
PHYSICAL REVIE& A VOLUME 34, NUMBER 6 DECEMBER 1986
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The spectrum-generating algebra for the problem of a particle in a potential well is shown to be
su(1, 1). Both the infinitely deep and flite square wells are considered. The generators can also be
derived via a systematic procedure for determining the time-dependent constants of the motion. The
coherent states are explicitly constructed.

I. INTRODUCTION [J3 E]=[J+E]=0 (2.3)

This paper provides an algebraic approach to the cele-
brated quantum-mechanical problem of a particle in a
box. There are two primary reasons for such a formula-
tion. The first is that the potential and therefore the spec-
trum are quite anharmonic. Hence simpler algebraic tech-
mques where the Hamiltonian is one of the group genera-
tors, which lead to, at best, a q~!asiharmonic spectrum, 'z
will just not work for this potential. Systematic methods
are, in principle, available for handling anharmonic sys-
tems. z Also, model algebraic Hamiltonians which are
bihnear in the generators have recently been extensively
employed in both nuclear' and molecular physics. It is
therefore of interest to see whether these techniques will
work for this benchmark problem. The second reason for
our interest was the way most books solve the problem of
the potential well. The procedures employed bear little re-
lation to what will be done for other bound-state prob-
lems. Rather they have a distinct scattering theoretic fla-
vor. Indeed, textbooks will often7 use the discussion of
the potential well as an introduction to the elementary
techniques and concepts of scattering. We too propose to
follow such a route but in its algebraic version. In this
paper, however, we center attention on the bound spec-
trum. There is also a secondary reason for the present
discussion. The problem is so elementary and serves as a
simple model for such a hcnit of phenomena that even for
the sake of completeness one must not fail to provide an
algebraic formulation.

II. THE GENERATORS

In a one-dimensional problem (say, the x coordinate),
we expect a convenient realization of the relevant group in
1 + 1 variables. For the present application, x and the
auxiliary coordinate (say, y) can be taken real. If one al-
lows them to be complex then one needs to consider the
four-parameter Lie groups {or three if the group is to be
unitary ). A convenient realization of such groups in two
variables is as follows: Let the four generators satisfy the
commutation relations

where a and b are complex numbers. Typically we shall
be concerned with particular values of a and b. To realize
the four generators as differential operators we use the an-
satz

Ji ———i B/By, (2.4)

J+ =exp(+ly) +kp(x) ik)(x—) +j(x)
Bx By

E=pI,

(2.5)

(2.6)

where I is the identity operator and p, is a complex num-
ber. The three functions of x in (2.5) [ko(x), ki(x), and
j(x)], are to be det~xmined by the condition that the four
commutation relations (2.1)—(2.3) are satisfied. It is only
(2.1) that wOI not hold in general unless the three func-
tions of x are related by (where the prime denotes a
derivative with respect to x)

k i(x) —ko(x)k &(x)=a 2, (2.7)

ko(x)j (x)—k
&
(x)j(x)= —b /2 . (2.8)

We shall be particularly concerned with the b =0 case
when the choice j(x)—=0 is possible.

For future reference we also define the operator, bilin-
ear in the generators

C=J~J +a J3(Jp —1)—bJ3E

=J J++a Ji(J3+1)—bJ3E —bE, (2.9)

III. THE INFINITELY DEEP %'ELL

For a particle of mass rn in an infinitely deep well be-
tween 0 and a, the Schrodinger equation in scaled distance
and energy units is

dgldx =EP.— (3.1)

which commutes with every generator. It is often referred
to as the Casimir invariant.

[J+,J ]=—2a J3 bE, —

[J3,J+ ]=+J+,

(2.1)

(2.2)

Here energy is measured in units of e=(M/a) /2m and
the distance by (a/n ) so that the range of the well in x is

[O,a"]. The eigenfunctions satisfying the boundary condi-
tions P(0)= f(m') =0 are
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g„=(2/ir)'/~sin(nx), E„=n2 .

As a basis for the action of the generators we take

f„(x,y) =P„(x)exp(iny } .

The spectrum generating operators which shift n

T+f„(x,y) =nf„+i (x,y)

(3.2)

(3.3)

{3.4)

while maintaining the boundary conditions on the eigen-
functions are, from (3.2) and (3.3),

of the harmonic oscillator. Note that a is (like T+) a
raising operator and a (like T ) is a lowering operator.
This analogy obtains also for other anharmonic poten-
t1818.

