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Projection-operator calculations of the lowest e -He resonance

A. Berk, ' A. K. Bhatia, B.R. Junker, and A. Temkin
Atomic Physics Office, Laboratory for Astronomy and Solar Physics, NASA/Goddard Space Flight Center,

Greenbelt, Maryland 20771
(Received 14 July 1986)

Results for the lowest (Schulz) autodetaching state of He [1s(2s)2] are reported. The calculation
utihzes the full projection-operator formalism as explicitly developed by Temkin and Bhatia [Phys.
Rev. A 31, 1259 (1985)]. Eigenvalues, g' = (4

~ QHQ ~
4},are calculated using projection operators

Q depending on increasingly elaborate target wave functions going up to a 10-term Hylleraas-form,
and a configuration-interaction total eave function 4 of 40 configurations. Results are well con-

verged, but our best value is -0.13 eV above the experimental position at 19.37 eV. We conclude
that the shift {d ) in the Feshbach formalism gives a large contribution {relative to the width) to the
position E, (=8'+d ). An appendix is devoted to the evaluation of the most comphcated type of
three-center integral involved in. the calculation.

I. INTRODUCTION P; —=P;(xi,x2,x3) (3a)

II. VARIATIONAL CALCULATION
OF THE QHQ EIGENVALUE SPECTRUM

In the projection-operator formalism, the energy of the
1 s (2s): S resonance of He is the sum of the latest QHQ
eigenvalue plus an energy shift arising from the interac-
tion of the QHQ eigenstate with the continuum. In this
paper, the Rayleigh-Ritz variational principle is applied to
the QHQ eigenvalue problem

(C iQHQ ie)
(4/Q /4)

After reviewing the form for the projection operators, P
and Q, we shall derive an expression for the action of Q
on a three-electron doublet spin eigenstate, 4( S), i.e.,
Q ~

4). Calculation of the QHQ matrix elements is then
discussed.

A. P and Q operators

We confine ourselves to the ls(2s): S resonance of
He . The projection operator P has the form

I"—I' l +82+1'3, (2)

Electron resonances can conveniently be studied using
the Feshbach formalism. ' Recently, an explicit form of
resonant projection operators, P and Q (=1—P), for
(X+1)- leectr onsystems has been derived. 2'3 In the
present paper„ these operators are used to calculate the
QHQ eigenvalue corresponding to the lowest e -He reso
nance, the 1s (2s): S Schulz resonance.

In Sec. II the Rayleigh-Ritz variational calculation of
the QHQ eigenvalue spectrum is discussed. Results ob-
tained using five different approximations for the helium
target state are reported in Sec. III. In the Appendix, de-
tails of the methods used to solve three-electron Hylleraas
integrals are presented.

$0( r ) ~ Ijjo(x2»3 ) ~

(1) tz( 1 )

&(4 )
(4)

The x; are the totality of coordinates (spin and space) for
electron i; r" is defined as the collection of coordinates
for the N +1 electrons with only the radial coordinate of
the ith electron, r;, missing. (Throughout the text in-
tegrations in the bras and kets are only over those coordi-
nates which are explicitly arguments of the functions
therein. ) The helium ground state is the product of a
symmetric, normalized spatial function and an antisym-
metric, normalized singlet spin function

~ ( )
a(2)P(3)—P(2)a(3

(2,3) . (5)
2

The functions ua(r) and constants A,a in the above form
for P;, Eq. (3b), are determined from an auxiliary eigen-
value problem which can be reduced to an equivalent but
much simpler equation5

u (ri)=A, ' f f(r, ~r )2u(ar )r22dr,2

where f ( r 1 ~
r2 ) is defined by the equation

1

«ri I r2)=—2~ f, f'0(rl r2 ~12)«os(812) (812=—ri.r2) .
(7)

In this paper the resonance was calculated with a
variety of approximate target wave functions, the most so-
phisticated of which were Hylleraas functions up to de-
gFec 67,

i =1,2, 3 . (3b)

