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We consider the quantum decay from the locally stable ground state of a one-dimensional meta-
stable potential. We consider the case where the metastable minimum is almost degenerate with the
vacuum level. In this case, the quantum decay probability is influenced by backscattering from the
continuum states; a feature which is not accounted for in standard WKB theory. We evaluate the
decay rates, from the ground state and the higher-resonance states, by the use of complex-time
path-integral methods. The decay rate from the low-lying states of the metastable well is character-
ized by two quasi-zero-modes and a transmission factor, which approaches zero proportional to the
square root of the potential drop. Moreover, we present a useful set of rules for the complex-time
path-integral phase factors. These rules considerably simplify the calculation of decay rates (i.e., the
pole condition of the Fourier-transformed Green’s function).

I. INTRODUCTION

The problem of escape from a metastable state has long
been a subject of theoretical attention. In many situations,
the escape is controlled by thermally activated events, for
which a classical description is usually adequate.' In this
paper, our focus will be on a metastable state that has its
decay dynamics solely governed by quantum fluctuations,
at zero temperature. a-particle decay of nuclei represents
an archetype of such a situation. As is well known, the
original works of Gamow,? Condon and Gurney,’ and
Laue* represent milestones in the theory of particle decay.
Since then, this problem has been studied extensively.’ In
all the single-particle theories, the tunneling decay proba-
bility I is decomposed into the form I'=A4 exp(—B), i.e.,
a prefactor 4, and an exponential, quantum-mechanical
penetration factor B. The exponential B(E) is the
“Gamow factor” and is given by

exp[ —B(E)]
q
=exp[—2fqlqu{ZM[V(q)—-E]}‘/z/ﬁ , (L1

where M denotes the mass of the tunneling particle, E its
energy, and V(q) is the metastable (single-particle) poten-
tial field. The expression entering the exponent of (1.1)
coincides with the Euclidean action, evaluated along the
quasiclassical path ¢(7), at energy —E. That is, the ac-
tion is calculated along the classical path in the inverted
potential — V(q) which satisfies

d? dviq)
R 12
dar dg 12
and has turning points q, and q9

[¢1(0)=4g,(5T(—E))=0]. The prefactor is given by

A(E)= 20 T(E)’

where T(E) is the period of the classical trajectory of en-
ergy E, in the metastable well.

The standard result, (1.1), can be obtained through a
variety of different techniques. For example, it can be ob-

(1.3)
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tained by matching local solutions of the Schrodinger
equation onto an outgoing scattering wave function. The
matching conditions result in a nonlinear algebraic equa-
tion which determines complex values z, associated with
the resonances. The real part of z, gives the resonance
energy E, and the imaginary part is related to the decay
rate I',, through

T,=2Imz,/# . (1.4)

An alternative technique, which is particularly suited to
the task of obtaining analytic solutions, is based on
Feynman’s functional integral formulation of quantum
mechanics, as popularized in Ref. 6. This approach is
particularly useful since it provides a great deal of physi-
cal insight into the multiple-scattering processes which
give rise to the formation of the resonances, as well as
their decay. Such physical insight is afforded by the
description in terms of motion in a potential field, and
therefore forms a natural bridge between our classical in-
tuition and quantum mechanics. Furthermore, the path-
integral method also allows one to systematically incorpo-
rate higher-order effects.

The advantages of the functional integral formulation
of quantum mechanics has received wide recognition.
There have been many applications in a numerous variety
of fields including field theory,” particle physics,®~!! nu-
clear physics,'? atomic physics,'* and chemical physics.'*

The standard WKB result contained in Egs. (1.1) and
(1.3) may be derived by the path-integral method, by sum-
ming over the contributions to the trace of a propagator

G(E)=Tr(H—E)™". (1.5)

The contributions to the functional integral expression
come from paths of fixed energy E which traverse the
classically allowed regions of space, and may also enter
into the classically forbidden regions. In these latter re-
gions, the momentum takes on imaginary values and since
the coordinate is real, one is quite naturally lead to the
concept of an imaginary increment of time, and therefore
complex times. The WKB result (1.1) has been derived by
the complex-time, stationary-phase approximation in
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Refs. 9 and 12(a).

Recently, it has been shown'! that in order to get agree-
ment with the correct physical result, the complex-time
functional expression for G(E) has to be evaluated
without using the stationary-phase approximation.