In (3.5) and (3.6) we have provided a coordinate realiza-
tion of the generators. An operator (Schwinger") repre-
sentation is introduced in terins of two (i =1,2) boson
creation (a; ) and annihilation (a; ) operators which are in-

dependent

[a;,a;]=5i . (3.17)

T+ ——exp(+iy) —i (coax) +(sinx)
By Bx

(3.5) In terms of the column vector a whose components are a,
and a2, we have

and [cf. (2.4)] T+= I 0'+I, „
l

2
(3.18)

T3= —l (3.6)

so that the commutation relations (2.1)—(2.3) have the
special form

[T+,T ]=—2T3,

[T»T+]=+T+
i.e., that of the generators of SU(1,1).

The generator T3 serves as the number operator

T3f„(x,y )=nf„(x,y) .

(3.7)

(3.8)

(39)

The algebraic Hamiltonian is thus bilinear in the genera-
tors, i.e., H =—T3. It might appear that this identification
is not unique in that the two relations

T+ T f„(x,y) =n (n —1)f„(x,y),
T T+f„(x,y) =n (n + l)f„(x,y),

(3.10)

enable us to propose another bihnear operator whose spec-
trum is also n~,

—,
'

I T+,T If„(x,y) =n f„(x,y) . (3.11)

Here the curly brackets denote the snticommutator,
IA,SI =AB+BA. The difference is, however, only ap-
parent. The {bilinear} operator that commutes with all
three generators [i.e., the Casimir invariant of SU(1,1)] is,
cf. (2.9),

C=T T+ —T3(T3+1)

T3 = I 0'3a,1

2
(3.19}

where the er's are the Pauli spin matrices with
tr+ =(cri+i crt ), or

2 0
0 ' 2

0 1

0 ' 3 0 (3.20)

[n (H) —n]P„(x)=0 .

Hence f(y)

Q =Dg{y ) =P„(x)exp(iny)

satisfies

(4.1)

(4.2)

so that [n+,cr ]=4u3, [a3,cr+] =+2tr+.

IV. TIME EVOLUTION

It is correct to think of the variable y in the basis states

f„(x,y) =g„(x)exp(iny)

as "time." Seemingly that is not acceptable since the solu-
tions P(t) of the time-dependent Schrodinger equation
have the phase factor exp( iE„t/fi) so—that the dimen-
sionless time is ys/fi with the phase factor exp( in y). —
However, as discussed in detail in the Appendix we can
subject the Schrodinger equation to a time dilation
transformation ' P=Df using an operator n, which is a
function of the Hamiltonian, whose spectrum is linear,

=T+ T —T3(Ti —1}. (3.12) —iBQ/By =nP (4.3)

The representation is determined by the eigenvalue of the
Casimir operator which is zero for our basis. Hence
equivalent forms for the Hamiltoman are

or

[H —E(n(i B/By) )]y(y) =0 .

H = —,
'

( T T+ +T+ T )

=T~ T + ,' [T,T+]— (3.13)

(3.14)

(3.15)

In the present problem (cf. the Appendix) (4.3) is
equivalent to

(4.5)

Note the formal similarity of (3.14) to the algebraic Ham-
iltonian

with the solution

g(y) =g„(x)exp(iny) —=f„(x,y) . (4.6)

H =ata+ —,
' [a,a~] (3.16) The equivalence between the eigenfunction g(y) of the
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dilated equation (4.5} and the basis states f„(x,y) is not
accidental. Indeed, the systematic algebraic procedure
for obtaining the generators is to determine first the gen-
erators for (4.5) and then subject them to a similarity
transformation by D. The details are provided in an ap-
peiidlx.

Coherent states' for the infinite square well can be ob-
tained from the ground state by the action of a group ele-
ment which acts as a displacement-type operator. For our
purpose it is enough to "rotate" by the action of T2,
where'~

T)
exp(i HT2) T exp( i HT—2)

. 3

coshH —sinh8
—siWH c~h8 T,

(2/n )' exp(iny)sin(nx), n even

(2/m )'~ exp(iny)cos(nx), n odd
„(x,y)= '

P+f„(x,y)=+n( —1)"f„+i(x,y) .

