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Time-dependent haiiiionic oscillator with variable mass under the action of a driving force
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An exact solution is presented for the problem of a harmonic oscillator of time-dependent mass
with an external driving force. The wave functions for both pseudostationary and quasicoherent
states and the Green s function are calculated. A solution is obtained in the Heisenberg picture.
The amphtude for transition from a coherent state to a simple harmonic-oscillator coherent state is
calculated.

I. INTRODUCTION

Widespread attention has been paid in the last few de-
cades to the problem of the time-dependent harmonic os-
cillator. ' s The problem of a variable-frequency, or
variable-mass haivnonic oscillator has many applications
in physics, e.g.„ in quantum chemistry, quantum op-
tics,s 9 plasma physics, ' " and perhaps also in
quantum-field theory, see, e.g., Ref. 12. Considerable ef-
fort llas been devoted to finding invariants of the motion
for such a system' " (see also Ref. 16 and references
quoted therein). In a previous communication I and my
co-workers have considered some special time-dependent
mass parltneters' in the absence of a driving force,
while in Refs. 21 and 22, respectively, we discussed the
case of strongly and wealdy pulsating mass in the pres-
ence of a periodic driving force. In the present paper we
shall develop the work of Ref. 5 by including a driving
force in the eLse of a harmonic oscillator with mass pa-
rameter a general function of the time. The variable-mass
harmonic oscillator with a driving force is described by
the Hamiltonian'z'z'

H(t)= p +[M(t)/m][ ,' mcottti rnf—(t)q],—

2

H(t)= + —,'mcoog + (PQ+QP) —F(t)Q2' 2

(2.1}

general driven time-dependent oscillator, i.e., a system
given by Eq. (1.1). However, in the present paper I have
used the canonical transformation approach of Ref. 5 to
treat the problem of finding the best Dirac operators by
solving the Schrodinger equation (1.3). The organization
of the paper is as follows. In Sec. II I work in the
Schrodinger picture and in Sec. 111 we derive the solution
in the Heisenberg picture and follow this with an expres-
sion for the energy operator. The Dirac operator and
quasicoherent states are calculated in Sec. IV. In Sec. V
the Green's function and the coherent-state transition am-

plitude has been calculated, followed by a discussion in
Sec. VI.

II. THE %AVE FUNCTION
IN THE SCHRODINGER REPRESENTATION

As a first step one has to solve the time-dependent
Schrodinger equation (1.3). By using the canonical scal-
ing transformation introduced in Refs. 17 and 18 the
Hamiltonian (1.1) with M(t) given by Eq. (1.2) takes the

where the mass variable will be taken as

M(t)=m exp 2 f y(()dt
4

(1.2)

a(t)
i
@(t)) =iw —

/
g(t) ) (1.3)

and f( t) and y(t) are arbitrary functions of the time. The
technique we use gives an exact solution for the
Schrodinger equation

with [Q,P)=i', and F(t) is

F(t)=mf(t)exp J y(t)Ct

From Eqs. (1.3}and (2.1) the Schrodinger equation is

8 1t) m coo
gp~ 2im

( )g BtP 2rnF(t)
Q~Bgz 4 R BQ

2im Bg imy(t)
c}t

(2.2)

(2.3)

and leads to a definition of the Dirac operator which we
shall refer to as the "best" operator. Malkin and
Man'kodes have constructed coherent states for a system
described by Eq. (1.3) based on the employment of quan-
tum integrals of the motion. In 1979, Dcxlonov and
Man'ko employed the hnear integrals of the motion in
order to construct the best systems of coherent states for a

In order to obtain a solution of Eq. (2.3) I introduce two
transformations. The first one changes the coordinate Q
to x through the relation

(2.4a)

where co(t) is explicitly time dependent given by Eq. (2.13)
in Ref. 5, i.e.,
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p'+[~&—y'(r) —y(r)]p=, , p '=«(t) . (2.4b)
1

p'

Then the wave function g(g, t) changes to P(x, t) and Eq.
(23}takes the form

m ~o x 2im «j(r}

ax' 8 ~'(r) a (r) 2 (r) ax$+ y(&)+ x-

2mF(r) x —2im 84 imy(r)
3~(r)

