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A variation-iteration procedure is described for determining the amplitude for scattering in the
presence of a laser field. The essential limitation of the method lies in the requirement that the in-

teraction of the charged projectile with the external field be sufficiently weak, relative to its interac-
tion with the target, to justify use of perturbation theory to account for the effect of the field in in-

termediate states of the collision process. This still allows for fields which are strong enough to sig-
nificantly affect the motion of the projectile in initial and final states (leading, for example, to multi-

photon transitions) and this strong interaction is treated nonperturbatively. The first two terms in
the modified perturbation expansion are analyzed in detail. They are expressed in terms of those
matrix elements which describe one- and two-photon free-free transitions in the absence of an exter-
nal field. The method is not restricted to a consideration of fields of low frequency but the first-
order amplitude obtained here does reduce, in that limit, to the known form of low-frequency ap-
proximation and the second-order amphtude provides a correction. The theory is described in the
context of nonrelativistic potential scattering. A discussion is included of some of the special
features of the second-order amphtude associated with potentials having a long-range Coulomb tail.

I. INTRODUCTION

When an electron scatters from a target in the presence
of a laser field, radiative interactions can play a signifi-
cant role, le@hug, for example, to the stimulated emission
or absorption of a large number of photons. ' lt might be
thought, then, that perturbation theory, which has been
the traditional tool in theoretical studies of spontaneous
radiation effects, would be ineffectual in the strong-field
regime. Indeed, the ratio of some suitably defined average
of the electron-field interaction energy to the photon ener-

gy, a parameter which provides a measure of the effective
strength of the radiative interaction in initial and final
states of the scattering process, can be of order unity or
greater even for fields of only moderate intensity provided
the frequency co is small enough. An enhancement in the
effective strength of the radiative interaction at low fre-
quencies can be understood as a consequence of the near
degeneracy of adjacent states of the electron-field
system —asymptotically, when the electron energy is well
defined, the level spacing is Ace. In many cases of interest
the asymptotic electron-field states can be constructed
analytically so that the inapplicability of perturbation ex-
pansion techniques causes no difficulty. Since the elec-
tron energy is not well de6ned during the scattering pro-
cess itself the near-degeneracy argument no longer applies.
A more appropriate coupling parameter in this case ~ould
be the ratio of the external field strength to some charac-
teristic atomic strength, which we take to be 109 Vjcm
(the field produced by a proton at a distance of a Bohr ra-
dius). This ratio is of order unity when the external field
intensity reaches the "critical" value I, =10' W/cml, ex-
tremely strong by laboratory standards. It then seems
lcasoilablc to cxpcct that for cxtcriial fliclds wltll llltciislty

I«I, a type of modified perturbation theory, involving
an exact description of the asymptotic motion and a per-
turbative treatment of the radiative interaction in inter-
mediate states, should be useful. Such an approach will
be described here, in the context of the relatively simple
model of nonrelativistic potential scattering.

The essential feature of the approximation procedure
outlined below lies in its decoupling of the ele:tron-field
and electron-target interactions. While this is a consider-
able simplification one is still left with the problem of
evaluating matrix elements involving exact solutions
(wave functions and Green's functions) of the scattering
system in the absence of the field. It should be em-
phasized that the approach adopted here includes the
low-frequency domain but it is not restricted to it. Since
much of the earher work on external-field scattering
theory has dealt with low-frequency fields we shall point
out exphcitly how our results reduce, in the appropriate
limit, to those already obtained. A characteristic property
of the low-frequency approximation (in any of its stan-
dard versions) is that it requires only on-shell scattering
parameters as input. In the more general results obtained
here off-shell information (in the form of field-free wave
functions and Green's functions) is required, as we have
-mentioned.

