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Evaluation of first- and second-order nonadiabatic coupling elements
from large multiconfigurational self-consistent-field wave functions
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An efficient method is proposed for evaluating first- and second-order nonadiabatic matrix ele-
ments of the form (gi(q;Q} ~ 5'(q;Q)/5Q) and (t(;(q;Q)

~
5ip;(q;Q)f5Qi), where Pi(q;Q} and

Pt(q;Q) denote multiconfigurational self-consistent-field electron wave functions. The method is
based on a finite-difference procedure and requires the numerical computation of symmetric over-
laps of the type ( tP;(q, Qo —x)

~ g, (q, Qo+x) ). It gives an accuracy which is quadratic in the nuclear
displacement x for both the first- and second-order nonadiabatic coupling constants. The wave
functions are separately optimized for each state and obtained through the direct second-order
MCSCF method. The biorthogonal scheme of Malmquist is implemented that expresses g;(q;Q)
and gt(q:Q) in an orthogona1 common basis. The method is apphed for the calculation of the nona-
diabatic coupling elements and the Born-Oppenheimer corrections to the two lowest X+ states of
Wax.i+, relevant for analyzing the asymmetric charge exchange in the ion-atom collision
Na+ Li+ ~Na++ I.i.

I. INTRODUCTION

The Born-Oppenheimer (BO) approximation is one of
the concepts in quantum chemistry that remains as funda-
mental as its breakdown. The description of electronically
nonadiabatic processes has become a challenging subject
for theoreticians and experimentalists. Unimolecular de-
cay, ' 3 charge-transfer phenomena, " ' ion-atom col-
lisions, " quenching phenomena, and radiationless transi-
tions represent just a few examples where Born-
Oppenheimer-based analyses become inadequate. In
charge-transfer processes the occurrence of "surface hop-
ping" between adiabatic states' ' is directly related to the
transition probabilities among the outcoming channels for
the electron distribution in the products. In molecular
spectroscopy the breakdown of the BO approximation is
manifested in various vibronic couphng phenomena, such
as symmetry breaking and intensity borrowing. '"'

A great deal of effort has been devoted to the formal
representation of nonadiabatic electronic bases, ' ' and a
variety of "diabatic" molecular representations have been
proposed, most of them starting out from electronic eigen-
states. Nonadiabatic corrections have been analyzed at
different levels of sophistication' ' and several models
have betm proposed where the interaction is assumed to be
dominant near the curve-crossing (or avoided-crossing) re-
gion and gradually vanishing in the asymptotic limit.
The relevant nonadiabatic coupling constants have mostly
been obtained semiclassically, by means of the Landau-
Zener approximation, while quantum mechanically it is
rather recently that attempts have been made with ab ini-
tio approaches to obtain such constants. This is linked to
the requirements for accurate wave functions over a larger
region of nuclear conformations, especially for charge-

transfer states at avoided crossings where the states are
close lying in energy, giving rise to root-flipping prob-
lems, and where they drastically change character over
small nuclear displacements.

Previous ab initio methods were based on numerical dif-
ferentiation of configuration-interaction (CI), or on mul-
ticonfiguration self-consistent-field (MCSCF) wave func-
tions with state-averaged orbitals. These approaches are
based on an asymmetric displacement of the nuclear coor-
dinates, which gives a first-order coupling constant that is
correct to first order in this displacement. Other ap-
proaches have been based on the Hellmann-Feynman
theorem, which, however, is valid only for exact wave
functions. Re:ently, Lengsfleld et al. derived an analyt-
ical method for obtaining first- and second-order coupling
constants from a state-averaged set of MCSCF orbitals.
This method contains intrinsically the same technique to
solve the coupled perturbed MCSCF equations for the nu-
clear differentiation as is used in current codes for analyti-
cal energy gradient calculations.

An analytical approach to the nonadiabatic coupling
constants, such as the one of Lengsfield et al. , has great
merits when there are many degrees of freedom for the
nuclear motion. The potential and accuracy of numerical
differentiation using the MCSCF wave functions has,
however, not been exploited hitherto. With the possibility
to apply second-order and step-restricted MCSCF wave
functions the numerical differentiation revives, since op-
timization to the correct electronic state (correct Hessian
index) can now be fully controlled which eliminates the
root-flipping problem, and sharp convergence can be
achieved for small differential steps. With the present
method we also obtain the additional advantages of using
separate state-optimized orbitals and of getting both first-
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where q and Q denote the two sets of electronic and nu-
clear coordinates and X and g denote the nuclear and the
BO electronic wave functions, where the latter depend
pars)metrically on Q. We consider the internal Hainiltoni-
an for a diatomic molecule, separated from the traIIsla-
tional center-of-mass motion, given as'

H=TN+H, ),
T~ ———( —,

' M)Vg,

(2)

where TN denotes the nuclear kinetic energy and M is the
reduced mass of the system. H, ~ is the electronic Hamil-
tonian.