We use the notation defined in Ref. 3, although some defi-
nitions will be repeated here for clarity. 1)ju(r"') is the
channel wave function obtained by coupling the 'S helium
ground state to the angular momentum and spin of an tz-

spin s-wave electron. For this ( S) case
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I 1+m +n =a)I
po(1,2)= g, r, r2 r i2e

o) (Sm )'»
ly. We make the following assertion: The action of P on
a three-electron doublet spin configuration

~
4„& is

equivalent to the action of p =p i +p2 +p3 on
~

@pg }t i e t

+ [»i »2]. p iC„&=P (4„}. (13)

The auxiliary eigenvalue equation for the four-term
Ico=1I target function has been discussed previously.
For arbitrary co, f(ri

~
r2) of Eq. (7) is given by

l+1 m+I

Il+m+n =OI +

—
I »i -»2

I

"+']

The eigenveetors and eigenvalues associated vvith U can
be determined from a second variational principle~

(u (r )f (,» )u (r )}
(10)

(u~(r)u (r) }

With the expansion (yi and y2 being the same as in qc)

for the eigenvectors, the variational principle determines
the hnear coefficients. Sum rules on the eigenvalues ob-
tained from (11) yield five-place accuracy. Longer expan-
sions were tested and produced little improvement in the
sum rules and no appreciable change in final QHQ eigen-
values. Thus, although our solution of (6) is not exact, we
can consider it exact for practical purposes.

In nonrelativistic calculations, a spin-free formulation
of the eigenvalue problem can be constructed Le. t pi be
a spin-free projection operator

q)u(2, 3) u (ri) &(u (ri) pre(2, 3)
1+

v'(4~)
(12)

for a three-electron system. Define p2 and p3 arialogous

B. Projection Q ~4„&

Let S(1), U(2) and 8'(3) be one-electron spatial orbi-
tals. In the spin-free formalism, a doublet spin configura-
tion formed by coupling electrons 1 and 3 to a singlet is
represented by the sum

~4„&= ~S(1)U(2)W(3)}+
~

W(1)U(2)S(3)}
—

~

U(1)S(2)W'(3) }—
~
U(1)W(2)S (3)} (15a)

=[I—(12)][I+(31)]
~
S(1)U(2)W(3) } . (15b)

(Whenever S, U„and 8' all differ, a second independent
doublet eigenstate can be formed by initially coupling
electron 2 to either of the other two electrons to form a
singlet or by initially coupling two of the electrons to a
triplet. ) Here the identity operator is I, and (ij k n) is
the permutation operator which takes i into j, j into
k, . . ., and n intoi.

Since q&c(1,2) equals q&o(2, 1), it is clear that
(yc(1,2)

~
[I—(12)]=0; thus utilizing Eqs. (12) and (15b),

it follows that P3
~
4„}vanishes. This implies P

~
4„}

can be vrritten

(The whole wave function
~

4 & is understood to be a sum
over configurations

~
4„&.) The assertion can be proved

by explicitly performing the spin integrations on the
right-hand side (rhs) of Eq. (13), and comparing the result
to the left-hand side (lhs).

Since P and Q are complementary operators, Q has the
form

Q =1-(Pi+P2+Pi) .

Here, and for the remainder of the text, upper case Ps
and Q's will be used to denote the spin-free projection
operators.

P ~e„}=(P,+P, )
~
C„&

0'0(2 3) u (ri)}(u (ri) qc(2, 3) qc(3, 1) u (»2)}(u (»2) yc(3, 1)1+v (4ir) & —1 v'(41r ) v'(41») A, —1 v'(4~)
+ ' 1++

(16a)

Using Eq. (16b), expand
~
4„}as in Eq. (15a) and gather terms to obtain

(16b)

P iC„&=
yo(2, 3)
v'(4~)

u (ri)&(u (ri) S(1)1+
k~ —1

qo(3~ 1) ua(»2) }(ua(»2) S(2)1+g f dr, &g. l
U~&-2('U~. )+4-),

(4~) . A,.—1 v'(4~)

where the last two terms represent cyclic permutations of the explicitly given term (in the notation of Ref. 3), and

(q,
~

Uw'& = f ~,{2,3)U(2) rv(3)d'»2d'r, .
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Since Q equals 1 —P and the terms in parentheses in Eq. (17) are related by an interchange of coordinates 1 and 2,
Q I

4„& can be expressed in a simple form,

Q I @.& =[I—(12)][I+(31)][
I
S(1}«2)IV(3) &+ i I to(3, 1)~(2)& &{}o I

UIV& —
I mo(3, 1)+(2}& &mo I

IVS &

+ —,
'

I (Po( 3, 1)M( 2) & & qr o I
SU & ],

where we have defined the projected orbitals P'(1) by

S(1) u (ri) u (ri)S(i)
(1)—=

&(4 } &(4ir) v'(4~) (}{,,—1)&(4ir)
i+ d r]

with similar definitions for k and P .