While there are several possible starting points for the
development of a modified perturbation theory we have
found it convenient to adopt the previously derived varia-
tional formulation as the basis for the discussion. By
suitable choice of trial function the combined effect of ra-
diative and scattering interactions can be built in approxi-
mately at the outset; the error in the trial function can
then be accounted for to first order. Extending the earlier
work~ we here derive a formal expression for the second-
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order error term —the difference between the exact transi-
tion amplitude and the variational estimate.
Intermediate-state radiative interactions are included in a
systematic way through a perturbative expansion of the
propagator which appears in the second-order error term.
Only the lowest-order contribution to such an expansion is
examined explicitly here. There are no obstacles, in prin-
ciple, in including still higher-order corrections, though of
course the computational difficulties will escalate rapidly.
In breaking off the expansion as we have done here, we
have included the electron-field interaction in asymptotic
states to all orders and in intermediate states to second or-
der.

As seen previously, the first-order (variational) texiai

factorizes into a field-dependent part and a matrix ele-
ment which represents single-photon bremsstrahlung.
This latter matrix element was evaluated analytically by
Sommerfeld for the case of a purely Coulombic scattering
potential. s No such analytic form is available for an arbi-
trary potential. A soft-photon approximation for this ma-
trix element is knclwn, s expressed in terms of the on-shell
field-free scattering amplitude. However, use of this ap-
proximation is restricted to the low-frequency limit, and
even there it will introduce errors of the same order as the
correction terms we now wish to include. Therefore, in
the context of the present procedure, we must rely on nu-
merical evaluation of the single-photon bremsstrahlung
matrix element, the procedure for which is now well estab-
lished. The second-order correction to the transition am-
plitude can be represented «s a sum of terms, each taking
the form of a product of a known field-dependent factor
and a matrix element very closely related to the amplitude
for tu)0-photon spontaneous bremsstrahlung. Interesting-
ly, in the special case where the potential is purely
Coulombic an extension of the Sommerfeld procedure has
been developed which allows for accurate evaluations of
matrix elements of this type. ' With some effort approxi-
mate numerical determinations of the two-photon matrix
element could be obtained for a wider class of potentials.
This would open the way to careful quantitative studies of
the range of validity of the low-frequency approximation,
and, more generally, of the modified perturbation theory
approach to the scattering problem.

II. FORMAL DEVELOPMENT

H =( i V eA/c—) /2m—+ V, (2.2)

where V is the scattering potential, falling off as glr at

The radiation field is described, in the Coulomb gauge,
by the classical vector potential A(t), a function only of
the time in the dipole approximation to be adopted here.
With A(t) assumed to vanish for t~+oo well-defined
momenta can be assigned to the electron in initial and fi-
nal states. While greater generality is possible we shall
spcclallzc at thc oQtsct to a potential of thc form

A(t) =Asdcos(tot), e' (2 1)

with A, a real, unit polarization vector, and with il ~0.
The Hamiltonian of the electron-field system is taken to
be (in units with i)l =1)

Xp-'(r, t)=(2m) ~ exp[ iE—~t+ip r.

+i (gm lp) ln(pr+p. r)

+i 4~p~'(t) ],
with E~ =pi/2m and

(2.3)

@(+)(t) J —ep A(t') e A (t')
78C 27FlC

(2.4a)

A ' A
'(t) = P + dt' . (2.4b)

mc 2mc'

We evaluate these integrals using the form (2.1}for A(t)
and, to simplify subsequent formulas, then allow ri to
vanish. Thus, with the aid of relations of the type

cos a~' e-&I'~ ~' co-'sin a~, g~O+

we find 4&+'(t) =4& '(t) =4z(t},—with

4&(t) =p& sin(cot) —(LL/2to) sin(2tet) —b,t;
here we introduced

p&
——(eW/mct0)p A,

„

b, = —,'e M /2mc

(2.5)

(2.6)

(2.7)

A constant term, singular in the limit ri~0, has been om-
itted in arriving at Eq. (2.5); this is permissible since it af-
fects only the overall phase of the solution. The wave
functions g~-'(r, t}may now be defined as solutions of

