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Integral-equation approach to the surface structure of classical insulating liquids
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%e have obtained self-consistent solutions to the hypernetted-chain integral equation in a planar
surface geometry. The surface density profiles are monotonic with a constant negative gradient and
show no surface structure. %e compute the surface total correlation function and direct correlation
function and also report on the temperature dependence of the surface tension, the position of the
Gibbs dividing surface, and the surface width.

I. INTRODUCTION

The structure of classical liquid surfaces and interfaces
is an old and formidable problem of condensed matter
physics. ' Basic questions are still being raised concerning
the existence and proper definitions of intrinsic surface
profiles. To date most information concerning the in-
terfacial structure on a microscopic level has been ob-
tained from molecular dynamics or Monte Carlo simula-
tions. This situation should be contrasted with that of the
uniform phases where complimentary perturbative, in-
tegral equation, and stochastic approaches have each been
developed to give a deep and insightful picture of the mi-
croscopic structure. The need to develop methods to sup-
plement the stochastic approaches is especially acute for
nonuniform liquids. If one uses a small system in the
simulation in order to better emphasize the surface then
fluctuations can be large and one can question whether
the information corresponds to a macroscopic surface.
On the other hand, in a large system the surface energy is
a small fraction of the total energy and so it is possible for
the stochastic approaches to develop metastable surface
structure. For a summary description of the various con-
clusions reached in simulations of the liquid-gas interface
see Ref. 8.

An integral-equation approach does not suffer from
this problem. One concentrates the computational effort
on the surface region and whatever structure is found is
due to the underlying equilibrium state. The drawback
with integral-equation approaches is that they are approx
imate in the sense that various classes of cluster diagrams
are omitted. Experience with the bulk, however, gives
some confidence that integral-equation solutions can be
fairly accurate representations of the exact stochastic re-
sults. In this letter we wish to report the first self-
consistent solutions of a set of integral equations which
describe a fluid with a planar surface geometry.

II. THEORY

We consider a fiuid with N particles in a volume 0 and
seek to determine the n-body distribution functions,
p'"'(1,2, . . . , n), in the coexistence region. For a single-
component system there is one independent thermo-
dynamic field along the coexistence curve which we
choose to be the temperature, T. We introduce an exter-
nal symmetry breaking field U,„,= g,. u(z;) into the
Hamiltonian. Below the critical temperature, T„anin-
terface will form in a plane normal to the z axis with the
liquid phase in the lower half space. By definition,

exp — U,„,+4 r„+~ r„+z r~
p'"'(l, 2, . . . , n)=

J exp[ —P(U,„,+e)]dr, dr, dr„

where P= 1 lktt T and 4 is the total interparticle potential.
In particular, the surface density profile p(z, )=p'"(1).
We now introduce the total correlation function h(1,2)
where

h (1,2) =g(1,2)—1

and p"'( l, 2) =p(1)p(2)g (1,2).
The total correlation function is in turn related to the

two-particle direct correlation function by means of the
Ornstein-Zernike (OZ) equation:

h(1,2)=c(1,2)+ I d3p(3)h(1, 3)c(3,2) . (3)

The role of the direct correlation function in the theory of

t

nonuniform liquids has been discussed extensively. ' If
we take advantage of the translational invariance of our
system in the XF plane, then the Ornstein-Zernike (OZ)
equation can be written

h„(z),z2) =c„(zi,zz)+ f dz3 p(zi)h„(z),zi)c„(z„zz),

where h„(zi,zz) is the Hankel transform of h(1,2):

h„(zi,z2) =2m J dppJo(ttp)c(p, z„z2), (5)

and the I it j are surface wave vectors. Likewise, c„(zi,zz )

is the Hankel-transformed surface direct correlation func-
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p(z) =(zo/AT )exp[ —Pu (z)+c(z)], (7)

where zo is the activity, A, z is the thermal de Broglie
wavelength, and with no ambiguity, we can drop the su-

perscript 1 on c(z). The one-particle direct correlation
function (DCF) is the generator of the higher DCF's, in
particular, 5c (1)/5p(2) =c (1,2}, an immediate conse-
quence of which is

Vic(1)= I d2c(1,2}V~(2) . (8)

tion c(1,2). (For the sake of clarity, we have suppressed
the temperature in the arguments of the various func-
tions. )

The surface distribution function, g(1,2) and direct cor-
relation function c(1,2) are related by the hyper-
netted-chain (HNC} equation

g(1,2) =exp[ PP—(r,z)+X(1,2)+E(1,2)],
where P(r} is the two-particle potential function and
X(1,2) = h (1,2)—c (1,2). We obtain the lowest-order
HNC equation (HNC/0) by omitting the sum of the ele-

mentary diagrams; i.e., setting E(1,2}=0. Several
methods for correcting this basic result have been
developed and will be discussed below. A discussion of
the application of this integral equation as applied to the
uniform bulk phase, can be found in Ref. 9.