(19)

(20)

C. Matrix elements of QHQ

An old configuration-interaction (CI) program was modified so as to perform projection-operator calculations. In ad-
dition to the standard CI matrix elements, the new version of the program evaluates the projected overlap and Hamil-
tonian integrals (R, T, and V are another triple of spatial orbitals occurring in ((Ii),

Gi = &8 (1)T(2)V(3)[I+(13)][I—(21)] I (}oo(3,1)9'(2)&,

Hi =—&R (1}T(2)V(3)[I+(13)][I—(21)] I
H

I {po(3,1)9'(2)&,

H2 =&~(2)(Ipo(»1 }[I—(21}]I
H

I q o(»1»(2}&

(21a)

(21b)

(21c)

where 9' can be any one of P', 4', or 8, and similarly
P can be any one of similar integrals involving R, T, or
V. The Hamiltonian is given by

H =h(1}+h(2)+h(3)+ 1 1 1

r12 r23 r 3

during the variational process, the integrals

&u (2) lh(2) Iu~(2)&,

yp(3, () h(()+h(3)+ po(3, ()),1

r1
(24b)

h(i)—=——V; ——~ & 2

r;

& u~(2){po(3,1)[I—(21)] I
H

I {po(3,1)u}r(2)&, (24c)

(23)
the HP terms in QHQ

Since the target and kernel eigenfunctions remain constant h(2)u (2), (25a)

TABLE I. Full and quasi-projection-operator energies {g}',t) in eV for the lowest e -He resonance,
He [ls (2s): S]. Calculations are based on a 40-term configuration-interaction wave function. ' One
hartree is taken as 27.211 608 eV.

Target Energy

g
Quasi-projection

z, —
FuH projection results

O' —Ep ' —&o

Closed shell 77.489
Open shell 78.251

s ls'
I + I 2p 2p 78.782'

4-term HyOeraas 78.9666
10-term Hylleraas 79.0091
Exact target energy, ' Ep ——79.0150 eV
Exp nm~t l xnan~, ' I' —E,= 19.367+0.007 eV

19.366b

19.385
19.388
19.381
19.379

19.593'
19.666
19.615
19.496
19.504

18.067'
18.908
19.382
19.448
19.499

'The terms included in the CI wave function were
I (2s 2s }ls I, I ( 1s 2s)3s I, I

(2s 3s) ls I, I
( 1 s 2p)2p I,

l(ls2pop I, l(ls3p)2p I, 1(ls3p)3p I, I {ls3d)3d I, 1(2s2p')2p' I, l(2s2p)2p' I, 1{2s2p')2p I,
I{2s2 '}3s

I
I{2s'»}2

I
I{2s'2 '}3s I, l{3s2p'}2p'I l{2p'2p)3d I l{2p3d}2p'I l{2p'2p'}3d

I

I
{2p'3p}3d I, I

{3p3d}2p' I, I
{2s'2s'}2s I, I

{1s2s}4sI, I {2s4s}ls I, I {2s4s}ls I, I
{3s3s}lsI,

I {ls2p)4p I, I {ls4p}2p I, I
{ls4d}3d I, I

{ls4d}4d I, I {ls4f}4fI, I(ls2s}5s I, I
{2s5s}ls I,

l{ls2p}&p I, l(lssp)2p I, l{ls3s}4s I, l{3s4s}ls I, l(ls3p}4p I, l(ls4p}3p I, l{3s2p}2p'I, and

In Ref. 8, a hartree was assumed equal to 27.207 eV. Also, the quasi-resonance values reported here
were obtained vnth different orbital exponents.
'%his value eras obtained from the open-shell hmit; cf. Ref. 5.
~Reference 9.
'C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
Reference 11.
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[H —II (2)]go(3,1),
and the PHP tei~s in QHQ

yo(3, 1) yo(3, 1),1

~&z

q&0(2, 3)Hq)0(3, 1), (26b)

can be evaluated prior to optimization of
~
4). Details of

the evaluation of three electron Hylleraas integrals as
occurring, for example, in Eq. (24c} are presented in the
Appendix.

with

(1 2) ~ (e rl"I r2 2+e rl 2 r2 1)
~1~2 (28)

y) ——2. 1832, y2 ——1.1886 .