H i f———(r, t) =0(+)
Bt

(2.8)

subject to the conditions P~ '(r, t)~X-~ '(r, t) f-or

t~+ 00 ~

In the variational approach we introduce trial functions
P~' which have the correct asymptotic behavior but
which need not satisfy Eq. (2.S}. A convenient starting
point 1s the identity '

S=5,—iT,
where S is the S matrix element for a scattering process
which changes the electron momentum from p to p'
(momentum labels on matrix elements are omitted to sim-
plify notation}, S, is a trial Smatrix element defined as

S,= lim f d r[g~ ~ '(r, t)]'f~ '(r, t), (2.9b)

T= Jdt J d r[f~~
—'(r, t)]' H i g~'(r, t) .——

(2.9c)

great distances from the center of force. Following the
discussion in Ref. 4 we introduce asymptotic solutions of
the time-dependent Schrodinger equation of the form
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With (H —i 8/Bt)rP~ ' treated as a quantity of first order
the replacement of the exact solution i]()»~

' in Eq. (2.9c) by
the trial function P»,

' introduces an error of second order
and this provides the basis for the variational principle.

Rather than simply discarding the second-order error
term we proceed now to set up a successive approximation
procedure for estimating it, thereby allowing one to im-
prove on the variational approximation in a systematic
way. Toward this end we first derive a formal expression
for the error. Let 6(r', t';r, t) represent the retarded
Green's function, satisfying the condition

(2.10)

and the differential equation

H' i— , G (r', t', r, t) = 5—(r' r—)5(t' t—) .dt' (2.11)

where 8 is the step function. The identity

Here H' is the Hamiltonian expressed in terms of the
primed coordinates. The fundamental time-evolution
property of 6 allows us to write

i d ~' g& r",t' 6 r, t';r, t

(2.13)

is now r~A'ly verified. The procedure to do so, briefly outlined, is to move the operators H' and i 8—/Bt' to the right,
so they act on 6 rather than on f», ', and then to make use of the differential equation (2.11) for G. The Hamiltonian is
Hermitian, so no surface terms are introduced when H' is switched over. " When the time-derivative operator is
switched over, as part of an integration-by-parts procedure, one finds that, by virtue of the retardation property (2.10),
the end-point contribution evaluated at t'= —()0 vanishes. The contribution from t'= + 00 is nonvanishing, and is deter-
mined with the aid of the asymptotic condition g'», '(r', t')~g'» '(r', t') for t'~ ()0, along with Eq. (2.12). The result of
these manipulations is to transform the right-hand side (rhs) of Eq. (2.13) into [g» (r,t)], as claimed. The identity just
derived may now be combined with Eq. (2.9c), leading to the decomposition T = T' "+f( T, with

T(1)= t 3p {-)r t e ~ i (+) r t
a

CO
»1' r

gt t»f (2.14)

(2.15)

The variational approximation for the S matrix is

(2.16)

I

how this iterative procedure could be continued to gen-
erate corrections of still higher order.

with b, T providing an exact formal representation of the
error.

An estimate of the second-order error is obtained by re-
placing 6 in Eq. (2.15) by a trial Green's function 6,.
Corrections of still higher order may be generated by an
iterative procedure which we describe, somewhat schemat-
ically, as follows. With the solution to Eq. (2.11)
represented symbolically as

III. FIRST AND SECOND ORDERS
OF A MODIFIED PERTURBATION EXPANSION

g[~'(r, t) =exp[ iE»t +i@»(—t)]u»+-'(r),

where the u'+-' are solutions of the field-free wave equa-
tion

(3.1)

The trial functions adopted previously, and assumed
here as well, are of the form

(2.17) (3.2)

we introduce the identity

6 =6,—6(6 '6 —1) . (2.18)