=
~(rX ar

x =y +g(t}, (2.6)

where g(t) is to be determined. The wave function must

now be changed from P(x, t) to P(y, t) and Eq. (2.5) is re-

cast in the form

The second transformation translates the x axis to a y
axis by the equation

~ 4' + 2™R(r)[„+g(r)] 4(~) ~4 s [ z 2g( ) ]y
2mF(r)y imy(r)y

+'(r) facy' '(t) ao(r)

r«(r) aF(t) r r

where

R(r)= y(r)+
1 ai(t)

(2.8)

Wt us seek a separation in the form

P(y, &)=G (y) T(r)exp
g)(r)

R (r)[-,'y +g(t)y] — y (2.9)

which i~~ to a partially separated equation in the form
P

1 dG mz 2m'
Gd' + Au

T

R(t)+e(t)R {r)— g{r)'0~ d g(~) F(&)
3'(r) dt ro(t) mr0'&(r)

—2im 1 dT im /my(r) 2mF(r) coom~

Ao)(r) T dr A ~(r) 4««3~(t) ypuz(t) y u(r)
(2.10)

In order to complete the separation, we must eliminate the coefficient of y on the left-hand side of Eq. (2.10}and choose

g~&)- g(r)+~'(r)g(r) = F(r) .
r«(&) m

(2.11)

quation (2.11) |s a second-order nonhomogeneous differential equation and in the absence of a driving force g(t) is zero.
When the d ving form is appHK, the Miution of tl s mmtion may b nd m for mnv~mm in the fo~

P r) = I V {r)—I (0)]sin[g (&)]—[I,(&)—I,(0)]cos[g(t)]j,
where

(2.12)

f(&)exp f y(t)dr
1,(r)= f &co(t)

' cos[g(t)]dr, (2.13a)

f (r)exp f y(t)dr
1,(r)= f ' sin[g(t)]dr, (2.13b)

g(t)= f cg(r)d~. (2.13c)
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The separation is completed and the general solution is of the form
' 1/4 (

' 'I/I

Xexp N(t)+i y(t)+
—m N(t)

2N(t) [Q —k(f)l' '

Xexp I [y(t)gI(t) —gI(t)][Q —gI(t)] I exp —i(n + ,' )g—(t)+ (2.14)

where

(I(t)=g(t)l&N(t) (2.15a)

dg P=—+y(f)g,

P = —mNog y(t)P—+F(t) ~

(3.1a)

(3.1b)

()(t)= j F(t')gt(t')dt'

—(m/2) J t NQ'i(t')

-[r(t'CI(t')-CI(f')]'I«'
(2.15b)

When wc consider thc I'cplacclllctlt y~—v taII(vt} It ls lll-
teresting to compare the solution given in Eq. (2.14) and
the result given by Eq. (54) of Ref. 21. in the absence of a
driving force, so that F(t)=0, Eq. (2.14) agrees with Eq.
(3.10) of Ref. 5, and Eq. (3.10) of Ref. 24.

III. THE HEISENBERG EQUATIONS OF MOTION

The elimination of P leads to

d'Q & . , F(t)+{ o r —r)g- =
f2

By introducing the transformation

Z(t) =&N(t)Q(t)

Eq. (3.2}may be cast in the form
t

dZ N(t)dZ 2 I 3 . I 1N+ Na —y —y+ (NIN) ———
dfI N(t) dt 4 2'

(3.2}

{3.3)

Having solved the problem in the Schrodinger picture,
we shall turn our attention to the solution in the Heisen-
berg plcturc. Thc HaIIIIltoIllan (2.1) gives

F(t) . (3.4)

Ith the ~d of Eq. (2.4b) one may write the general solu-
tion in the following form:

)' ' 1/2

Q(t)= cos[g(t)]+ sin[g(f)] Q(0)+ P(0)
N(0) J(0) sin[g(t)]
N t N(t)N(0) m N(t)N(0)

I I,(0)—I,(t) cos[g (t)]+[I,(t)—I,(0)]sin[g (t)]I
1

(3.5)

P(t)= N(t)
N(0)

cos[g{f)] — sin[g(t}] P(0)J(t)
N(t)N(0)

g(0) N(t)J(0) J(f)N(0)
[ ( )] ~ (0) ( ) 1

J(0)J(t)
[ ( )]

( ( [I,(t)—I,(0)]N(t)+ [I,(t)—I,(0)]J(t)]cos[g (t)]
&N(t)

+ I [I,{t)—I,(0)]N(t) —[I,(t)—I,(0)]J{t)]sin[g(t)]),
where I,(t) and I,(t) are given by Eq. (2.13) and

J(f)= y(f)+—1 N{t)
2 N(t)

From Eqs. (3.5) and (3.6) we can prove that

[Q(t},P(t)]=[Q(0),P(0)]=i' .