Results are given in Table I together with results from a
previous quasiprojection-operator calculation. The latter
showed little dependence on target quality. In contrast,
the present QHQ eigenvalue increases by 0.073 eV in go-
ing from the closed- to the open-shell target. This is
caused by kernel eigenvalues (A, ) near unity which make
the contribution of kernel eigenfunctions to the eigenvalue
problem significant. If a polarization term [(2p) ] is add-
ed to the open-shell function, the target energy drops by
more than half an eV. Again, the change in the quasi-
projection estimate of the resonance position is small
while the lowest QHQ eigenvalue now decreases by 0.041
eV.

Table I also contains results using a Hylleraas-type tar-
get function with four linear terms corresponding to
e= 1, discussed above, and also a 10-term Hylleraas-type
target, corresponding to r0=2. Values of the respective
linear and nonlinear parameters are given in Table II.

The QHQ eigenvalues relative to Eo are seen to fluctu-
ate; this suggests that the resonance position might be
better measured relative to the appropriate approximate

l

In these calculations the S resonant state is represented
as a 40-term CI wave function (cf. Table I}. Orbitals are
chosen to be of Slater type. For all targets studied, addi-
tional terms were included in the wave function and found
to lower the QHQ eigenvalues by at most a few meV after
the orbital exponents were reoptimized. (Each orbital has
its own nonlinear parameter; thus the total 4 has 14 non-
linear parameters, in addition to its 40 linear parameters,
and it represents a high quahty variational ansatz for the
accuracies involved here. )

Initially, two different 'S He target approximations
were used —a closed-shell (Eo———77.489 eV)

po(1, 2}=N&e ' ', y =1.6875 (27}

and an open-shell target (Eo———78.251 eV)

TABLE II. Optimized parameter set for open-shell HyHeraas
targets, Eq. (27).

71
y2
Cooo

C100

CO10

Coo1

Choo

C020

Coo2

&110

C101

C011

2.0S
1.SO

6.047 87
—4.407 77

0.99909
1.602 22

2.0S
1.7S
6.19724

—3.3149S
3.014 86
2.049 8S

—0.872 00
1.64249

—0.3S3 99
—0.19920

1.SS6 11
—0.689 S3

APPENDIX

We shall consider the integral I of three-electron Hyl-
leraas integrals with spherical harmonics, '

I'L,~, included

target energy, Eo. When this comparison is made, the
fcsollallcc post'tloll docs Indeed vary IIlollotolllcally, hilt lt
is seen to overshoot the experimental result as the target
state is improved, particularly for a many-parameter Hyl-
leraas form.

Comparing the two types of resonance calculations, one
might be tempted to conclude that the quasi-projection-
operator technique is better than the complete projection-
operator approach. We believe that such a conclusion
would be unwarranted. Although quasi-projection-
operators do have the essential property of yielding a
discrete s ectrum, k„(of QHQ) in the midst of the con-
tinuum, s that technique does not yield a rigorous way of
defining a shift, which is necessary for a determination of
the exact position of a resonance, E„,=I'+6, in the
Feshbach theory. On the other hand, a well-defined ex-
pression for 5 does exist for true projection-operator cal-
culations, and we believe that the real implication of our
results is that the contribution of 5 is essential. Further-
more, we beheve that such calculations may also allow for
the construction of an optical potential, &,p, from which
truly convergent nonresonant phase shifts can also be cal-
culated. (It will be recalled that our quasi-optical poten-
tial calculations did not converge' even though they were
monotonically increasing with the number of terms in the
ansatz for 4. )

In the present case, this would imply that b, [which can
be expressed as a principle value involving I (E')] is quite
different from the width I'=I'(E„) which is known to be
approximately" 0.01 eV in this case. The calculation of
the shift and width is now in progress.