If 6, is sufficiently accurate 6 '6, —1 may be treated
as a first-order quantity, in which case the replacement of
6 with 6, on the rhs of Eq. (2.18) will lead to an approxi-
mation for 6 correct to second order. This variational
approximation for 6, inserted into Eq. (2.15), provides us
with the estimate LET=—T' '+ T' ', where T' ' is obtained
from (2.15) by replacing 6 with G„and T' ' is obtained
by replacing 6 with —6,(6 '6, —1). It should be clear

satisfying outgoing-wave (+) and incoming-wave ( —)
boundary conditions. The functions (3.1) account for the
dominant asymptotic interaction of the electron with the
field but fail to provide a proper treatment of the radia-
tive interaction during the collision. The variational ap-
proximation (2.16) introduces a partial compensation for
this deficiency; to this must be added the error term (2.15)
to include the full effect of the electron-fidd interaction
in intermediate states. A perturbative construction of this
error term is based on the choice of trial Green's function
6, as the field-free Green's function Gp. The latter func-
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A. First-order term

The trial S matrix element defined in Eq. (2.9b) can be
evaluated by recognizing that as a consequence of the ra-
pid oscillations of the integrand in the limit t~ oo only
the singular part of the spatial integration contributes,
and to determine that contribution we may confine our at-
tention to the asymptotic region of configuration space.
Following the methods outlined in Ref. 4 for carrying out
such an asymptotic evaluation, and adopting the form
(3.1) for P~ ', we find that

exp[i (E~ E&)t +i—4~(t) i 4& (t)]-
S,=t(p', p} limt~ co P PE E ~ +ie—

(3.4)

where t(p', p) is the conventionally defined t matrix for
scattering in the absence of the field, and e is an infini-
tesimal positive parameter which, according to the stan-
dard procedure of scattering theory, is allowed to vanish
at the end of the calculation. fIts appearance in Eq. (3.4)
can be traced to the inclusion of a small imaginary contri-
bution to the energy of the outgoing scattered wave, an in-
clusion which is in fact necessary to keep the spatial in-
tegration well defined at infinity. ] To complete the calcu-
lation we note that, according to Eq. (2.5),
4p (t)—4p(t) p sin(cot) with

p=(e&lrncco)(p' p) A, . —
The expansion

(3.5)

e iPsin(rut) —~ e inmtJ (—nP
N =—to

(3.6)

where J„(p)is the cylindrical Bessel function, may be
used in Eq. (3.4) and the infinite hmit evaluated. Only the
term with n =0 survives and we obtain the result

tion satisfies Eq. (2.11) with A =0 and can be represented
by the eigenfunction expansion

Go(r't';r, t) = —iB(t' —t) f d q exp[ i—Eq(t' t—)]

)& u,'+ '(r') [u q'+'{r)]*,
(3.3)

where the symbol f d q is meant to include a sum over
discrete states as well as an integration over the continu-
um. In the following we examine the form of the first-
and second-order contributions to the S matrix corre-
sponding to the above choice of trial wave functions and
trial Gro:n's function.

recursion relation

i(p)+J + i(p) = (2n /p) J„(p)
we then find

T'"=2m g 5(E ~ E—n—co), M"',
P P (p p).g

with

(3.10)

with

M'"=A, f d'r[up' '(r)]*(—iV —p)u'p+'(r) . (3.11)

For Ez &E~ the functions uz
' and u~+' are orthogonal

so that we may replace —iV —p by iV—in the matrix
element (3.11},which is then identified (to within a nor-
malization factor) with the amplitude for single-photon
spontaneous bremsstrahlung. Since the bremsstrahlung
amplitude is singular for Ez E&~0—this limiting case
requires special consideration. We note first that the in-
tegral which vanishes due to orthogonality for E~ &E~
should more properly be written as

r u~
' r 'u&+' r = —2m' E~ —E~ t p', p

(3.12}

[as may be verified using an asymptotic evaluation of the
radial integral analogous to that employed in the deriva-
tion of Eq. (3.4)]. This contribution may be ignored, how-
ever, since the vanishing factor nco=E& Ez multip—lies
M"' in Eq. (3.10). We now observe that the same
asymptotic-evaluation technique applied to the brems-
strahlung amplitude leads to the result

l(, f d r[u' ~ '(r)]'( iV)u'+—'(r)