In this work, we consider the quantum decay of a parti-
cle of mass M moving in a one-dimensional metastable
potential well described by V(gq). The type of potential
V(q) is sketched in Fig. 1. In the situation under con-
sideration, the energy of the metastable ground state may
only slightly exceed the vacuum level of the continuum.
As we shall see later, the calculation of the decay rate
from low-lying levels of the metastable well is consider-
ably more complicated than the corresponding calcula-
tions of quantum decay from other metastable potentials,
such as the cubic potential.

The calculation of the rate requires one to find the
paths which traverse the classically forbidden regime and
maximize the action. Such trajectories which traverse the
classically forbidden region once are often referred to as
“instantons” or “kinks,” and the time-reversed paths as
“anti-instantons” or ‘“antikinks.” An instanton—anti-
instanton pair is often called a “bounce” trajectory.

The decay rate is predominantly governed by the
bounce trajectory qg(7), which is a stationary point of the
action in the classically forbidden region. This bounce
trajectory, however, is not uniquely defined since a time
translation gg(7)—gqp(7+7() also satisfies the same boun-
dary conditions and yet leaves the action invariant. This
time-translational symmetry is revealed by an exact fluc-
tuation eigenmode proportional to gp(7) with zero eigen-
value. This fluctuation eigenmode restores the time
translational invariance of the system, when a specific
bounce trajectory is being considered. When one consid-
ers the decay of low-lying states, there are additional com-
plications that one should take into account, that are not
included in the standard WKB. First, the time separating

V(q) 4

————

FIG. 1. A schematic diagram of a potential having metasta-
ble states, and having a small potential drop between the meta-
stable minimum and the vacuum level of the continuum. The
drop between the energy of the nth metastable state E, and the
lowest level of the continuum is denoted by A,. The intercepts
go, q1, and g, are the turning points of classical motion in re-
gions 1 and 3, respectively. The frequency of small oscillations
within the metastable well is denoted by w,. We consider a
specific potential in which V(g)= —#iw;6 for ¢ > q; where § is a
constant. The curvature of the potential has a discontinuity at
g3, of magnitude V"'(g;—€)—V"(g3+€)=Mw}.
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the instanton—anti-instanton pair which forms the bounce
becomes quite large when compared to the time that is re-
quired for the instanton trajectory to cross the classically
forbidden region. This large bounce time generates anoth-
er approximate invariance of the system, namely the ap-
proximate invariance obtained by varying the time separa-
tion between the instanton and anti-instanton trajectory.
This approximate invariance manifests itself in a quasi-
zero-mode, the breathing mode, which describes the rela-
tive motion between the instanton and anti-instanton solu-
tions. This quasi-zero-mode requires careful considera-
tion. The second complication occurs due to the strong
influence that backscattering from the continuum has on
the decay rate. The complex-time path-integral formal-
ism’~!2 provides an appropriate vehicle for deriving ana-
lytic expressions in this situation. Here, we shall extend
previous results by one of the authors.!!

The study of this particular type of decay problem
possesses interesting applications in nuclear, or particle
physics®~!2 or in the dynamics of superconducting de-
vices.!> As examples, there is the problem of a-particle
decay in nuclei, with a resonance state that lies close to
the continuum level, and we also mention the quantum
decay of macroscopic metastable states that occurs in
current-biased Josephson junctions or superconducting
quantum interference devices.'® In these latter devices,
the junctions can be manufactured with parameters such
that the effect of dissipation is weak, and that the meta-
stable states are energetically close to the continuum level.

II. QUANTUM DECAY FROM LOW-LYING STATES

The standard WKB path-integral methods®—%'%2) are
not directly applicable to the calculation of the decay rate
from the potential form sketched in Fig. 1. In what fol-
lows, we will employ the complex-time path-integral
language, developed in Refs. 7—14.