(5.3)

(5.4)

[P3, T+ ]=P+,
where

(5.5)

Note that P+ changes an even basis function into an odd
one and uice uersa. The +( —1)" in (5.4) which is absent
in (3.9) is just the phase change of f„(x,y) when x is shift-
ed by n/2.

In the algebraic approach, the generator of a shift in x
is 8/Bx. Hence the transformation to the symmetric
problem can also be carried out by computing [8/Bx, T+ ]
when we find

Noir

U=—exp(iHTi) =exp[ —8(T+ —T ) l2]

Pi ———8/Bx .

Similarly
(4.&)

[P3 P+]=—T+

(5.6)

(5.7)

[ T3.P+]= —P+ ~ (5.8)
with (=tanh(8/2). Since T fi

——0, the operation by the
first exponential in (4.9) on the ground state is equivalent
to just the identity operator. The second exponential is di-
agonal. Hence, with 1 —

~

g'
~
2=cosh(8/2),

The symmetric well problem can also be used to take
the a ~ 00 limit when the particle is free. For the dilated
equation (4.5), the physical distance X (=ax a:x/s} and
the physical time T, (Z =y/s) scale with 1/e where s~0
in the a~00 limit. [See also (6.5} below. ] Writing (3.5)
in the physical variables and retaining only terms to
lowest order in c we have

Uf i ——cosh(8/2)exp( —gT+ )f&

=cosh(Hl2) g Pf„+&, (4.10}

or, in normal order
and

U=exp( gT—+ )exp[in(1 —
i g i )T3]exp(gT ), (4.9)

where we used T+f, =nf„+i. The coherent states are
normalized but different states (i.e., different values of 8
or equivalently of g') are not orthogonal. They are hnear
combinations of eigenstates P„(x) with the coefficient

[g exp(iy)]".
Note that the coherent states are "coherent" in their

evolution for the dilated equation (4.5}. States which
remain coherent for the Schrodinger time evolution re-

quire an additional transformation by D ', cf. (4.2).

V. THE SYMMETRIC O'ELL

(5.9)

( T++ T )l2i +X -—Z (5.10)

1 8
ET3=

s 8Z
(5.11)

The three operators (5.9)—(5.11) close an algebra and are
the generators of the Euclidean group appropriate for
free motion. Note that (5.9} commutes with (5.11) while
if L =X&/BZ —ZB/BX, then

Another version is an infinitely deep well where the po-
tential is symmetric upon reflection V( —x)= V(x), and
the well extends from —a /2 to a/2. That is just our pre-
vious problem but with the (reduced) distance shifted by
m/2. Seemingly, there is no problem. Starting with (3.5),
the new generators are

L 1 a'. aX
1 8
s BZ

1 8 1 8'. az =. aX

(5.12)

(5.13)

P+ ——exp(+iy } —i (sinx} + (cosx }
Bp Bx

with the commutation relation between them

(5.1) so that L need not have an e dependence.

VI. THE FINITE SQUARE WELL

[P+,P ]= —2T3

being unchanged by the shift of the x coordinate.
Shifting the argument x of the basis f„(x,y} by m/2

shows that the functions split into two sets according to
whether n is even or odd,

For a particle in a well of a finite depth, the energy lev-
els are the solution of a transcendental equation. We re-
cover this result by imposing the condition that
T+f„(x,y) be subject to the same boundary conditions as
the basis functions themselves, namely, continuity at the
two well boundaries at +a/2. In a sequel paper dealing
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with the continuous spectrum we shall obtain these levels

as the poles of the scattering matrix on the negative real

energy axis.
Using scaled coordinates and time as before, we have

for a well of depth Vo over the range [—a/2, a/2] that

Bf,(x,y)/Bx+ikf„(x, y) =0, x =+n/2 (6.13)

where k =E/s .Using (6.13) to evaluate the action of
T+ on fk at the boundary and the condition

a. =[E—V(x)]/s

(6.1)

(6.2)

yields as the condition
T

ik/~, even statestansy 2 = —lk /K, odd states, (6.15)

and —Vo ~E gO,

(6.3}

T+ 5'e——xp(+i Sy) i (co—s5x ) +(sin5x)
By Bx

(6.5}

—Vo, ix i
(m'/2

V(x) =
0, otherwise.