Using the relations

&4 I Hei I fg&=b)J Vi(Q» (4)

we evaluate the internal Hamiltonian matrix elements re-
sulting from the time-indeliendent Schrodinger equation,
integrated over the electronic coordinates,

$ I5J[—(1/2M)Vg —E+ V~(Q)]
l

and second-order coupling elements at the same computa-
tional expense. In Sec. II we outline our method which
gives first- and second-order nonadiabatic coupling ele-

ments that are correct to second order in the nuclear dis-
placement. In Sec. II we describe a numerical application
for the NaLi+ system, and in Sec. IV we discuss the nu-

merical results and the merits of the proposed method.

II. METHOD

The method outlined in the present paragraph applies
to a physical situation for which the Born-Oppenheimer
(BO) separability of nuclear and electronic motion breaks
down. Let us consider a total molecular wave function
written as

P(q, Q) = +XI(Q)(t;(q;Q),

P

X(Q)=a;(z)exp i I k;(z')dq' (12)

Our goal is to perform an efficient and reliable calcula-
tion of the two crucial quantities in this expression,

N'&"(Q, )=Id)(q;Q) ' (q;())
Q =Qo

k(P(gq)=(dq(q;Q) I (q;())
5Q' a=a.

which constitute the first- and second-order radial cou-
pling constants. For i+j these quantities represent the
nomidiabatic coupling between the BO electronic eigen-
states i and j at a given nuclear coordinate Qo. For i =j
the second-order constant reprer)ents the BO correction to
the eigenstate i W. e obtain It); and 1tj as MCSCF wave
functions which account for the contributions to the
nonadiabatic coupling constants from many-electron in-
teractions.

Equations (9) and (10) play a fundamental role in ion-
atom collision problems and scattering models in general.
The description of charge-transfer processes is essentially
based upon the various induced transitions that can occur
during the electron reariangement. In the impact-
parameter approach, for example, where the electrons are
described quantum mechanically and the nuclei are as-
sumed to follow classical orbits (Bates and Williams, Ref.
27), perturbation theory is applied to determine the proba-
bility that a transition from one electronic state to another
occurs. In this model the nuclear wave function is of
semiclassical type and the trajectory of the incident ion
follows a straight line, which is a reasonable assumption
for large colhsion energies (& 100 CV). It is common to
assume that in this regime the change in electronic energy
is small in comparison with the collision energy, e.g.,

E» V(Q) —V;(oo) (11)

The nuclear wave function can then be written as

where

+J,g/M (I,J/M)Vg —IX (Q)=0, where z +b =Q and b is the impact parameter. k;
denotes the momentum of the incoming atom in terms of
the ith molecular electronic state,

k; =2M [E—Vq(Q)]'i

Substitution of Eq. (12) into Eq. (6) leads to

d a;/dz +2ik;da;/dz [(iM/k;)(d—V~/dz)+2J;;]a;= g [2J;-a.—21;.k a. 21'; ( d—a /d)]zex.[pi(df; —&.)],
j (&i)

(14)

where

AJ.(z) = f k;(z')dz' . (15)

Formula (14) coincides with the set of coupled equa-
tions derived by Melius and Goddard [Eq. (8) in Ref. &]
when Ilcglcctllig tcrlns of order 1!McoIIlpafcd to 1/III
and assuming that EI E~-Mu (u is a constan——t velocity
given in terms of the colhsion energy), e.g.,

da, (z)/dz = —y r,,(z)a, (z)exp[ —I~„(z)],
J

(16)

co,j.(z) =(1/u) f ( V~
—V;)dz',

The solution of the coupled system appearing in expres-
sion (14) yields the transition probabihties from state i to
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state j for a given impact parameter or, more specifically,

I
a; I

measures the probability of remaimng in the ith
electronic state. The integration of ail probabilities at a
given channel for all impact parameters considered pro-
vides the cross section for electron transfer. It is clear
from these equations that the driving force for inducing
transitions amongst the various molecular states is given
by the first-order [I1;(z)] and second-order [JJ;(z)] cou-
plings, the calculation of which is the object of the present
study. The calculations concern the numerical nuclear
differentiation of accurate MCSCF wave functions that
account for orbital state specific correlation and relaxa-
tion effects. Accordingly, the present nonadiabatic
corrections represent a significant improvement over
methods that resort to approximate molecular states with
state averaged or frozen orbitals, or with pseudopotential
approxiIDations.