We consider the trace of the Fourier-transformed prop-
agator, G(E),

G(E)=Tr

A

H—-E

[ drexpliEt /#)

|~

x [ dq(q|exp(—ift/f)|q) . 2.1

The time-dependent propagator in (2.1) can be directly ex-
pressed in terms of a Feynman path integral over closed
paths (g; =¢qy); i.e,

K(qy,1;;,0)=qy | exp(—iHt/%)|q;)

q
- fq»f@q(t)eXp[iS(q(t))/ﬁ]. 2.2)
Here, S denotes the action, evaluated along the path ¢(z);
ie.,

s= [ [4Mi(s)—Vig(s)]ds . 2.3)

In order that (2.1) be defined properly, the time ¢t must be
assigned a very small negative imaginary part .'"!3 The
diagonal form of the (closed-path) propagator leads to
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four distinct contributions to G(E);

4
G(E)= Y G/(E). (2.4)

i=1
The G; are determined by the trajectories which begin and
end in region i, as depicted in Fig. 1. We note that in or-
der to have periodic paths in region 4, it is convenient to
truncate the potential at ¢ =L with an infinite barrier for
q > L, and then take the limit of L going to infinity.

Due to the Hermiticity of the single-particle Hamiltoni-
an, G(E) only possesses poles on the real E axis. Thus,
the decay rates cannot be found directly. However, if one
continues the energy E to a value slightly above the real
axis in the complex E plane,'"'? then one can find the de-
cay rates for the metastable states of potentials of the type
depicted in Fig. 1. This continuation has the effect of ex-
ponentially suppressing the contributions to G(E) from
the paths in region 4. The paths in region 4 have a factor
of exp(—ym/§) associated with them, where { is the level
spacing of the quasicontinuum in region 4. Hence, in the
limit L — 0, £—0, and the contributions from region 4
are entirely negligible. The assumption that y is much
smaller than the rate which we desire means that the
imaginary part of E is still negligible in regions 1 and 2.
Furthermore, the contribution of G, to (2.4) is also ex-
ponentially suppressed by a barrier penetration factor,
when compared to G,. Therefore, the dominant contribu-
tion to the decaying states comes from G, i.e.,

G(E)~G,(E) . 2.5)

The quantity in (2.5) does include contributions from
paths which make excursions into regions 2 and 3 but
neglects those which enter region 4. The closed-path
propagator G(E) exhibits poles at the (complex-valued)
resonance energies

z,=E, —ifil, /2, (2.6)

where I',, is the decay rate of the metastable state with en-
ergy E,. The contributions of the various paths are cal-
culated in the manner outlined in Ref. 11. First, if we re-
strict the closed paths to remain entirely within the classi-
cally allowed region i =1 (a Minkowskian region), one ob-
tains a contribution to G of

i U(E)
Mgy L n=r
G (E)—ﬁT(E) 1_U(E) 2.7)

from a summation over all the multiple cycles within re-
gion 1. In (2.7), T(E) is the period of the closed classical

path of energy E, in region 1, and
U(E)=— expliW,(E)/#] (2.8a)

denotes the contribution from one cycle with two “reflec-
tions” at each of the classical turning points, and

W, (E)=2 fq':‘ (2M[E —V(¢)]}dg . (2.8b)

The classical turning points qo and g, are found from the
energy

=3Mg*+V(q) (2.9)
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from the condition ¢ =0. As is evident from the form of
(2.7), the multiPle cycles lead to a geometric series. The
contribution G{'"(E) given by (2.7) only exhibits poles on
the real axis, with unit residues. The poles are located at
the energies

EN =t (n+ 1), w%:—;—l—V"(qs)
which represents the approximate harmonic nature of the
metastable well. At these energies, we have
W(E")=(n+ +)2nh.

In order to obtain decay rates I',,, we clearly must also
account for the global structure of the potential field
V(gq). Thus, we must include contributions to G,(E)
which stem from paths which enter into regions 2 and 3.
Therefore, we must, for example, also take into account
those paths which start at a point g; inside region 1, then
enter into the classically forbidden region (2) at g;. These
paths are either “reflected” at point g,, or are continued
into region 3. The paths that enter region 3 are reflected
backwards at point g3, where V"'(q) is discontinuous. All
these paths eventually return to their starting point g;, via
a detour which passes through the turning point at g.