(3.6)

(3.7)

(3.8)
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Now one is in a position to extend the expression for the energy given in Refs. 5 and 21 to include the work done by the
driving force. From Eqs. (1.1), (3.5), and (3.6) one finds the following expression for E (t):

E(t)= Eo(t)+mQ(0) I Ug(t)cos[g(t)]+ II/g(t)sin[g (t)] j

+P(0) j U~(t)cos[g (t)]+W~(t)sin[g (t)]I+ ,
'

m —cog~+[g~ —y(t)g~(t)] ——F(t)g~(t) (3.9)

where

Ug{t)=
1/2

to(0)
co(t)

' I/2 ' 1/2

[y{tCi(t}—0i(t}l+
to 0 CO t (g (t)—F(t)

(3.10a)

~g(t) = top(t) — +[y(t)g&(t) —g&(t)] &to(0}oo(t)+
J(0) 2 F(t) J(0)J(t)

&to(0)to(t) Ptl &co(0)co(t)
(3.10b)

(3.10c)

(3.10d)

[J(0)to(t) —J(t)to(0) ] cos g
rooto(0)

J (0) [to(0)to(t)+J(t)J(0)]2
slI1 gto(0) tooto(0)

+ J(0)—[J(0)to(t)—J(t)to(0)] to(t)+ J(t) sin[2g (t)] V(0)
J{0)
ro(0)

U~(t) =v co(t)/to(0)[g~(t) —y(t)g&(t)],

~p (t)= I [too+ y(t)J(t)]g$(t) —[F(t)+J(t)g](t)] ] /&~(t)N(0),

where g~(t) is given by Eq. (2.15a) and Eo(t) denotes the expression for the energy in the absence of a driving force,

J2(t)+too
Eo(t) = to '(0) to(t)cos [g(t)]+ sin [g(t)]—J(t)sin[2g(t)] T(0)

ro(t)

2J(0)J(t}
sin[2g(t}]+ sin [g(t)] [Q(0),P(0)]+ .

2tooJ (0)
2

67 0 Cotto0 (3.11)

IV. THE DIRAC OPERATOR, QUASICOHERENT
STATES, AND NUMBER STATES

In this section I shall derive the best Dirac operator in the presence of a driving force. Since the quasicoherent state
P (Q, t) can be expanded in a power series of a, i.e.,

f (Q, t)=exp( ——,
'

~a ~2) g g„(Q,t), (4.1)

where f„(Q,t) is given by Eq. (2.14}. Therefore with aid of the identity

exp(2u8 —8 )= g H„(u)8 (4.2)

[Q —g~(t)]a(t)—a (t)
2

where H„(U) is the Hetmite polynomial one can easily obtain g (Q, t) in the form
' 1/4 I/2

QN(Q, t)= exp( ——, ia i )exp
mto(t) 2mto(t)

(4.3)Xexp I [to(t)+iJ(t)][Q —g&(t)]'+2i [y(t)g&(t}—g, (t)][Q —g, (t)] j exp —P{t} g(t)——
2A" fi 2

where

a( t) =a(0) exp —i I to{t')dt' (4.4}

and P(t) is given by Eq. (2.15b).
In order to construct the best operator in the presence

of a driving force, we shall differentiate Eq. (4.3}partially
with respect to Q. Thus
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a1{.
BQ

' [/2

a(t) ——[a)(t)+iJ(t)][Q—g[(t)]
jri

g (t)=g[{t) ap(t)+i —[lng(t)]
. d

(4.10)

[y(t)g[(t) —g[(t)] Q (Q, t) (4.5)

Since a is the eigenvalue of any operator A (t) satisfying
the relation

&lternatively, this operator can be found from the linear
combination of the coordinate and momentum in Eqs.
(3.5} and (3.6). The scaled coordinate Q and momentum
P may be expressed as

[A,At]=1

such that

A(t)
i
et(t)) =tr(t)

i et(t) }
one uses the fact that

(4.6)