The MCSCF wave functions are separately optimized
for each state and parametrized as

be evaluated. In the following we restrict ourselves to one
nuclear dimension; the two-atomic internuclear distance,
the generalization to the many-dimensional case is
straightforward. Using the orthogonality condition be-
tvreen BG states,

&A(q Qo} I |(j(q'Q ) & =6j
one finds by direct differentiation

&g Iy, &+&y, Iy;&=o

(22)

(23)

&4' I fj&+&4 I 0 &+2&4 I 0; &=0. (24)

Here we have dropped the variable specification (q;Q()}
for brevity and used primes and double primes to denote
wave functions differentiated with respect to the nuclear
coordinates Q one and two times, respectively. From Eq.
(23) follows

f(q;Q)=exp —g a;,(E~—E ) g c; I 8;&, (18)
j())'j (Q())= —j()t- (Q())

(1) (1)

and consequently

j(ji(,"(Qo)=0 .

(25)

(26)

denote the configuration-state functions (CSF's) which are
projected for a least hnear combination of symmetry- and
spin-adapted determinants of molecular orbitals (MO's}.
The MO's are expanded in linear combinations of atomic
functions centered at Q:

q;(q;Q}= gdi4(q;Q)
k

(20)

The configuration-state amplitudes c; and orbital rotation
parameters )( are optimized by the minimization of the en-

ergy functional involving the Born-Oppenheimer nonrela-
tivistic Hamiltoman.

In the numerical differentiation pr(xedure for obtaining
&'J"(Qo}and N'J '(Qo) we employ the matrix elements

E;;(Qo, )=&/;(q;Q —)Igj(q;Qo+ )&.

This matrix element is thus symmetrically expanded
around the point for the coupling. The use of such ele-
ments for the calculation of nonadiabatic coupling con-
stants has been suggested by Halkjaer and I.inderberg.
For a two-state problem there are several such elements to

where E,„=g a,~„~are the orthogonal unitary genera-
tors for orbital rotation and

N

Ie;&=a g a„ Ivac&

For the second derivatives we define the symmetric com-
bination

j(j~(~2S)(g )
) [~~(j2)(g ) +~j(2)(g

=-,'(&4
I
1(j'&+ &O'

I 4, &}= &414j &-,

where Eq. (24) has been used to reach the last equality,
and the antisymmetric combination

N~(~2A)(g )
) [N~(jz)(g ) ~~(2)(g )]

= —,'(&lt;
I itj'& —&y'

I
1(ij&)= " (g()), (2g)i 1 dg

where again Eq. (24} has been used. For a two-state prob-
lem the different non-Born-Oppenheimer elements are
thus N"' N' ' N' ' and either N' ' N' ' or N' ' E' "'

12 11 22 ~ ei er 12 21 o 12 12

In order to abtain the nonadiabatic coupling constants we
Taylor-expand the wave functions aver the nuclear dis-
placement

0 (Qo+»=A(go)+x0'(Qo)+ z x'0"(Qo)+ ' ' '

(29)

If one inserts this expression in Eq. (21) for each displace-
ment, one obtains the E overlap

«j(go x) = & A(q;Qo —x}
I fj(q Qo+x}& =6g+x [&A(go) I kj(go) &

—
& K(go) I ()'j(go) & 1

+ ~ x'[& A"(Qo} I Pj(go}&+ &A(go} I 4j'(Qo} &
—2& 4'(Qo)

I fj(go) &]+

Making a similar expansion for EJ;.(Qo,x}and combining
the E,z and EJ;. elements one finds after some straightfor-
ward algebra

E;,(Qo,x)+EJ;(Qo,x)=25j —4x'Ã, '; )(Qo)+0(x~) (31)

E;.(Qo,x)—E;.(Q(),x)= —2xN("'(Q())+O(xi), (32)

which leads to the first order and the symmetric second-
order coupling elements
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(33)N~',"(Qo )=( —,
' x)[K~I(Qo,x)—Kp(Qo, x)]—0 (x I),

Ns~j~ (Qo) =( 4x )[Kgj(Qo,x)+Kjg(Qo, x)
—25ij]—O(x ) .