Let f„(x,y) =g(x)exp(i') be a basis vector. The
Schrodinger equation can be written in the form

B2f B2f
(6.&)

Bx By

and f„ is parametrized by the wave vector n. The shift
operators will change s, say, by 5. Now T+f„are also to
be solutions of (5.4). This condition plus the requirement
that T+ be a first-order differential operator leads to

which is the familiar transcendental equation for a. The
number of bound states is finite and equals N when
(N —1}n/2((VO/e)'/ (N~/2. If Vo&&e, 5 increases
by almost two between successive eigenstates of the same
symmetry. Since the even and odd levels interlace, the in-
finitely deep well limit is recovered as Vo~a& (except
that due to the shift in the origin of the energy axis, we
now have E+ Vo ——n e).

It is imporhmt to emphasize the essential difference be-
tween {3.5) and (6.5). For a particle in a fimte well, the
bound states are finite in number and do not therefore be-

long to one irreducible representation of SU(1,1). Indeed,
in (6.5) the value of 5 is different for different bound
states. [Ro:all that 5 is the change in the wave vector be-
tween one bound state and the next. It is only for the in-
fimtely deep well that 5=1. Otherwise it is to be deter-
mined using (6.15).] To get a set of states that do belong
to one representation one will need to consider the so-
called "potential" group. This is the group whose genera-
tors connect states of the same quantum number but in
wells of different depths.

[T,T ]=(2i/5)B/By =— 2T— (6 6)
VH. CONCLUDING REMARKS

With the choice (6.6) for T3, [T3 —— (i /5)B/—By], we have
recovered the SU(1,1) generators since

[T3,T+]=+T+ . (6.7)

r+ ——+y exp(+yy) +cosh(yx) +sinh(yx)—1 B

By x

However, so far, 5 is arbitrary. If x is in the classically
forbidden region then a is purely imaginary and so is 5. If
one prefers a real parameter, the substitution 5=iy in the
generators above leads to

The quantum-mechanical problem of a particle in an
infinite well was shown to admit raising and lowering
operators which do not depend on the quantum number.
In this it is similar to other anharmonic problems where
the energy levels are analytic functions of the quantum
numbers. Such problems are said to possess a "dynamical
symmetry" in that the Hamiltonian can be written in
terms of Casimir invariants of a chain of subgroups. '

Here the chain is particularly simple

U(l, l)DU(1) .

r3= —y-'B/By .

The commutation relations are unchanged

[r,,r ]= 2r3, —

[T3,7 +]= + T+ ~

(6.8)

(6.9)

(6.10}

(6.11)

In addition, however, rather than starting with an algebra-
ic Hamiltonian and seeking its geometrical interpretation,
the present problem is simple enough that one can start
with the coordinate representation of the Hamiltonian and
proceed, in a systematic fashion, to determine the corre-
sponding algebra.

The basis vectors are again given by even and odd states
T

(2/'Ir)exp(EKy)sin(Kx )

{2/m )exp(i ay )cos(ax) . (6.12)

In the classically forbidden region, V(x) =0, the bound-
ary conditions are
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APPENDIX: CONSTANTS OF THE MOTION
SY A SYSTEMATIC PROCEDURE D=exp ln n{H), a

g(n {H)) Bt
(A9)

The operators that commute with the Hamiltonian
when acting on an eigenstate generate states degenerate
with it. To generate the entire spectrum one requires
time-dependent constants of the motion. ' Such a gen-
erator Q, when acting on a solution g of the time-
depemdent Schrodinger equation,

X(n(H)) . a

n(H) By
(A 10)

where A,(n)=E„ is the dependence af the energy on the
quantum number with A(n}, =n in the present case.
Under this transformation, (A 1) is transformed into

(ia/at —H)|t =0

yields a solution of that equation

(ia/Bt —H)go=0 .

(A 1)
We now seek a stationary solution of (Alo), i.e., one
where f(x, t)=g„(x)exp(iny). On these solutions we can
write

The fact that Q is a constant af the motion follows upon
taking the scalar product of (A2) with any solution f' of
(Al).

id&4'IQ lf&/«= —&O'IHQ lf&

n{H) i—
so that (Alo} can be written as

(A11)

(A3)

While both g and g' depend on time„so does Q with the
net result that & P'

l Q l f& is time independent. If Q does
not depend on time, (A3) reads

B B
2 + P„(x}exp(iny) =0 .