(4.7)

Q (t)= f [A/2mea(t) ]'/~(A +A t)+ g[(t)j,
v'ma)(t)R t . J(t) . J(t)

2 fa(t) a)(t)

(4.11)

(4.g)

+m [g,(t}—y(t)g[(t)] . (4.12)
to find the best Dirac operator in the form

A (t) =[2meo(t}R] '/
f m [ea(t)+iJ(t)]Q(t)

+iP(t) —mE(t) j, (4.9)
From Eqs. (4.11) and (4.12) Eq. (2.1) can be written as fol-
lows:

H(t}= A' ta(t)+ —(AtA+-, )+ - [J{t)—i'(t)]—(A )'1 J{t) t [ A' d
2 ta(t) ' 4'(t) dt

+ [J(t)—+ita{t)] A'

1 j2
m [{1

M(t)
1 j2

niA'

2a)(t}

r

[ete y(t)gt(t)—+i et(t)e-t gt(t) —f(t)exp f ) (t)dt t(
2ai t

[ete-r (t)jest(t) —t te(t) —t k(t) f(t)exp I r(—t)dt A
2 2 . ai(t}

2a)(t)

t

+—,
'

m [tao—y'(t)]pi(t)+g [(t)—2f (t)g[(t)exp f y(t)dt (4.13)

Since the time-dependent number states of any operator
A, A aregiven by

(n iH(t) i
n }= (n iH&(t) i

n }
A in(t)}=un in —1), (4.14a) + —,m [tat) y(t)g[—+f [(t)'

A in(t)}=&n+1 in+1},

A A
i

(tn))=
i n(nt}), n =0, 1,2, . . .

(4.14b)

(4.14c)

—2f (tg'[(t)exp f y(t)dt

(4.16)

the expectation values of E (t) and H (t) can be found in
state i n }.Thus

(n iE(t) in)= (n iE[)(t) in)

where (n i E[&(t) i
n } and (n

i
Hz{t) i

n } are the expecta-
tion values for the operators E(t) and H(t) in the absence
of a driving force respectively.

V. GREEN'S FUNCTION

+ —,'m ftopgi+[g[(t) —y[(tg[] j

—E(t)g[(t) (4.15)

Since the solution in the Heisenberg picture is given in
Sec. ID, one is in a position to construct the Green's func-
tion.

The definition of the Green's function 6 (Q, Qa, t) is
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G(g, g„t}=exp ——I H(~)dr 5(g —Q, ), (5.1)

therefore for any later time t, we have

where N(t) is a constant of integration.
From Eqs. (5.3) and (5.6) one has

r

4

G(Q, Qo, t) =N(t)exp [Ago+Dg 2—ggo

Q( —t)G(g, go, t)=goG(Q, Qo, t) t)0.
Then from Eqs. (3.5) and (5.2) together with Eq. (1.3),

G(Q Qo t)

(5.2)

+2k go+2(&ri —kD}g]

(5.7)

=G,(g, t)exp [ag'o —2ggo+Qi(t)go]2

(5.3)

To calculate N(t) use the relation

O~f s 1~1 0 1

Then we find

(5.&)

where A, 8, and gi are the corresponding time-dependent
coefficients in the right-hand side of Eq. (3.5), respective-
ly. Similarly, from Eq. (3.6) one has

[Dg Qo+(—&ri CiD)]—
1 aG
G BG BA'

where
' l/2

D(t) = cos[g(t)]
to(t)

N(t)=[2+4 f8(t)
i ] (5.9)

(5.10)

The quasicoherent state at time t =0 is

' 1/4

since the quasicoherent state at any time t & 0 may be cal-
culated using the Green's function (5.7)

sin[g (t)]
J(t)

co(t oi 0
(5.5a) f (Qo,0)= expI ——,'[~a~ +a (0)]I

rt(t}=m [g,(t) —y(t)g, (t)] . (5.5b) Xexp [to(0)+iJ(0)]go

By differentiating Eq. (5.3) partially with respect to Q and
equating the result with Eq. (5.4),

r

' 1/2
2m to(0)

a(0)go (5.11)
Go(g, t) =N (t)exp [DQ2+ 2(8i}—giD)g]

(5.6)
substitute Eqs. (5.7) and (5.11) into Eq. (5.10) and after
straightforward calculations one gets