To calculate N'I"(Qo) and N J '(Qo) with quadratic accu-
racy in the displacement x, we thus need to obtain con-
verged solutions for the g;(q, Qo —x), |{g;(q,Qo+x),

pj(g, Qo —x), and Itgj(q, Qo+x) wave functions. However,¹~"'(Qo) (and thus the separate Nj '(Qo) and NJ; '(Qo)
elements) cannot be obtained from the two geometries
Qo —x and Qo+x, we also need converged solutions for
the f;(q,Qo) in the midpoint Qo, requiring a total of five
wave functions. With Itg, (q, Qo) we can also obtain Nj "'
to quadratic accuracy because we can find N,J

' to the
same accuracy. To see this we use Eq. (29) twice to get

& 1{;(Qo)
~

Itj(Qo+x) & -K„(Qo+x/2, x/2)

=5IJ+x&y; (y; &+(x'/2)&y,
~ y &+(x'/6}&1{,

~ y,""'&+(x'/24}&y,
I y,""'&+ .

&g;(Qo)
~ g (Qo —x) & =Kj(Qo —x/2, —x/2)

=K J(Q o—x/2, x/2)

=5;,—x&P;
~ Itj &+(x'/2)&Itj

~
l{~j &

—(x'/6)&P;
~
Itj"'&+(x'/24)&P;

~

Pj""'&

(34R)

{34b)

and add these two overlap elements

K,,(Qo+x/2, x/2}+Kj, (Qo —x/2, x/2)

=25;I+x ¹J'(Qo)+O(x ) . (35)

Thus,

Ni~j~'(Qo) =(1/x )[KII(Qo+x/2, x/2)

+Kj;(Qo —x /2, x/2) —25gj ]+0 (xi)
(36)

and the other coupling element can be obtained to qua-
dratic accuracy using Eqs. (27), (34), and (36)

Nj; '(Qo) =2Nj~'(Qo) —Nij '(Qo) . (37)

One can also show

dN"'

=[Nj"(Qo+x /2) —Nj"(Qo —x /2) ]/x

+O(x ) (38)

but the use of Eq. (36) as well as the above expression
directly for Nj; '(Qo) requires convergence of the sixth
wave function Itgj(q, Qo).

Alternatively, we may obtain the values of

N(2A)(Q )
gJ

(Qd

(XI,Xj ) =(fg, itgj)(g~)

with

(39)

1~"= x" (40)

where Kj; is defined by Eq. {30),but denoting the overlap
elements between the two stites evaluated at the same
geometry a. After some straightforward algebra one
finds

2 N,',"=&X,. iXjj'& &Xj iXj'&

=Jg —J).+p Np

=(cIIcjI —cjgcig )(KIg Kjj )—a p e p ap ap

+(c;;cjj cjic(g )(KIj~—Kjg~)—
and similarly

(4x')¹gj ' ——&Xg~
~
Xj~&+ &X~

~
XP&

(41)

average approaches. A small price has to be paid in terms
of non-orthogonality between the states. Typical overlap
elements between |tg;{q,Q) and f~(q, Q} in the present ap-
plication on NRLi+ are 10 . Symmetric orthogonaliza-
tion which, as numerically verified below, varies smoothly
with the nuclear geometry, serves as a simple alleviation
of this problem. In the following we denote the Qo —x
geometry by a and the Qo+x geometry by P. We define
the symmetrically orthogonalized state as

in an indirect way. We propose, for a diatomic molecule,
to make a sphne fit through the values obtained for
NJ"(Qo) at different geometries and use the latter rela-
tloII. In dolllg so ollc llas thc Rdvalltagc of obtRIIllllg thc
first- and second-order coupling constants with the same
set of wave function optimizations.