= —(E& E~ —ie) '(p—' —p).A, t (p', p) (3.13)

for E& E~~O. The—origin of the infinitesimal positive
parameter e is similar to that discussed in connection with
Eq. (3.4). (Here one must add ie to th—e energy of the
incoming scattering wave in u&

' as well as adding + ie
to the energy of the outgoing scattered wave in u~ . )
Since the hmit e~0 is taken last the factor
(Ez —E&)(E& —E&—i e) ' which appears in Eq. (3.10) is
interpreted as zero in the limit E& —E~~0.

The result of these considerations can be summarized
by writing the variational estimate (2.16}as

S„=—2m i g 5(Ep Ep neo) T„' ', — —(3.14)

S = 2ni5(E~ —E~)—t(p', p)JO(p) . (3.7)

In the evaluation of T"', defined in Eq. (2.14), we make
use of the relation

T„"'=Jo(p)t(p', p), n =0
neoJ„(p)M"', n~o, (3.15)

H i P'+—'(r—,t)
Bt

= —(e/mc) A(t)-( —i V —p)P~ '(r, t), (3.8)

appropriate to the form (3.1) for g~. With the aid of the

the index n having the obvious interpretation as the net
number of photons absorbed (n & 0}or emitted ( n ~ 0} in
the scattering process.

It should be emphasized that a low-frequency approxi-
mation has not been invoked in arriving at Eq. (3.15};as
discussed in Sec. I we do not wish to confine our attention
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to low-frequency fields. For the sake of orientation, how-
ever, let us briefly consider that special case. If we were
to make use of the approximation (3.13) for M'" we
would find, in the hmit ra~0 with p fixed, and for all n,

T„"'—=J„(p)t(p',p) . (3.16)

For potentials of short range the leading correction to the
approximation (3.16) [which can be obtained by improv-
ing the estimate (3.13) for M'"] is of order c0 and it too
cari be expressed in terms of t(p', p) i.(When potentials
with a Coulomb tail are admitted one finds that the
correction introduces additional terms depending logarith-
mically on the frequency. ) Such low-frequency approxi-
mations will play no role in the pres[mt approach, howev-
er, since the errors thereby introduced are comparable in
magnitude to the correction term T'2' to be included here.

8. Second-order term

The approximation adopted here for the second-order
correction term T' ' is obtained from Eq. (2.15) by replac-
ing G with Go, the field-free Green's function. Higher-
order corrections can be generated in a straightforward
may but will not be considered here. This perturbative ap-
proach should be valid for field intensities well below the
critical level. (Modifications would be required if there
were resonances present —for simplicity we exclude that
possibility here. ) Adopting the representation (3.3) for Go
we find, with the aid of the identity

(3.17)

the expression

T'2'= f dW J diexp[iWt iEptyi—«~(t)]

(3.18)

(+)(ri)[u(+)(r))«
G[)(r', r;$Yj= f diq (3.20)

is the time-independent field-free Green's function. The
integrations over time in Eq. (3.18) can be carried out
with the aid of Fourier expansions of the type shown in
Eq. {3.6). Use of the recursion relation (3.9) to combine
terms then leads us to the form

T' )=2m g 5(E ~ —E —nt0)T„' '

T„' '= —(eW/nic) (psp~)

(n —n')(n')J„„(p~)J„(—pz)

Here we have written A(t)=RA(t) and have defined

M' '(W= f d'r f d r'[A. ( iV' —p')u—[s '(r')]'

XG[)(r', r;$V)[A, ( iV —p)u[ +—s)(r)],

{3.19)

where

respectively.
We conclude this subsection with several general re-

marks which bear on the problem of evaluating the ex-
pression (3.22) for T„' '. We first observe that if the po-
tential has a Coulomb tail the matrix elements M' )(Ez)
and M[i)(E~ ) are each singular. [Such singularities do
not appear if V(r) is short-ranged. These points are dis-
cussed in more detail in the Appendix. ] Nevertheless, the
amplitude T„' ' is well defined since M' ' appears in Eq.
(3.22) multiplied by ( n —n')n' and as a result terms corre-
sponding to n'=0 and n'=n do not contribute to the
sum. The rapid energy dependence of the matrix element
for energies near E~ or E~ must be kept in mind, howev-
er, in approximate evaluations of the sum in Eq. (3.22).