Inside the classically forbidden region, z < Vi(q), we

must consider the imaginary time trajectories;®~% i.e.,
d? dviq.)
L9 274 (2.10)
dr? dq,

which describes classical motion in the inverted potential.
In this, 7 is a Euclidean time obtained through a formal
analytic continuation 7=it of the Minkowskian time ¢.
The corresponding Euclidean action is defined as (—i)
times the analytic continuation of the Minkowskian ac-
tion. The action associated with one traversal of the bar-
rier region is given by

S=B(z)+71z, (2.11a)

q
B(z)= fql’ (2M[V(q)—z]}"%dq . (2.11b)

Next, we focus attention on the low-lying metastable
states, for which z=0(#iw,). In the case of a small poten-
tial drop, #iw36=0(#iw,), the path which enters the Eu-

Ty

q;

A
q, & 7

FIG. 2. The trajectory of an extended bounce (a kink-
antikink configuration) which extends between the turning
points g, and g,. In this, 7, is the kink width while 7, is the
length of the bounce.
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clidean region will remain close to the classical turning
points ¢; and ¢, for long periods of time, but will move
rapidly through the valley of the inverted potential
f/(q)——* —V(g), see (2.10. The form of this
instanton—anti-instanton trajectory is sketched in Fig. 2.
The trajectory is characterized by two time scales: the
time 7,, required to traverse the valley region of ﬁ(q),
ro~1/w,, where w’=|V"(q,)| /M, and the “length” or
the long time 7,(8) that the path resides near the turning
point g,. Each traversal of the Euclidean region (i =2), is
a kinklike trajectory for which the action has an approxi-
mate time-translational symmetry. This very feature
clearly plagues the evaluation of the Fourier-transformed
propagator in (2.1). To deal with the quasi-zero-mode
problem we introduce an improved semiclassical kernel
K(gy,t;q;) as a convolution of standard semiclassical ker-

nels K (Ref. 11),

- t

Kapt00= [ dtK(qp,t—tiigm)de ()
XK (Gmst13q:) » (2.12a)

where g,, is an intermediate point between g¢; and gy.
The semiclassical kernel, K;, follows from (2.2) by use of
the stationary-phase approximation as
—1/2
4 ]

172
dE?

i . .
- q.(0)q.(t)

X exp[iS(q.(1))/#] . (2.12b)

Here g.(s) is the classical path with boundary conditions,
q.(0)=q and ¢.(t)=q".

First consider the case where the path from ¢; to gy

|

K,(qg',t;q)=

_ t tl
Ky(:,1:0,0)=—[2V(q,)/M] [ dty [ 2K (gt — 11300300 0K, (Gusts — 12342393300 K, (Gus 12341 -

The velocity has been evaluated at ¢=gq,. The points
90,94,93 are depicted in Fig. 1. The additional parame-.
ters {go,92,93} in the propagators are merely to remind us
of the turning points and the reflection at g;. Moreover,
it should be noted that the path which executes the above
cycle in the reverse direction must be omitted, in order to
avoid double counting. This time-reversed path yields an
expression that is identical to (2.13). The above equation
is then transformed to Euclidean time 7=it, and the con-
J

i T(Z)U](Z)[1+lr3F3(Z)]
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lacks the quasi-zero-mode problem. Then, the remaining
t, integral in (2.12a) may be evaluated in the stationary-
phase  approximation.  This yields  K,(qy,t;9;)
=K,(qy,t;9;), where K; is explicitly given by Eq. (2.12b).
Next, suppose that the potential is such that the classical
path from g; to g, is a kinklike trajectory. Then, by
choosing ¢,, =q(2,) as the center of the kink, the #; in-
tegral in (2.12a) takes into account the displacement of the
kink, which arises from the large fluctuation associated
with the quasi-time-translation invariance of the kink ac-
tion. Since the action terms entering (2.12a) depend for
large (but finite) ¢ only weakly on ¢, the stationary-phase
approximation of the time integral in (2.12a) is no longer
applicable.

On summary, the merit of the expression (2.12a) is that
all fluctuations which influence the shape of the kink are
dealt with within the Gaussian approximation only, while
the large fluctuation mode, leading to a displacement of
the kink, is taken into account exactly.