The evaluation of the coupling constants thus requires
four MCSCF calculations, for two states at two slightly
displaced geometries. The separate optimization of all
variables involved in the coupling gives additional fiexibil-
ity and accuracy over previous frozen-orbital and state-

c;;=c"=—,[1/(1+K;. )'~ +1/(1 —K" )'~ ]

cg=cq~q —,[1/(1+K——Pj~)' + 1/(1 K~~)'~]-
C..—c..—I [1/(1+K..g )igI 1/{1 KP }i&I]

ca=c~= —[1/(1+K@~)"I—1/(1 —EPy) "2]

(42)

(43)

(44)
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Thus each pair of coupling constants Ã~J.
' and N, 'J~ re-

quires the evaluation of six overlap elements KJ~, E
X,~j, X,~j~, X~, and X,.j~.

The adiabatic corrections to the Born-Oppenheimer
states are obtained in the symmetrically orthogonalized
basis {X)as

2MSii ' —— , q; ,'(e;g))

=e-eI'SC-I'+e .e~SC-I'+e eI'X. I'+e eI'SC-I'.
ii ii ii jiii ji ii ij ij ij ij jj

where the labels I and T denote inactive and active parts,

{45)

Separate state optimization introduces in general a
nonorthogonality problem in the evaluation of transition-
state properties. Although efficient schemes for cofactor
evaluation have been developed, 2 '30 the exphcit calcula-
tion of determinant-determinant overlap elements be-
comes cumbersome and slow for large wave functions if
the state optimized sets of orbitals are mutually
nonorthogonal. One way to avoid this problem, which
has been adopted in previous ab initio approaches for
nonadiabatic coupling constants, is to use state averaged
or frozen orbitals and to recover part of the relaxation er-
ror by CI expansions. However, the need for full MO
flexibility at avoided crossings where the adiabatic states
drastically change character and where the wave function
should account for the simultaneous changes in correla
tion and relaxation effects cannot be underestimated. For
complete active-space wave functions one can exploit the
invariance property towards orbital rotations in the active
space to construct transition matrix elements that can ef-
ficiently be calculated. For transition moment calcula-
tions this has been achieved~'32 by means of the corre-
sponding orbital proccxlure of Amos and Hall which
brings the MO overlap matrix to diagoilal form. Tllis iiil-
poses the restriction that the set of inactive orbitals has to
be the same for the two states connected by the transition.
The latter restriction means that the inactive orbitals must
be truly core orbitals, in which case this restriction has
been shown to be numerically well founded. However,
for the calculation of overlap matrix elements, KJ~ of Eq.
(30) generated by geometry displacements, there is an ad-
ditional complication due to nonzero overlap between ac-
tive orbitals of one geometry and inactive orbitals of
another. This calls for the full diagonahzation over all
occupied orbitals contained in the XJ matrix elements
[defined by Eq. (41)]. The recently developed biorthogo-
nalization scheme of Malmquist, which transcends the
ordinary corresponding orbital procedure) seeins to be par-
ticularly suitable for this purpose. Below we recapitulate
the main steps of the procedure applied to complete active
space wave functions that are relevant for the evaluation
of XJ -type elements. The XII' overlap matrix is parti-
tioned into four blocks,

&~i' &I~r
yo.P=

xiii' xg

and

I 0u & =U» I 4'I &

14 r &
=0 ir I PTr &

(49)

I kjl & =Uzi I Pj's &

(50)
Idj &.

After having obtained new CI vectors
I C; ) and

I Cf)
pertaining to (q; ) and (p~) (very efficiently by means of
the algorithm of Malmquist consisting of a sequence of
single-orbital transformations of the CI vectors), a scaling
procedure is performed such that

[CJ {u)f"=CJV )4' (51)

where n, (p) is the occupation of orbital I in CSF jti. d,
denotes the corresponding (diagonal) density-matrix ele-
ments. After this scahng, X~~ is obtained as a simple dot
product between the two CI vectors

X;i = g Ci'(p)[C,~(p))" . (52)

From Eqs. {49)and (50) onwards an alternative route was
also devised by Malmquist, in which fully biorthogonal
orbi tais are obtained by means of a nonorthogonal
transformation of (

I P; ), I PJ~)) which preserves the in-
variance of the CI vectors

I CP) and
I

CJ~). This route
would be nixessary for transition matrix elements involv-
ing two states with different symmetries and would neces-
sitate the calculation of a transition density matrix. For
charge-transfer coupling between two states of identical
symmetry, we believe, however, that the calculation of
X&~ by means of Eqs. (51) and (52) will be more efficient.