Bx By

The generator Q is then the solution of

(A12)

for any P', showing that Qg is degenerate with P.
A formal construction of Q, even if time dependent, is

immediate. Take X to be Q at time t =0. Then

Q =exp( iHt/A)X —exp(iHt/A) (A5}

D (i Blat —H)D 'f =0, (A6)

where P=Df and the generator Q of the dilated problem
is the solution of

D (ia/Bt —H)D 'Qg =0 .

will satisfy (A3). In other words, Q is Xtt( t), where-
Xtt(t) is the Heisenberg picture operator. If the Hamil-
tonian is linear in the generators of some Lie graup and X
is a generator, then implementing (A5) is straightforward
The outer automorphism of Lie groupss ensures that Q is
but a linear combination of generators. Unfortunately,
and as in the present problem, anharinonic systems are
much better suited to an algebraic description by Hamil-
tonians which are 6ilinear in the generators.

In the systematic procedure, 2 the Schrodinger equa-
tion (Al) is first subjected to a dilation transformatian

a' a'
+ Qf„(x,y) =0 .

Bx By
(A13)

To solve (A13) we take as an ansatz that Q is a first-
order differential operator

B y B
Q =q" +q" +q

Bx By
(A14)

0 0f: qxx —
qyy =0

~

fx: 2qx+qxx —qyy=O ~

where the three functions q", qy, and qo are analytic func-
tions of x and y to be determined by the condition that
(A13) is satisfied.

Substituting (A14) in (A13} and siiice so far f„(x,y) is
undetermined we require that the coefficients multiplying
f„(x,y) or any one of its derivatives up to second order"
vanish independently. This provides the following set of
equations, where on the left we indicate the function
whose coefficient is being set equal to zero,

The required generator Q can then be determined from

g=D-'gD .

y 0 yfy. q —2qy —q~y=0,

f„y.. 2q„"—2qy' ——0,f: 2q„—2qyy ——0.

(A15)

Such a Q will then satisfy (A2). We shall find, however,
that Q is all that we require.

Let f„(x)exp( in y) be—a solution of (Al) for the
square-well problem. As in the text, x is the reduced dis-
tance and y is the reduced time variable y =et/4 Using
thc diltlon operator

The subscripts denote a partial derivative with respect to
the indicated variable.

There will be six integration constants required to speci-
fy the solution of (A15) which we denote by A+, A

8+, 8, C, and D. In terms of these
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q»= i—A+ (cosx)e'" i—A (coax)e

+iB+(sinx)e'» i—B (sinx)e '" i—C,
q"=A+(»nx)e'~ —A {sinx)e

+B+(cosx)e'»+B (cosx)e '»+D, (A16)

The coefficient of A+ will be recognized as T+ as de-

fined in (3.5). Similarly, A yields T, and B+ and B
yield P+ as defined in (4.1). Ts and Ps are the terms cor-
responding to C and D, respectively. Our six generators
correspond to the six independent integration constants of
(A15). Note also that in solving (A15) we have taken care
to ensure that Qf will satisfy the required boundary con-

ditions. Had me not, we couid have obtained other solu-
tions, e.g. , those for a free particle, which were previously
derived by Wulfman et al. , ' but without the dilation
operation which was used here.

It also follows from (AS) that

&@'
I Q I 0& = &0'

I Q I 0&,

where, as before P=Dg. Since any function of a constant
of motion is a constant of motion (and [H,Q] and [Q', Q]
as well) we have generated a large number of functionally
dependent constants of the motion. Of the six we started
with, T3 and P3 have an obvious geometrical significance.
Not intuitive is the origin of the shift operators. Indeed
they do not commute with H —E(n(iB july)). It is only
when they act on f„(x,y) that {A13)is satisfied.
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isSeemingly, f has three independent second derivatives f, f„»,

and f»». But Q is to operate on solutions of (A12) which im-

plies f~ = f . Hence f„» is—linearly dependent on f (or
vice versa) and only the coefficients of two second-order
derivatives can be independently put equal to zero. By taking
partial derivatives of (A12) one can generate relations between
higher-order derivatives. These are not required here but
would restrict the number of independent functions had we

allowed a more general form for Q, e.g., that of a differential
operator up to second order.