Now consider a closed cycle which starts at g;, where
g; is in region 1 (see Fig. 1), then crosses the barrier at g,
is reflected at g3, then penetrates the barrier again at g, in
the reverse direction, and returns to the starting point g;,
via a detour to the turning point at go (see Fig. 1). This
path contains a complete cycle in the barrier region (Eu-
clidean time), which consists of a kink-antikink pair (see
Fig. 2). Hence, two quasi-zero-eigenvalues are involved in
the spectrum of fluctuation modes. These quasi-zero-
modes are associated with the displacement of the two
kink centers. Clearly, the improved semiclassical kernel
for this path is written as a convolution of three semiclas-
sical kernels; i.e.,

(2.13)

[

volutions inherent in (2.13) are evaluated in the same way
as in Ref. 11, Egs. (2.20)—(2.27). In doing so, one ac-
counts for multiple cycles in the region i=2 and 3. All
these various contributions lead to geometric series, just as
in the case in (2.7). Care must be taken to include the ap-
propriate phase factors at the classical turning points, as
well as the reflection coefficient at g3;. These factors are
discussed extensively in the Appendix. The result of this
exercise is given by

G(z)~G(z)=

Here, U,(z) is given by (2.8a), r, is the reflection coeffi-
cient at g3 and F;(z),

F3(z)=exp[iW;(z) /%] , (2.15)

is the phase associated with a cycle in the Minkowskian
region i =3. The factors Y, and Y, are the contributions
of the two half cycles in region 2 that both start and end
at g,, but return via a reflection at the turning points ¢,

B (1= U @))[1 +irsF3(2)]+ 14+ Uy (2)]Y5(2) Py (2)[ 1 —irsFs(2)]

(2.14)

and g,, respectively. These factors are given by the expli-
cit expressions

Yo(2)=[2V(g,)/M1'""* [ _dt explizt /RK,(qu:t:9139u)
(2.16)
Ya(2)=[2V(g,)/M1'"* [ _dt explizt /HK,(qu:t:4239u)

where a is the integration contour in the complex ¢ plane
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which passes through all the stationary points of the in-
tegrand. The pole condition of (2.14), will be rederived by
an alternative method in the Appendix. The position of
the poles, z,, can be evaluated iteratively. Using the har-
monic energies E, =%w,(n+ ), and on observing that

1-U(z,)=1+ exp

-;—(2172,,/&)1)

~—-2Zr, 2.17)
(23]
from (2.6), one can then obtain the expression for the de-

cay rate I'(E,)=T,,
1 —ir3F3(E,, )

, (2.18
1+ir3F3(E,,) ( )

w ~
T,=—Y,(E,)Y,(E,)Re
2

wherein Re stands for the real part. For the low-lying
states, where E, =0(#iw,;), the integration in (2.16) can no
longer be performed within the steepest-descent approxi-
mation. This reflects the fact that a considerable contri-
bution to the integrals come from ener§y values at which
the assumption of the smoothness of 3’W /3E? no longer
applies. Therefore, we must go beyond the usual approxi-
mation for the Euclidean factor Y,(E,). Following Ref.
11 Eqgs. (2.33)—(2.35), the explicit result for Y,(E,) is ex-
pressed in terms of a parameter A, that describes the
asymptotic behavior of the instanton trajectory go(7),
near ¢,, with energy E =0,

Ay
2M0)1

golr) — g5+ exp(+w 1), (2.19)

where go(0)=g,. Correspondingly, Y,(E,) is expressed
in terms of the parameter Ay characterizing the instanton
path G5(7), near g3, with energy E = —#iw5,

a(r) = 45— 2Mio3 expl —wy7) , (2.20)
where g5(0)=gq,. The constants 4, and A5 depend on
the explicit details of the barrier shape. The contributions

from the two half cycles in region 2 are then given by!!

Vo= (2172 A(Z) n+1/2
I'(n+1) | 2M*iw,
X exp[ —S1(go(7)) /1] (2.21)
and
v+1/2
7,(E,) = ﬁ:’i /12) 21; jah expl —S,(@5()) /4] .
(2.22)
In this expression, we have made use of the notation
A, —E, =t d=fiwy(v+ +)—fiw(n+ 1) ,
ie.,
v= ——; (n++)—3+5. (2.23)

The total bounce action S is given by
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S=S,+S,, (2.24)

where S is the contribution from the left half cycle; i.e.,
9y
Si@o(m)=2 [ “dql2MV(g)]'2, (2.252)

and S, is the contribution from the right half cycle with
energy E = —fiw36; i.e.,

9y
S,(gs(1))=2 fq dg(2M[V(q)+#w38]}' 72 . (2.25b)