III. COMPUTAnONA. X,

A computer program that implements the formalism
deri~ed above has been written and interfaced to SIRIUS,
the direct second-order MCSCF program recently

respectively. The main idea is to modify the active-active
block (X rr ) before bringing it to diagonal form,

M A =X rr X—rIU21D I 'U ill lr (47)

where DI is the prediagonalized inactive matrix Xg
Both inactive X IP and modified active Ig parts of X I'

are diagonalized by means of the conventional corre-
sponding orbital procedure

U ilX5'{X5')'U»=DIi",

Uir{XS') E5'Usr =D I"
{48)

U „Wg(mg)'U„=D,'",
U„(~g)'mgU„=D,'".

where we have used the fact that both transformation ma-
trices for each block {UiI U2i and Uir U2r) giv«he
same eigenvalues Di~ and D r, respectively, in either
the inactive and the active case. A new set of orbitals,
pseudocorresponding orbitals, are obtained from the origi-
nal ones by using the transformation matrices U,
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NONORTHOGONAL I ZEO

STATES
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developed by two of us. Ener 'es and wave functions
were calculated for the two fllst X+ states of NaLi+ for
internuclear distances bet@veen 6.00 and 18.09 a.u. In all
calculations the origin was chosen at the center of mass.
This choice has some numerical and formal advantages
for calculations at very large internuclear separations.
For each pair of (first- and second-order) coupling ele-
Illellts, follr MCSCF optlmizations aI'e cclrried ollt; fol the
two states at two symmetrically displaced geometries
from the point of the coupling. Sharp convergence cri-
teria were enforced, 10 in energy gradient, and integral
thresholds were put to 10 ' . The numerical stabihty of
the second-order couphng constants was found to be cru-
cially dependent on low thresholds. NaLi+ at large dis-
tances has previously been shown to provide a problematic
case for MCSCF convergence. In test calculations we

found that the full account of the configurational-orbital
part in the Hessian coupling block was necessary for ob-
taining convergence of the second state at large internu-
clear separation.

The flow of the calculation is illustrated in Fig. 1.
E'ach pair of coupling elements N, 'J."and N~~ ', requires the
calculation of six overlap elements; K,J~, K,~, K,J, EP~~,

It.;;, and EJ,- . Each such element is processed by means
of a sequence of a biorthogonalization, two CI vector
transformations, and one scaling procedure as described
by Eqs. (46)—(52). The computational effort in these last
transformations is of the order of a few seconds and is
thus fully negligible compared to the MCSCF wave-
function optimizations. The calculation of the "symme-
trically orthogonalized" elements are therefore in practice
not more costly than that of the "bare" elements. The
wave functions obtained are undetermined with respect to
their phases, and this would have caused problems if the
transformed CI vectors were determined in new CI calcu-
lations. These problems are completely avoided with
Malmquist's algorithm for explicit transformations us-

ing single orbital transformations, as we then are ensured
that any wave functions [gl(q, Qadi

—x), p;(q, go+x),
P&(q, go x), or Q—J(q, go+x)] has the same phase in all
the three overlaps with the other three wave functions (cf.,
Fig. 1).

The wave functions were of complete active-space type
(CAS), with an active space consisting of the 3s, 4s, 5s,
6s, 7s, lir, and 2' orbitals, and with an inactive space
comprising the core (Na ls and Li Is) orbitals. (2308
CSF's and 207 rotational parameters were generated. ) A
Huzinaga (10s6p/5s2p) basis setl6 was used for Na and
augmented with two s Gaussians (a=0.1,0.01) and three

p Gaussians (a=0.1,0.05,0.01). One set of d functions
was also included (a=0.1). For Li a (11s6pld/5s3pld)
contracted basis set was constructed from Huzinaga's 10s
set augmented with one diffuse s function (a =0.01). The
basis set is very similar to the one used by Orel et al. , l7

with the inclusion of diffuse functions that meet the re-
quirements for correctly describing the molecular asymp-
totic behavior.

lA2'& [ sz'&
IV. RESULTS AND DISCUSSION

0. 0 0. 0

l A1'&

FIG. 1. Diagram iHustrating the various wave-fraction over-
Iaps in the nonorthogonalized and symmetrically orthogonalized
cases, respectively.