I= r„rII rc r„s rIIc rc~ e yl. M„(r~)I'I, II (rg)FI, II (rII)&l. I (rs)FI, II (rc)I'I ~ (rc)
A 8 C AB BC CA

—Pg~g —Pg~g —PC~C
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Basically, these integrals can be divided into two classes depending upon whether or not the integers N„a, Nac, and Nc„
are all odd. If at least one of these integers is even, then I can be reduced to a finite sum of radial integrals. When all
the interelectromc distances are raised to an odd power, the three-particle integrals will contain an infinite sum over an-
gular momentum states.

Although methods for calculating integrals above have been given, '3 we have found them to be numerically unstable
or inefficient. We therefore rederive them here in a form which is particularly well suited for numerical evaluation.

The interelectronic distance can be expanded using Sack's formula'

r~a'= g ~~„,I.„,«~ ra)~z„,«, ~ ra} (N~a & —1} (A2)
L~a

where PL (x) are the Legendre polynomials and

( N/2—}L, (L N/—2)J( (N—+ 1)/2)1

( I /2)i q J!(L+3/2)g
(A3)

r & and r & are defined as the greater and lesser, respectively, of r, and rz, and (x)z is Pochhammer's symbol. ' Al-
though lengthy, the angular integration is straightforward, from which one obtains

R+ U+ V

LAB'LBC'LCA ~AH'~BC'~CA
I

X g d(L&,La,LAa~™z™a,™aa)d(L&LaLc&M&M~Mc&)
L~,M~

X g d(La, Lr,Lac, Ma, ——Mr, —Mac)d(LaLULgaMaMUMga)
L~,M~

d (Lc,L y,Lc„,—Mc, —My, —Mc„)d (LcLiyLacMaMiyMac)
CmC

N~
. r~ ra rc ~w„,L,„,«~ ra)~~„I.„«a rc)~~,„L,„«c r~)

X e
—A'~ aa"a rc c—d„d„—d„ (A4)

The Gaunt coefficient appearing above is defined in terms of the Wigner 3-j symbol'

d(LiLiL3MiM2Mi) =( —1}
{ j M3 j -M3)/2 (2Li+1) (2Lz+1) (o o o )(m, ar, sr, ) .I /2 /2 L ] L2 L3 L ] L2 L3

As stated above, if N„a, Nac, or Ncz is even, the angular momentum sums remain finite. A basic integral of the

-{A ]+A2+A3)r] N2 —{A2+A3)r2 N3 —A3r3
+NNN rl (ri+r2) e (r i +r2+ r3) e dr3dr2dr i (A6)

must be calculated. These integrals are known to be integrable whenever the integers Ni, Ni+N2+1, and
Ni+N2+N3+2 are all non-negative. In practice, however, the three-electron Hylleraas problem does not require
evaluation of the most general n integral. We consider two cases which together encompass al! necessary forms.

Case I. N i,N2, N3 & 0. For these integrals, the analytic expression for o is stable and easily determined,

(Ni+N2+N3)! ' ( Ni); (Ai+—A2+A3)'
i 2 3

(
A)+Ni+N3+i f N N N ) g!+i

N2+N3 —I
( N2 N3+i)p (A, +—A—i4-Ai)"

( —N, N, N, +i)„(g,+—g, )—h+1

Case II. X&, Xz+X3+ 1, NI+-Hz+1&0, and not case I. Wheneoer X2 or X3 are negatiUe, the analytical expression
for the cr integrals tend to be numerically unstable. For case II, the following numerically stable approach was derived.
Replace the ri variable in Eq. (A6) with x =(r, +r2)/(ri+r2+r3) and exchange order of integration to obtain

1 ~~'[+~2+~3~ ~ f
(

)+g+N3+i ~~2+~3~
(AS)

1 2 3 0 0 0

After integration over rz and r3, a one-dimensional integral that can be evaluated with Gaussian quadratures remains,
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N2+A'3+ i
Nl+N~+1

N
l N2N3 (A9)