On combining (2.21)—(2.25) with (2.18), and using both
the expressions for F3(E,),

F3y(E,)= explim(v++)]=iexplimv) , (2.26)
and the transmission coefficient .77(v),
14r; explimv)
T(v)= Re | 2PV | 2.27)
1—rsexplimv)

one can obtain the quantum decay rate I',. This yields
the main result of this paper,

1 A2 n+1/2
0
I, =
"+ DE(v+ 1) | 2Mw,
42 12
)
M, T (v)exp(—S/#) . (2.28)

The reflection coefficient r;, is determined by smoothly
matching a plane wave in the region i =4 onto a Weber
parabolic cylinder function!’ in the region i=3 [see the
Appendix, Eq. (A8)]. This yields the explicit result

g1 (2.29
r3= Kv+1 ’ . )
where
172
K= |—— | T2 (2,30
v+ (3 +4v/2)

The transmission coefficient is then evaluated as
—1

T(v)= —1~cos2 > +k, sin? > (2.31)

We shall now examine the limiting behavior exhibited by
the result (2.28) and (2.31).

When the energy of the nth metastable state E, be-
comes degenerate with the vacuum level, i.e,
A, =hw;(v+ 5)—0, then from (2.31) one finds that

r [ a, |'2
[(3) | fiws

Tv) — V2
An—b()

~4.18(v+ )12 . (2.32)

Hence, as the potential drop between the energy level and
the vacuum level vanishes, the decay rate I, approaches
zero proportional to the square root of the potential drop
A,. The standard WKB result (1.1) and (1.3), by contrast,
completely fails to predict this behavior, since it does not
involve any details of the potential in regions 3 and 4.
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TABLE 1. The transmission factor .7(v), (2.31), for @;=w3, as a function of the quantum number n
of the metastable state for different biases 8, (2.23). For a large bias (8 >>0) the transmission factor ap-

proaches unity.

6=-0.5 6=-0.45 6=-0.25 6=0 6=0.25
n 0 0.8182 1.1808 1.1283 1.0490
n= 0.9990 0.9927 0.9778 0.9772 0.9875
n=2 0.9999 1.0020 1.0079 1.0093 1.0055
n=3 1.0000 0.9990 0.9960 0.9952 0.9970

When the potential drop is large, v>>1, the I" function
in (2.30) may be approximated by the Stirling formula.
The transmission coefficient .77 (v) rapidly approaches un-
ity, and (2.28) reduces to

2 n+1/2
r,=— 46 exp(—S/h), (2.33)
"“Tn+1) | 2Mio, P St
where S is given by
S=S An 1+1 : (2.34)
= %, | T | 2Ma, :

and corresponds to the action of one cycle in the Euclide-
an region with energy E =0 [also see Eq. (A8) in Ref. 11].
Since the breathing mode of the bounce is no longer a
quasi-zero mode, when the potential drop A, is large, the
limit result (2.33) is identical with that obtained by the
standard bounce method.”®

If one examines the rate of decay from the metastable
states with high energies E,, one can reduce the general
expression into the standard WKB result. At high ener-
gies E,, n >>1 (but E, still not of the order of the barrier
height V), the remaining n dependence in (2.33) can be
simplified with the aid of Stirling’s approximation. If one
assumes that the turning points q; and g, are still near
the harmonic region of the potential well, then the
penetration factor (1.1) can be obtained from (2.33) as

A}
2ME

1+ 1In ) (2.35)

B(E)=§— £

2(1)[
where S is given in (2.34). Hence, in the limit v>>1 and
n >>1 we recover the standard WKB rate

TE)= = exp[ —B(E)/#] .
2T

(2.36)

The deviation of the full expression (2.28) for the rate,
from the standard WKB result may be surmised from ex-
amining Table I, which shows the values of .7 (v) for the
various resonant levels, denoted by n, for five different
values of the bias §. We have chosen the value of w,/w;
equal to unity. We note that .7 (v) approaches O for the
n=0 resonance, when 8= —+; i.., the ground state
matches with the continuum level. In this case, the
transmission factors for all the other resonance levels are
close to unity. Thus WKB is extremely good for all the
levels except the n=0 level. As the bias increases, the
value of 7 (v) rapidly increases for the n =0 level, but one
notes that the .7 (v) starts to oscillate as » is varied.