In the present work we confine ourselves to the calcula-
tions of the nonadiabatic coupling elements and the
Born-Oppenheimer corrections for the two lowest X+
states of NaLi+ and we do not consider the scattering
part of the problem for obtaining the total charge-transfer
cross section. Our main goal in this paper is rather to
present an efficient method to obtain the underlyin~ nona-
diabatic constants. Results for energies, first (N'»'} and
second-order (N'll'), (X'll') coupling constants are shown
in Fig. 2. The Born-Oppenheimer corrections (Bii and

BII} to the states are Illustrated in Fig. 3. In Table I we
report the numerical results obtained for all quantities dis-
cussed in Sec. II, which also form the raw material for
Figs. 2 and 3. In order to ensure numerical stability for
numerical differentiation a study was performed for the
evaluation of the nonadiabatic coupling constants as a
function of different step lengths in the internuclear dis-
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FIG. 2. Progression of the first-order N'»' and second-order
N'12', %21' coupling constants along the internuclear distance.
Potential-energy curves for ground 1 X+ and first excited 2 X+

states.

placement The v. alues for overlap elements, coupling
constants, and BO corrections at 8=12.00 for different
step lengths are shown in Table II.

A numerical evaluation of nonadiabatic coupling ele-

ments for MCSCF wave functions puts a high demand on
the optimization algorithm for safe and fast convergence

I ' ' ' ' I ' ' ' '
I

!O 15
XHTERHUCLEAR PXSTANCK t'.berg «&

FIG. 3. Born-Oppenheimer corrections to the MCSCF elec-

tronic states.

to the desired states. Low thresholds should be attained if
small differential steps are taken. Charge-transfer states
and avoided crossings seem to be particularly difficult.
Lengsfield et al. z derived an analytical response method
for obtaining first-order nonadiabatic coupling elements

employing a state-averaged MCSCF procedure to define a
common orbital basis for the states involved. It is based
on the coupled MCSCF equations and absorbs much of
the analytical molecular energy gradient codes. Hirsch

TABLE I. Nonadiabatic coupling constants evaluated at different internuclear distances (see text).
First-order couplings: ( N'12' } (nonorthogonalized), X'12' (symmetrically orthogonalized). Symmetric
component of the second-order couphng %12 '. Corrections to the Born-Oppenheimer states, second-

order diagonal terms divided by the reduced mass, M. /11/M =811, J22/M =822. The antisymmetric

component %12"', was estimated by means of a cubic spline. Displacement 2x=0.002 bohrs has been

used throughout. 8 ~~ and 8zz are the scaled Born-Oppenheimer corrections. 8~~ f8 ~~, 82' f8qq f-——— .
is the conversion factor between electronic and nuclear masses in a.u. f=electron mass/atomic unit

mass =4.48578&10 ~.

6.00
8.00

10.00
12.00
14.00
16.00
18.00

(~(l) )e

0.003 857
0.005 163
0.004089
0.003 827
0.003 616
0.002029
0.000 663

0.003 919
0.005 196
0.004 100
0.003 831
0.003 616
0.002029
0.000 663

0.004762
0.000 385
0.000 847
0.000465
0.000430
0.000445
0.000 189

g(2A)
12

0.001 932
—0.000 301
—0.000448

0.000043
—0.000452
—0.000936
—0.000231

0.369 319
0.369 426
0.370045
0.371 152
0.371 649
0.371 395
0.371 265

0.369043
0.368 655
0.368 692
Oo368 709
0.368 810
0.372 855
0.373 433
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TABLE II. Overlap for the nonorthogonalized states, evaluated at the symmetrically displaced
geometries A and 8. See caption to Table I. All quantities ~ere calculated at five different displace-
ments Qx) at the internuclear distance A =12.00 bohrs.

&~1)82&
(A2 i81)
(81 ]81)
&~2[82&
&~1[~2)
(81(82)

(~&1))»
~(1)

12
~&2S)

12

&22

0.10

0.041 006
0.041 757
0.961 161
0.961409
0.043 718
0.042 374
0.003 756
0.003 760
0.000459
0.364254
0.361 917

0.05

0.042428
0.042 812
0.990086
0.990150
0.043 381
0.042 709
0.003 849
0.003 852
0.000412
0.371 896
0.369 507

0.01

0.042 989
0.043 066
0.999604
0.999607
0.043 112
0.042 977
0.003 825
0.003 829
0.000492
0.371052
0.368 609

0.004

0.043 026
0.043 057
0.999937
0.999937
0.043071
0.043018
0.003 827
0.003 831
0.000452
0.371 140
0.368697

0.043036
0.043051
0.999984
0.999984
0.043 058
0.043 031
0.003 827
0.003 831
0.000465
0.371 152
0.368 709

et al. obtained the coupling matrix as a sum of two
parts, one describing a differentiation of CI coefficients
and another corresponding to MO derivatives times a
transition density matrix. Our method gives both first-
and second-order constants at the same expense and utiliz-
ing separately optimized MCSCF states. Lengsfield, on
the other hand, uses a more general CI wave function, and
has the advantage of attaining any nuclear degree of free-
dom in one calculation.