In order to close the set of equations, we need a relation
to determine p(z). There are several possibilities. The
most popular choice has been the first Born-Bogoliubov-
Green-Kirkwood- Yvon (BBGKY) equation. ' We have
found, however, that an alternative form using the one-

particle direct correlation function c'"(1) is easier to im-

plement. Thus we use

these parameters includes the p, a, and z grid sizes and the
maximum values used for p and z. The great bulk of the
numerical work is contained in computing Hankel and in-
verse Hankel transforms accurately and in solving the
large set of linear equations. These aspects are not strong-
ly dependent on the density function and so they can be
tested in the uniform limit where highly accurate bulk al-
gorithms are .available. In the work reported below, we
used 25 values of p and a and 49 values of z. In the fol-
lowing we shall discuss the results of this calculation, fur-
ther details of the numerical work will be published else-
where.

In Fig. 1 we show surface density profiles for a range of
temperatures & T, . We find by inspection that T, =1.26
and p, =0.35. We note that this represents an independent
determination of the HNC critical point. These numbers
can be compared with those determined by analyzing bulk
equations of state. ' We find that our results are in strong
disagreement with critical constants obtained by analyzing
the compressibility ( T, = 1.39 and p, =0.28). Better
agreement is obtained, however, with those critical con-
stants obtained by employing virial theorem p, (-0.26).
The shape of our surface profiles have a monotonic nega-
tive gradient with no evidence for any enhanced surface
structure.

The results shown in Fig. 1 are for a fixed normaliza-
tion (that is, a fixed number of particles per unit area in
the calculational window). The results are independent of
the value of the normalization. Changing the normaliza-
tion rigidly translates the surface through the calculation-
al window. This effect is shown explicitly in the inset of
Fig. 1 for the T= 1.1 surface profile. In Table I, we have
collected various results including the estimated bulk

Equations (5)—(8} then form a closed set of relations for
the functions p(1), c(1), g(1,2), and c(1,2) for a given T,
P(r), and u (z}.

We have chosen the two-particle potential to be in
Lennard-Jones (LJ) form, P(r}=4(r' r} (w—hich de-
fines the usual reduced units). The LJ potential is a
reasonable representation of the interaction in a simple in-

sulating liquid. Its extensive previous use allows it to
serve as a reference system to compare results from vari-
ous approaches. The particular form used for the external
field is irrelevant as will be discussed below.

III. DISCUSSION
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We shall begin with a brief sketch of the numerical
work. %e divide the z axis into three regions: one in the
bulk liquid, one in the bulk vapor, and the third which en-
compasses the interface (we shall call this central region
the calculational window). The portion of the z axis in
the calculational window is discretized onto a set of N
points. Then if we use N„surface wave vectors, the sur-
face OZ equation becomes N )&N„linear equations. Typi-
cally this means 1000—2000 equations. These equations
were solved by standard numerical methods. " The OZ
equation together with Eqs. (6)—(8) were then solved
simultaneously by a Picard-like iterative scheme. There
are numerous numerical parameters which must be set
carefully in order to ensure accurate results. The list of
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FIG. 1. HNC surface density profiles for T=1.050, 1.10,
1.1S, 1.20, 1.2S, and 1.26. The inset shows the T=1.1 surface
profile as a function of normalization.
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liquid and vapor densities, the position of the Gibb divid-
ing surface and the surface width. The results at the
highest temperature are clearly suspect since the surface
width is nearly the size of the calculational window. (The
width reported in Table I is the conventional 90-10 ex-
tent. i }

The temperature dependence of zo, the position of the
Gibbs dividing surface (the surface of zero excess number
density), is interesting. As T increases towards T„zG
moves outward from the liquid into the vapor half-space.
This implies a skewed density profile quite distinct from a
simple mean-field tanh-like form but in qualitative agree-
ment with a somewhat more realistic penetrable sphere
model. '" It should be stressed that the density profiles
used in the analysis were obtained for a fixed number of
particles per unit area in the calculational window.

In Fig. 2 we show the surface total correlation function
h (p~,z) at T=1.10 taking slices parallel to the interface.
The bulk liquid and gas phase h (r}'s differ mainly in the
presence or absence, respectively, of structure following
the nearest-neighbor peak. The remarkable aspo:t of this
figure is the apparent enhancement of the nearest-
neighbor peak in the region of the interface. We note,
however, that this is probably the effect of too coarse a p
gIld.