The other factors involved in the deviation from the
standard WKB result is the presence of the I" functions in
the place of Stirling’s approximation. The effect of these
factors are not as dramatic, they merely give rise to a small
diminuition of the rate from its WKB value.

III. DISCUSSION AND CONCLUSION

We have evaluated the quantum decay rate for a parti-
cle to tunnel out of a metastable state, into a semi-infinite
well in which the potential is bounded from below. There
exists a threshold for tunneling decay to occur; this sim-
ply corresponds to the matching of the energy of the
metastable state with the lowest energy level of the contin-
uum. We have investigated the decay rates, paying partic-
ular attention to the behavior near this threshold. The de-
cay rate is found from the poles of a Green’s function
G(E). The Green’s function is expressed as a Laplace
transform of a Feynman path integral. The effect of tun-
neling and backscattering from the final continuum states
are accounted for by summing up contributions from
paths, in complex time, that traverse both the classically
allowed and the classically forbidden regions. In order to
obtain the correct form of the rate in the vicinity of the
threshold, it was necessary to evaluate certain crucial con-
tributions, (2.21) and (2.22), by going beyond the
stationary-phase approximation. The prefactor of the re-
sulting rate involves a transmission factor 7 (E). The
transmission factor approaches unity for the highly excit-
ed states, and the rate reduces to previously derived ex-
pressions. As the threshold is approached, the rate van-
ishes in proportion to the square root of the energy differ-
ence between the metastable ground state and the lowest
level of the continuum.
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APPENDIX

In this appendix, we present a prescription for evaluat-
ing contributions to the complex-time path integrals that
prove to be extremely useful in obtaining the pole condi-
tions of the type used in Eq. (2.14). As is well known,!?
the phase of a semiclassical amplitude is influenced by the
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number of turning points along a particular trajectory. In
complex-time trajectories, the phase of the semiclassical
amplitude is determined not only by the trajectories which
undergo multiple reflections in Minkowskian regions of
phase space, but also undergo multiple reflections in Eu-
clidean regions and transmissions between the Min-
kowskian and Euclidean regions, or vice versa. We intro-
duce the following notation: r,, is the reflection coeffi-
cient for the amplitude at a classical turning point in a
Minkowskian (real time) region, rz is the reflection coeffi-
cient for the amplitude at a classical turning point in an
Euclidean (imaginary time) region, ?), is the transmission
coefficient for the amplitude for an entry from a Min-
kowskian region into a Euclidean region, and ¢z is the
transmission coefficient for the amplitude for an entry
from a Euclidean region into a Minkowskian region.

For a smooth potential at the boundary between the
Minkowskian and Euclidean region (such as in the har-
monic potential) as shown in Fig. 3, one finds on compar-
ing with the results from standard quantum mechanics
that

ry=exp(—im/2), tyy=exp(—in/2), Al
A
re=vexplim/2), tg=explim/2).

In particular, we note that ri = exp(—im)=—1, which
gives the familiar phase for the semiclassical (Minkowski-
an) amplitude for a path with two turning points, since
each turning point contributes a factor of exp(—im/2)
(Refs. 10 and 18) [also note the minus sign in (2.8a)].

We shall now reconsider the pole condition of Eq.
(2.14). We denote by Q=Y,uY,1 the contribution of one
cycle in the Euclidean region (i =2), in which Y, and Y,
are the contributions of the two half cycles, evaluated in
(2.21) and (2.22). The additional factors of u and # take
into account both the reflections at the turning points ¢,
and ¢q,, respectively, as well as the excursions that
penetrate into regions 1 and 3, respectively. The summa-
tion over all the multiple cycles in region 2 yields a
geometric series

< on__ @
=—=—, (A2)
n§1 Q 1— Q
A
V(q)
M E
v Wy
‘_’) |
e "ﬁ%
9 q

FIG. 3. The coefficients of reflection r and transmission ¢,
that occur at a classical turning point g,. The indices M and E
denote the Minkowskian and Euclidean regions, respectively.
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Then one finds the pole condition, 1—Q =0. Further-
more, since the factor u (&) is a superposition of a reflec-
tion coefficient r; and a transmission coefficient ¢z aris-
ing from the boundary between regions 2 and 1 (3). The
transmission coefficient is multiplied by a factor
representing the sum over any number of cycles in region
1 (3). We denote the contribution arising from one cycle
in the Minkowskian region j (j=1,3) by