To put this last remark in clearer focus let us consider
the situation where the field is of low frequency, and sup-
pose first that the potential is of short range. In that case
the replacement of M' )(E~+n'co) by M' )(Ez+nco),
with this factor then removed from underneath the sum-
mation sign, represents a reasonable approximation, since
for c0 small enough, the result will be fairly insensitive to
the choice of average photon number n The sum (3.2. 2)
can then be performed explicitly. ' In this way we obtain

'2

XM[ )(E~+n't0) . (3.22)

T(2)
(p' —p).A,

The approximate S matrix, correct to second order in the
modified perturbation expansion defined by the choice
(3.1) Of trial fullctlolis, ls 'thell glveil by @&here

X [n iJ„(p)—pJ„'(p)]M'2)(E&+ neo), (3.24)

S~—2ei g 5(E& —Es —ntoj(T„"'+T„"'), (3.23)

represented by Eqs. (3.15) and (3.22),

(3.25)
dJ„(p)J,'(p) = =—,[J„[(p)—J„+](p)]

cd
and we have used the definition (3.5) of p. ' On the other
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hand, if the potential is Coulombic at great distances a
more careful treatment of the energy dependence of M' '

is required; one cannot simply set n =0, for example. (We
return briefly to this point later on.} The case where the
potential is purely Coulombic, V(r) =g/r, may provide an
opportunity for quantitative studies of ttus matter since
very accurate evaluations of the one- and two-photon am-
plitudes M"' and M' ' can be obtained for such a poten-
tial. ' '

The utility of the expression (3.22) for T„' ' depends on
the rate of convergence of the sum over n'. The conver-
gence is of course most rapid at low field intensities. In
the extreme weak-field limit where the small-argument
representation J„(p)=—(p/2)"/n! is vahd one finds that to
order e2 only the terms with n'=1 and n'= —1 contri-
bute to To and only the terms with n'=+1 contribute to
T'+2. As a check, one can verify that the expression for
T„"'+T„' ' for n =+2, with terms of order e ' and higher
ignored, giies the correct two-photon absorption (n =2)
and emission ( n = —2) amplitudes in lowest-order pertur-
bation theory. Similarly, one can verify that the correct
lowest-order perturbation theory amplitudes for n =0 and
n =+1 are contained in the weak-field limit of the results
obtained here.

Turning now to the strong-field case of present interest
we introduce, for the purpose of discussion, the parameter

1/2

X (3.26)
co Ij E)

k

where I=ei W /Sec is the field intensity and we choo.e,
as reference values, aii ——0.1 eV, Ii ——10 W/cmz, and

Ei ——10 eV. (These parameters correspond approximately
to one of the experimental situations reported in Ref. 1.)
As defined above x represents, roughly speaking, the ratio
of the electron-field interaction energy epW/mc to the
photon energy co and, with angular factors ignored, pro-
vides a measure of the order of magnitude of the parame-
ters p~, p~, and p. Under conditions such that x is of or-
der unity or smaller, and with the possibility of rapid fiuc-
tuations of M' ' with energy ignored, the convergence of
the sum (3.22) should be rapid enough to make feasible
explicit evaluation of the amplitude T„' ' based on this ex-
pression. (It is important to note that the requirement
x & 1 does not restrict one to the low-frequency domain. }
On the other hand, for x =10, say, a large number of
terms (of order 10z) may be expected to contribute signifi-
cantly to the sum, and an evaluation of M'i'(E&+n'r0)
for each relevant value of n' would be tedious if not
prohibitively difficult. Considerable simplification can be
expected, however, if M' ' varies slowly enough with en-

ergy over the range of energies E~+n'co that are signifi-
cant. More specifically, suppose that M' ' can be ade-
quately represented by the first three terms in a Taylor
series expansion about E~. (Here we exclude considera-
tion of Coulombic potentials for reasons discussed above. )