In Figs. 3 and 4 we show parallel slices of the structure
functions h„(z,z) and c„(z,z) at T=1.10. (The z axes
have been reversed relative to Fig. 1.) The strong short-
ranged repulsion in the Lennard-Jones potential is reflect-
ed in the long-ranged ir dependence of the structure func-
tions. In Fig. 5, we show a transverse slice of c,(zi,zi)
with «.=0.687, a small wave vector. In this view, the
correlations contained in c„(zi,zq) have died out for

There are two fundamental approaches to computing
the surface tension, cr, which can be shown to be formally
equivalent. ' The Kirkwood-Buff (KB) expression can be
obtained by considering the functional derivative of the
grand potential with respect to the pair potential. ' On
finds

OO 2o = —, dzi p(zi) d2p(zq)(riz —3ziz/&ii)

xy (.»)g"" .

This expression is difficult to implement numerically be-
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FIG. 2. The total correlation function h (p~q, z,z) for T=1.1.
%e note the enhanced nearest-neighbor peak in the interfacial
region.

o'=(T/4) I dzi p'(zi) I d2p'(zt)(xi+yi)c(1, 2),
(10}

where primes denote differentiation. In Fig. 6 and Table I
we show the results from Eq. (5). The surface tension
clearly vanishes in the region T=1.26. The inverted tri-
angle is a Monte Carlo result from Ref. 7. The good

cause the strong short-ranged repulsion in P(r) requires a
dense grid for g (piz, zi, zz). The spacing which we used in
this calculation is simply too large (cf. Fig. 2}. There is an
alternative expression, however, which uses the DCF and,
for smooth density profiles, is much simpler than KB:

TABLE I. HNC liquid-gas coexistence curve: pI and p„arethe estimated bulk phase densities, zG is
the position of the Gibbs dividing surface, h is the 90-10 surface width, and o is the surface tension.

1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250

0.85
0.81
0.77
0.72
0.68
0.64
0.59
0.54
0.44

0.020
0.027
0.035
0.044
0.057
0.074
0.100
0.140
0.250

—0.64
—0.49
—0.33
—0.38
—0.22
—0.06

0.09
0.23
0.23

3.1
3.3
3.6
3.8
4.1

4.4
4.7
5.1

6.2

0.68
O.S7
0.48
0.39
0.31
0.24
0.17
0.11
0.02
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cleate a surface (i.e., the results presented above were ob-
tained in zero external field). The final profiles were
checked to ensure that they were independent of the par-
ticular initial configuration.

We point out that a related system, a liquid in contact
with a solid surface, has received detailed treatment by in-
tegral equation techniques. "

Capillary wave thtxiry predicts that the surface width
should have a nontrivial (In')'~ dependence where A is
the surface area. This weak divergence should apply to
the surfaces we considered since these surfaces are all
determined in zero external field. We are thus led to con-
sider the question: Why have we obtained well-defined
surfaces? There are several possible answers. First, the
HNC/0 approximation might not include the long-
wavelength capillary modes. However, as pointed out
above, Fig. 3 clearly shows enhanced long-ranged correla-
tions in the interfacial region. Second, this effect was
somehow lost in the numerical work. We carefully
checked the parameters used for the computations and did
not find that the surface thickened with smaller grid sizes,
longer cutoffs for the integrals, or a larger calculational
window. Third, and most probable, is the fixed normali-
zation. We found that we could only achieve stable con-
vergence of the iterative scheme by fixing the number of
particles per unit area in the calculational window. This
procedure seems to project out one particular surface
from the infinite number of equivalent surfaces obtainable
by rigid translations along the z axis. Thus, in this sense,
one may speculate that our solutions might be related to
the intrinsic profiles as discussed by Evans.

In further work, we shall report on a similar study us-
ing the Percus-Yevick (PY) equation. The thermodynam-

ic inconsistencies of the HNC and PY equations result in
coexisting liquid and vapor phases which are at different
bulk virial pressures. (This is the reason why the critical
constants reported here differ from those analyzed from
bulk equations of state. ) It is possible, however, to devise
a tractable algorithm for the surface problem which
generalizes the enforced thermodynamic consistency
methods'9' used for the bulk. This work will also be re-
ported elsewhere. %e shall also report on a spectral
analysis of the functions

C„(zi,zi) =5(zi —z2)/p(z~ ) —c„(z„z2)
and

H&(z ~ «z2 }=5(zi —zz ) +p(z& )p(zi )h„(z»z2)

which, following Wertheim's analysis, ' yield important
information on the onset of long-ranged correlations in
the interfacial region.

We noted above that Eqs. (9} and (10) were formally
equivalent expressions for the surface tension. However,
they may not yield identical results when using distribu-
tion functions and direct correlation functions which are
solutions of an approximate integral equation. This point
will be addressed by obtaining solutions with much small-
er grid sizes which will enable us to obtain accurate re-
sults from the Kirkwood-Buff expression.
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