Fi(z)= exp[iW;(z)/#] , (A3)

where W ,(z) is defined in (2.8b) and W;(z) is defined in a
similar manner. On attaching the appropriate reflection
and transmission factors in the jth Minkowskian region,
the pole condition assumes the form

ruFy
1-Y, ’E+IE‘—‘—“‘_‘1 ey M
XY L =0 (A4)
+1t ty |=0. 4
2 |TE Eq, r+Fs M

In this expression, ry is the reflection factor at ¢=gqs,
which arises from the discontinuity of V"'(¢). If we insert
the explicit forms in (A1), the pole condition can be recast
as

F,
2 (14F)

J_ (—i)r3F3

2 T 4irsFy)

1+ 7,7,

or
(1+F)(1+irsFy)+ 5 Y, Y, (1—F)(1—iryF3)=0 .
(A5)

If one then puts F,=—U,, (2.8a), then (AS) becomes
identical with the pole condition given in (2.14).

As a second example, we shall consider the double-well
potential sketched in Fig. 4. Using similar reasoning, we
immediately arrive at the pole condition

1-Y p— 1
— —_—t
2\re e T ) M
~ rMF_-;
Y tp——————1) | =0
X T rE+E(1_erMF3) M
A
V(q)
-+
99 q, q; q3 q

FIG. 4. The classical turning points g, g1, ¢, and g; that

occur in a double-well potential.
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V(q)

/ &
G 9 9, q

FIG. 5. A potential composed of two semiharmonic wells, of
different curvature, connected at g =gq,. The turning points of
the classical motion are at g, and gq,.

which, with U, = —F, and Uj; = — F3, simplifies to

(1—UD1=Uy)++Y,Y,(14 U1+ U3)=0. (A6)

When evaluated within the semiclassical approximation,
the pole condition given in (A6) coincides with the pole
condition found in Ref. 11, Eq. (2.28), i.e.,

(1-U)(1=U3)+Y,Y,=0. (A7)

We shall now evaluate the reflection and transmission
coefficients that occur at discontinuities of the potential.
By smoothly matching the wave functions across the
discontinuity, one finds the expressions for the reflection

and transmission coefficients
, , ky—ky
1=—rm=7_;
ki+ky ’

(A8)
t1=tn=(1—~rf)1/2 )
where the index I (II) refers to the left-hand (right-hand)
side of the boundary. If the potential is discontinuous at
q=qo, i.e., Vigo—e€)=v;, Vigp+€)=vy and if
V'(qo—€)=V"(qy+€)=0, then we find that

kj=[2M(E—v;)]'/?, j=LII.
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If the discontinuity only occurs in the curvature of V(q),
as is the case at g =gq; in Fig. 1, we find that

ky=(2MA,)'?

and

ky=xky ,
where

|2 2 P(14v/2) (A9)
Yolv+t | T3+v/2)

and we have also made use of the parametrization (2.23).
Finally, we shall briefly discuss the pole condition for
the potential depicted in Fig. 5., namely two semiharmon-
ic wells of different curvature Mw? and Mw}, respective-
ly. These wells are joined together at the origin, as shown
in Fig. 5. For a trajectory of energy
E =#w(v+~)=#wy(u+7), the reflection factors as-
sume the form
Ky—K

£ (A10)
Ky+Ky,

n=—ran=

where k, is given by (A9). The pole condition for this po-
tential is given by

_, ruFy ruFn
! (1-—-r[rMF[) (l—r"rMF")

1 ty=0, (A11)
in which Fj and Fy; are the contributions from the half
cycle in each part of the Minkowskian regions, ie.,
Fi=explim(v++)] and Fy=explim(u+5)]. The
eigenvalue spectrum obtained from (A 11) is exactly identi-
cal to that obtained by smoothly matching the parabolic
cylinder functions'” D,(yy) and D,(yy) where
yi=(2Mw; /#)'"%q, i=LIL. As the energy is increased
both «, and k, approach unity. Thus, the reflection fac-
tors r; and ry; approach zero. Consequently, for the high-
ly excited states, one obtains the eigenvalue condition

1+F1Fu=0 (A12)

as can be expected from naive considerations.
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