Defining the quantities

o; = g (n'r0)'(n n')n'J—„„(p~)J„(—p&) (3.27)

(which can be explicitly evaluated using known sum
rules), and approximating the first and second derivatives
by finite differences, we may estimate the sum (3.22) as

AR2 2SE'

+M"'(E,—SE)— (3.2S)

where ~& is a suitably chosen energy increment. If M'z'

can be represented with sufficient accuracy by only the
first two terms in the Taylor series expansion, the terms
i~vol~ing o2 in Eq. (3.28) may be dropped and the approx-
imation for T„'' reduces to that shown in Eq. (3.24) with
n =o i/couo, ' this may be evaluated as

g [p~J„',(p) —(ii —s) (p~/p)J„,(p)]

(2ii'/p) J„(p)—2J„'(p)
(3.29)

The approximation expressed in Eqs. (3.24) and (3.29)
should be vahd if neo is sma11 compared with the energy
range over which M' ' changes by an appreciable fraction
of itself; the criterion y =

~
neo/E~

~
&& 1 might serve as a

rule of thumb in this regard. For the purpose of obtaining
simple, order-of-magnitude estimates of the parameter y,
let us introduce, in Eq. (3.29), the approximations
(J„'+i+I„'i)/2 ~J„'and [(n+1)zJ„+,+(n —1) „zJ,]/
2=n J„and replace p&, pp, and p by x. This leads to

GP~

y =-10
Q) I) Ep

(3.30)

As an example, the parameters I=2.5X10' W/cm,
u =2 eV, and Ep =0.25 keV lead to the values x = 10 and
y =,0. Under these circumstances use of the approxima-
tion (3.24) would appear to be preferable to an attempt to
evaluate the sum (3.22) directly.

If the matrix element M' ' does vary rapidly in some
restricted energy region {as is the case, for example, for
energies near Ep and Ep when the potential has a
Coulomb tail) the averaging procedure leading to Eq.
(3.24) may be generalized slightly to account for such
variations. For example, let us write

~
n

~
=x and y =xco/E~. (In this form y catt be interpret-

ed as the ratio of the electron-field interaction energy to
the initial electron energy. ) With x represented by Eq.
(3.26) the above estimate for y becomes
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M (~'(E~+ n'ai) =M (~'(E~+ neo)

+ [M(2'(E~+n'ap) —M'2'(Ep+nco)] .

Substitution of the first term on the rhs into Eq. (3.22)

gives back the result {3.24}. When the remaining term is

introduced one may hmit the summation to that range of
values of n' over which M(z'(E~+ n'ai ) is rapidly varying,
with n chosen to maximize the rate of convergence of this
sum.

The discussion given here concerning approximate
methods for evaluating the sum (3.22) is meant to he sug-
gestive rather than definitive. The point to be em-

phasized, in summary, is that traditional perturbative
methods, suitably modified to account for the effect of the
field on the projectile in initial and final states, can play a
useful role in analysis of the external-field scattering prob-
lem. Considerable attention has been given to the low-

frequency approximations in theoretical studies of this
problem over the past several years. Methods of the type
discussed here can (at some cost in increased calculational
complexity} be used to relax the requirement of low field
frequencies and widen significantly the range of applica-
bility of available techniques.
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Here we examine the convergence properties of the in-
tegral (3.19) which defines the matrix element M' '(W).
Since integration over a finite domain will converge it is
sufficient, in looking for possible divergences, to consider
only the asymptotic region of integration. Our method of
analysis {applied previously in Ref. 4) makes use of
partial-wave representations of the wave functions along
with the known asymptotic behavior of the radial func-
tions which appear there. We need concern ourselves here
only with radial integrations; these appear in the form

lim f e ('+~'r&dr =(ia) I (1+$) . (Al)
a~0+

(The integration has been extended down to the origin for
convenieno(' this does not affect the convergence proper-
ty of interest. ) A number of terms of the form (Al) ap-
pear in the calculation. We confine our attention to those
with the smallest value of a and the largest power b. This
is sufficient to prove convergence or to deteimine the na-
ture of the leading singularity.