( —N2 —N3 —1); (Azx +33) ' 'dx

;=o ( —Ni —N2 —Ni —') (~ x+W x+W )
""'"'"'

The sums in Fqs. (A7) and (A9) are numerically stable because all the terms are of the same sign.
In the projection calculation of the Schulz resonance, the three-electron integrals for which NAB, Nac, and NCA are all

odd involve only s orbitals,

NA Na Nc NAa Nac NCA —pA&A —pa&a —pc'c
Io 3 rA ra rc rAB rac rcA e drAdradrcdrAdrBdrc

(4m. )
(A10)

Although the method derived here for evaluating the three-electron integrals is generally valid, we will restrict our dis-
cussion to Io integrals. For these integrals, the angular integration simplifies considerably and Eq. (A4) reduces to

L=0 (2L +1)' (Al 1)

In the standard method' of performing these integrals, the sum over L is truncated and each L integral is evaluated
analyticaHy. Unfortunately, the convergence can often be slow and the sum has to be evaluated each time an orbital's ex-
ponent is altered. We present an alternative method that alleviates both of these problems.

At first, consider the region rA & ra & rc If R. NL is expressed in a form which makes clear the L dependence

g ( ) (2L 1)
2I (J N/2) X (L+2I) L+2—I( N —1)—

(2J + 1)! (J +3/2)L

then I0 over this region equa}s

(A12)

Io(~ &8 &C)=
~AB~JBCi~CA

( NAB ——1)2I ( NBC —1—)2I ( —NCA —1)2I
AB BC CA

(2JAB+1)! (2JBC+1)! (2JCA +1)!
2c B g -pA rA —para —pcrc NA +&AB+KcA NB+NAB —KAa+

l'g
0 0 0

where

Nc+Nac —2Jac+NCA —~c
Xrc "drA dradrc, (A13)

II'(»=—II'(NAB»ac»CA'JAB Jac JCA'»)

(JAB —NAB/2)L (Jac Nac/2)L (JCA ——NCA/2)L
(2L +1)xL .

(JAB+3/2)L (Jac+3/2)L (JCA +3/2)L
(A14)

Change integration variables to r =rc, x =r„/rc, and y =ra/rc and rearrange the order of integration, then Io has the
orm

Io(A &8 & C) =
JAa Jac JcA

( NAB —1)2I —( Nac —1)2I —( NcA —1)2I-
Aa ac CA

(2JAB+1)! (2JBC+1)! (2JCA+1)!

BA++BBr+PCi" A+~AB+~CA B+ AB AB+ BC
X 3'

0 x 0

NA +Na+ Nc+ NAB +Nac+ NCA +2,Xr drayax .
Integration over r and summation over the six spatial regions then yields the final expression for Io

Io (NA +Na+Nc+NAB+——Nac+NCA+2)!

( —NAB —1)2I ( —Nac —1)2I ( —NCA —1)2l
AB BC CA

(2JAB+1)! (2JBC+1)! (2JCA+1)!

(A15)

1 X
NA+2JAB+2JCA NB+NAB —2JAa+~ac

X dx 8'(x)
0 X EA ~NB+BIC+NAB ~BIBC+BICA+2

PAx +Pay +Pc

+(cAB )+(acA )+(&~&)+(&~&)+(C~&) dy . (A16)
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The integrals over y can easily be evaluated analytically; to avoid additional complexity, the general antiderivative has
not been explicitly written.

The expression for Io, Eq. (A16); has an extremely important feature —the infinite sum over angular momentum is in-
cluded in the orbital exponent independent W functions, Eq. (A14). This implies that if a fixed-point numerical integra-
tion routine such as Gaussian quadratures is employed to perform the integration over x, the infinite sum can be includ-
ed in the fixed weight factors. Of course, these modified weight factors do have to be determined for each (J„s,Jsc,Jc„)
triple. However, the different %functions are usually not independent, and recursion relationships between them can be
derived.

'Sachs/Freeman Associates, Inc. , 1401 McCormick Dr. , Land-
over, MD 20785. Present address: Spectral Sciences Inc. , 111
South Bedford St., Burlington, MA 01803.
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St., Arhngton, VA 22217.
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