Potential-energy curves and first-order nonadiabatic
coupling constants for NaLi+ have previously been stud-
ied by Melius and Goddard' (MG) who used Hartree-
Fock wave functions with effective core potentials, and
who also took into consideration the problem of including
traveling phase factors. Orel and Kulander (OK) per-
formed CI calculations on the same system with a first-
order wave function with a frozen core and undertook an
investigation of coherence effects in Na-Li+ collisions.
They compared the results for the first-order coupling ele-
ments from three approaches: first employing the
Hellmann-Feynman theorem, second using the Sidis's for-
mula, which is a commutator expansion of the coupling
element, and third by means of numerical differentiation
of their CI wave function. The results of the two first ap-
proaches differed significantly from the third numerical
differentiation method, and these authors contended that
the first two methods were not accurate enough to be used
in the scattering calculations, something which is connect-
ed to completeness requirements for the wave functions.

Comparing our results with those of MG and OK we
find that the computed potential-energy curves are rather
similar; these nearly coincide at the dissociation limit, in-
dicating that the charge transfer can be expected to be
most significant in the long-range regime. The first-order
coupling displays, however, a rather extensive progression
and attains its maximum at about 8.00 a.u. in the internu-
clear distance aad decreases towards the asymptotic and
the united atom regions, see Fig. 2. This trend agrees to
some extent with the results of OK but does not support
the localized character found by MG. The former au-
thors have carried out calculations with different schemes
of CI and we accordingly expect to find a better agrm-
ment with our MCSCF calculations than the results of
MG. Yet the magnitude of the coupling constants ob-

tained both by OK and MG is quite different from the
ones here reported. This indicates that the nonadiabatic
coupling constants indeed are very dependent on the qual-

ity of the underlying wave functions. This was verified at
an early stage of the present investigation; e.g., a single-Z,
open-sheB Hartree-Fock type calculation gave a first-
order coupling constant which was 25 times larger than
the ones we report in Tables I and II. It also seems that
Hartree-Fock —based calculations tend to "overlocalize"
the couplings in a small range of internuclear distances. ~

The comparison with previous work indicates that the
first-order nonadiabatic coupling has a complex "all-
electron" nature. Thus despite the fact that NaLi+ con-
tains a single electron outside two closed-shell noble-gas
cores and expectedly should provide an "ideal" Hartree-
Fock case, the effect of correlation on the nonadiabatic
constant is substantial.

The numerical differentiation of OK and MG was per-
formed with an asymmetric coordinate displacement
around the point for the coupling, which is only valid up
to first order in the nuclear displacement. This is also the
approach of Hirsch et al. and of Werner and Meyer. 2~

In all these approaches, and in that of Lengsfield et al. ,
a common set of orbitals for the interacting states is used
(which are MCSCF state-averaged orbitals in the two
latter cases). The validity of an asymmetric expansion in
the nuclear coordinate can be derived from Table II,
which shows values of the &A 1 ~82) and &A2 ~81) ele-
ments for some geometries. These two values are slightly
different over the range of chosen displacements and there
should not be any preference from one to the other if the
asymmetric expansion approximation is used. In the sym-
metric expansion, Eq. (30), one thus obtains the coupling
constant to one higher order in accuracy, and also the
second order constant with the same computational effort.

As seen in Table I, the first-order coupling is almost
completely independent of symmetric orthogonalization,
which is due to the symmetric expansion of the displace-
ment since the nonorthogonal contributions will have the
same magnitude and same signs in the two cases. The
wave-function overlap has a significant influence on the
second-order constant, which, however, effectively is re-
moved after orthogonalization of the involved states, cf.,
Eq. (42).
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The BO corrections, i.e., the diagonal second-order cou-

plings, are also given in Table I and Fig. 3. Being expec-
tation values of the nuclear kinetic energy operator, they
give positive corrections to the Born-Oppenheimer ener-

gies. Their magnitudes are found to be lnslgniflicant.
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