With the energy parameter W set equal to q /2ni for
convenience we may represent the asymptotic behavior of
the Green's function (to within a multiplicative constant)

Go(r', r;q /2ni)-u'+-'(r') —e'~'(2qr)e' r

u(+){r} (2~}—3i2 f(+){r)eiPr(2Jir) igmIP—l
p~sc

T p (A4)

for r~00. We note that [u~ '(r)]'=u'+~'(r).
A distinction must be drawn between the case in which

the potential is of short range and that in which it is
Coulombic asymptotically. In the former case the rela-
tion ( —i V —p)u~+,', (r)=0 is satisfied and as a result the
integrand in Eq. {3.19) is proportional to

[11, ( —iV —p')u~. '(r')]'[u'+-', (r'}e""/r]

y [A, (iV —p)up+'(r)],

with u&+'{r) taking the form of an outgoing spherical
wave for r~ ao. One sees that the factor e'((+i'" appears
in the integration over the radial variable r which, owing
to the rapid oscillations of the integrand at infinity, is
convergent. Additional r-dependent factors do appear as
a result of the r' integration but their presence does not
affect the convergence. Considering, for example, the
contribution which is potentially most "dangerous" we

may write

l e'~ s'" dr' =r + ', i (p' q)r —+-
which, when multiplied by e'~+~" leads to a convergent
integral. It may be concluded that M'2'( W) is nonsingu-
lar for a short-range potential. In particular, for
W =Ep+ n'co, M'2'( W) is finite in the limit a)-+0.

We turn now to the Coulomb problem and observe that
the effect of the operator ( —iV —p) on the modified
plane wave u&+„',(r) is not to annihilate it but merely
(with regard to the radial dependence of interest here) to
introduce an additional factor of 1/r. Noting that u~+, ;„',
has an incoming-wave as well as an outgoing-wave com-
ponent at infinity, we identify the most singular part of
the radial integrations to be of the form

e'i' s"(r')' dr' f" e "s »"r'~dr, —-y ~

T

where the powers of ia and iP arise from the logarithmic
phase factors in the Coulomb wave functions. We expand
the exponential e "& v' and perform the integration over
r' term by term. Then, with the aid of Eq. (Al) to evalu-
ate the r integral, we find that in leading order the singu-
larity is of the form (q —p); this is proportional to
( 8' —Es) '=(n'co) '. In a similar way„by including
the contribution from the asymptotic region r'~ ao with
r & r ', we identify a singular term proportional to
( 8' E~ ) ' =[(n n')co—] ' —Recalhn. g the imphcit
presence of a small imaginary addition to the energy in
these denominators we see that singularities in the sum
(3.22) for n'=0 and n'=n are avoided owing to the ap-

for r~ Oo with r' & r. (The contribution from the domain
r'~ oo with r & r' can be studied in a similar way and the
result will be included below. ) It is useful to decompose
the wave function into incident and scattered coinponents,

(+) (+) (+)
Q p Q p» jgc +g p»scp with

uz+;„',(r)=(2m) i~ exp[ip r+i(grn/p)ln(pr —p.r)] .

(A3)
The scattered wave has the form
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pearance of the factor (n —n')n' multiplying the matrix
element. The significant conclusion which emerges from
these considerations is that M' '(E&+n'co) behaves as
co

' for &0~0. Accordingly, one may not assume M' ' to

be a slowly varying function of the energy in the low-

frequency limit and this must be borne in mind in devis-

ing approximate methods to evaluate the sum (3.22), as
discussed in the text.
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