(g )
mtg(t)

' I/2

exp ——,
'
[ ( a ~

2+a2(t)]+ a(t)[Q —gi(t)]

t

Xexp [t0(t)+iJ(t)][g —gi(t)] — [y(t)gi(t) —gi(t)][g —fi(t)]2A
r

Xexp gi(t) y(t) +to—(t)cot[g(t)] gi(t) —2$, (t) i-—lm to(t) g(t).
2to t (5.12)

2ltl OAPONl OOOO

exp Q + (5.13)

It is easy to check that Eq. (5.12} is in agreement with Eq. (4.3) if one calculates the integral in Eq. (2.15b) and this can
be done easily if one uses Eq. (2.11).

Now let us calculate the transition amphtude (P
~
a) between the coherent state

i
a) given by Eq. (4.3) of the

variable-mass oscillator and the coherent state
i P) of the usual time-independent harmonic oscillator with mass mo.

The coherent state for time-independent oscillator is in the form
l /4 ' l/2

Pg ——,'(
I P II'+P'}

and the transition amplitude is given by

(@~a)= J g (Q, t)gati(g, t)dg . (5.14)
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Thus from Eqs. (4.3) and (5.13) substitute into Eq. (5.14) and then evaluating the integral one had
1/4

mpcopco(i )
exp I

—
2 [ I

a
I
'+

I & I
'+a'+(~')'] l

mp (t)

Xexp
ZmIc t)

' 1/2 ' 1/2
Zmco(t) 2Q)OPIA Oa(t)+ [—co(t)+iJ(t)]pl(t) —[y(t)gl(t) —gl(t)]+

fi fi

Xexp —gl(t)
2m co(t)

lri

t

a(t)+ [co(t)+iJ(t)]pi(t)+ [y(t)gi(t) —gl(t)] exp —i)}(t), (5.15)
ZA

where P(t) is given by Eq. (2.15b) and p(t) is

p(t) =[co(t)+cop]+iJ(t) . (5.16)

Expanding P in a power series one can obtain an expression for (np I a), where
I

np ) is the nth eigenstate of the time-
independent oscillator, that is,

&npI a)= vZ
&p(t)(n, l)

' 1/4
m pcopco( t )

expI ——,'[a'+ IaI'+ig(t)])

' 1/2 ' eo/2
m pcop% m p( t )—Zcopm p

y, H„ S(t)
?n p(t) , 2m p(t)

exp P(t)—
fi

fi
XexI

2m @(t)

' 1/2
Zmco(t) a(t) +— co(t) +i pl(t) +i gl (t). co(t)

2ci? t

)& exp —gl(t)

' l/2

2fi
a(t}+ [co(t)+t'J(t)](i(t)+

~
['Y(t'ai(t) 41(t)] (5.17)

where

&(t)= [m p(t) —Zcopmp]

' 1/2

a(t)+ co(t)+i pl+el(t)m . co{t)
l)1 2co(t)

(5.18)

This result can be compared with Eq. (53) in Ref. 2.

VI. DISCUSSION

I have given a full description of the motion of a har-
monic oscillator under the combined action of a time-

dependent mass parameter and a variable driving force in
both the Schrodinger and Heisenberg pictures of quantum
mechanics. I have overcome the difficulty of passing
from one picture to the other through two channels (i) ei-

ther to construct the Dirac operator from the solution in
the Heisenberg picture, and then use the definition of the
coherent states to find the solution in the Schrodinger pic-
ture; or (ii) to use the solution in the Schrodinger picture
to find the quasicoherent states which lead to the best
Dirac operator. By using the relation A (t}
= A (0}exp[ ig (t}] one obta—ins the solution in the
Heisenberg picture. This is, in fact, due to success in
making a complete separation in the Schrodinger picture.

I have calculated the Green's function and the connec-
tion with the wave function for quasicoherent states,
which has been used to calculate the transition amplitude
between the state

I
a) in our model and the state

I P} in

the ordinary simple harmonic oscillator in the absence of
a driving force. Since I have obtained the complete solu-

tion for the meet general case, I am able to deduce all the
other special cases which have been considered earlier. In
particular, this work is an extension of that presented in

Refs. 5 and 24. I feel that all the results in the present pa-

per could be of paramount importance in quantum optics
and perhaps in other branches of physics.
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