aim in the present section is to confront the results
obtained in the previous sections. First of all, it is impor-
tant to note that the parameter u, the inverse of a charac-
teristic length of the system, which accounts for the rela-
tive importance of both effects taking place, plays a cru-
cial role in the behavior of any kind of fluctuation. It is
not only this parameter but also the thermal diffusivity a
which appear in the temperature correlation function of
both external sources of noise. It implies that also ¢ and
[ will have to be considered.

As the asymptotic behavior of Bessel functions is well
known'* there is no problem in comparing temperature
correlation functions in different limiting cases. Previous-
ly, to compare analytically the relative importance of the
different kinds of noise it was interesting to study their
behavior when one of the processes taking place (diffusion
and heat interchange) dominated over the other one.

Thus, when u—0 the rod is at thermal equilibrium
with the source and diffusion dominates over radiation.
In this case, internal fluctuations are §-correlated and
fluctuations coming from a fluctuating position vanish

since the rod is unaffected by the position of the source.
However, fluctuations due to a fluctuating intensity de-
pend on the form the limit u—0 reaches. If there is no
radiation to the heat bath, the temperature correlation
function behaves as 8(x)58(x’) since they have a located
origin. In contrast, if thermal diffusivity is very large,
then fluctuations are immediately propagated along the
rod and make the correlation function diverge.

On the other hand, if g o, the rod is at thermal
equilibrium with the heat bath and, since this is the con-
tribution we have eliminated, internal fluctuations vanish.
Although external fluctuations vanish as well, they do it
because the effect of a fluctuating point source is rapidly
lost.

In order to simplify the comparison, we are going to
consider that both points whose correlation we study are
very close but are not the same, to avoid divergencies in
the internal fluctuations [cf. Eq. (2.19)]. Moreover, the
respective intensities of the external noises are not con-
sidered since they are particular properties of a kind of
noise and not of the system itself. This is also what has
been plotted in Figs. 13, i.e.,, correlation functions in an
arbitrary scale on which we must only take into account
the relative speed of either growing or decaying.

If both points are very close, the limits which have to
be investigated will be the case in which they are near the
origin compared with the characteristic length of the sys-
tem p~! and the opposite case where their distance to the
origin is large enough confronted with u~!. But, as stated
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FIG. 1. Absolute value of correlation function of internal
temperature fluctuations, with x ~x’ but not strictly equal, vs
the logarithm of the position (both in arbitrary units). The
peaks are due to the fact that at long distance the correlation
function is positive whereas at short distance it is negative, and
in the intermediate region, temperature correlation function is
small. The different curves correspond to correlation lengths:
a, p= 10% b, p=1l;and ¢, u= 10—3.
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FIG. 2. Equal-position temperature correlation function due
to a fluctuating temperature of the source with the following
values of the parameters: a, p=10°, a=10"% b, u=10%
a=1;¢c,u=1, a=1;d, p=10"3, a=1; and e pu=10"3
a=10°

above, the asymptotic behavior will also depend on both
the thermal diffusivity a and the transfer coefficient B.

The internal noise is found to be the largest one in two
cases. The first case is when the decay length p~! tends
to infinity due to a zero transfer coefficient, provided that
the distance to the origin is not too short. This is due to
the fact that the strength of external fluctuations is appre-
ciably reduced, as we note in curves ¢ in Figs. 2 and 3.
The other event in which the internal noise dominates is,
obviously, when the distance to the origin is large, since
internal fluctuations do not have a located source as exter-
nal fluctuations do (compare the way in which the curves
in Figs. 1—3 decay at long distances).

About the fluctuating intensity of the source, it only
dominates when the thermal diffusivity is very large, so
that any temperature fluctuation propagates quickly along
the rod.

Finally, the fluctuating position of the source is the
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FIG. 3. Same as in Fig. 2 for the equal-position temperature
correlation function due to a fluctuating position of the source.

dominant source of noise at short distances (observe in
Fig. 3 the growing for small x ) because these positions are
easily reached by the fluctuating source. It also dom-
inates when the decay length u~! is small whenever the
distance is not too large. At this state one must distin-
guish between the case where any fluctuation escapes im-
mediately to the bath (8— « ) and the case where there is
no diffusion along the rod (a—0), although in both cases
the dominant noise is the fluctuating position, the internal
noise begins to be comparable at a shorter distance in the
a—0 case than in the B— « case. This is due to the fact
that with immediate radiation, fluctuations decay rapidly,
but if there is no diffusion, this decay is even faster.
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