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The absolute specific mass shifts for the 2S ground state of the lithium atom are calculated using
a 352-term Hylleraas-type wave function. The specific mass shifts for ’Li and °Li are 5.180 and
6.042 cm ™!, respectively, using first-order perturbation theory, and 5.177 cm~"' ('Li) and 6.039 cm ™!
(°Li) from a nonperturbative approach. With use of Pekeris’s accurate values for the specific mass
shifts of Li*, the transition isotope shift of Li relative to Li* is calculated to be 1.101 GHz, using
first-order perturbation theory, and 1.071 GHz from a nonperturbative procedure. The calculated
shift is in very close agreement with the experimental value of 1.111+0.006 GHz obtained by

Lorenzen and Niemax.

I. INTRODUCTION

There has been renewed interest in the determination of
specific mass shifts over the last few years."? The in-
creasing availability of accurate experimental isotope
shifts has attracted recent theoretical attention to the cal-
culation of these shifts.>~> Because the specific mass
shift is rather sensitive to electron correlation effects,
there are relatively few calculations of very high quality
available in the literature for this quantity. The notable
exceptions being the work of Pekeris and co-workers on
the ground and excited states of helium and members of
its isoelectronic series.5 12

The present study was undertaken with two goals in
mind. The first was the accurate calculation of the transi-
tion isotope shift, using a Hylleraas-type wave function
recently determined by King and Shoup.!* Since this
wave function yields approximately 99.97% of the corre-
lation energy, it should be especially suited to the calcula-
tion of this correlation-sensitive property. Some observa-
tions on the rate of convergence of the expectation value
of the specific mass shift and its sensitivity to electron
correlation are made. The second objective is that the
present calculation forms one step in the sequence of an
accurate ab initio calculation of the ionization potential of
the lithium atom. Assessment of the accuracy of any ab
initio calculation of state energies involves a comparison
with appropriate ionization energies. There are four com-
ponents of the ab initio calculation; the nonrelativistic en-
ergy, nuclear mass adjustments which include the normal
mass shift and the specific mass shift (mass polarization
correction), relativistic corrections, and the Lamb shift. A
principle problem of the ab initio calculation is the diffi-
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culty associated with assessing the accuracy of these indi-
vidual components, primarily because no direct compar-
ison with experimental values is possible. This is true for
the relativistic contribution and for the nonrelativistic
ground-state energy. The accuracy of the latter can cer-
tainly be assessed by lower-bound techniques, but this is a
very difficult computational problem and most often, in-
tractable. There is lacking in the literature experimental
data for the quantum electrodynamic shift for states for
systems with more than two electrons. The only one of
the four contributions for which some independent assess-
ment of the accuracy is possible is the specific mass shift
term, particularly for light atoms, where the field shift
and relativistic terms involving the nuclear mass (the
Stone Hamiltonian'*!®) are expected to play a fairly
minor role.

Considerable progress on the computation of specific
mass shifts has been made over the past couple of years by
theorists using configuration interaction (CI) methods and
many-body techniques.>~> The results have been quite
impressive, particularly for some of the many-electron
systems considered. The present calculation should pro-
vide a useful benchmark for such procedures, where the
computational errors are typically a few percent or more.
Highly accurate calculations of the specific mass shift
also offer the potential to assess indirectly the combined
importance of relativistic and field shift contributions to
the experimental isotope shift. When one or the other of
these effects is negligible, the possibility exists to obtain
an important check on the Stone formulation of the rela-
tivistic contribution, or to gain information on nuclear
structure. Such a line of attack has been carried out for
the helium atom.!®
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II. THEORY

The effect of finite nuclear mass on the ener%y levels of
an N-electron atomic system is well known?!”® and only
a brief outline will be given. The nuclear mass can be ac-
counted for by the addition of the following term to the
infinite nuclear mass Hamiltonian:

N 2
EPi

, (1
i=1

1
Hys==
MS M

where M is the nuclear mass and p; the electronic
momentum of the ith electron. H)yg separates into two
parts, a normal mass shift (also termed the Bohr shift)
Hyus, and a specific mass shift Hgys (sometimes re-
ferred to as the Hughes-Eckart term);

Hys=Hnms +Hsums » (2)
where
Hyws == 3 p? &)
M i=1
and
1 N N
HSMS=‘1;!~ > 3pip;- )
i=1j>i

The shift of the energy levels due to the normal mass ef-
fect is handled in a straightforward manner by the intro-
duction of a reduced-mass Rydberg constant R, so that
the shifted levels are Ry E , where E , signifies the ener-
gy of the level of interest in the infinite nuclear mass
model. The specific mass shift is far more difficult to
handle in comparison with the normal mass shift. As in-
dicated above, the specific mass shift is very sensitive to
electron correlation effects. For the lithium atom ground
state treated in the Hartree-Fock approximation, the ex-
pectation value of Hgys is zero, and it is therefore essen-
tial to evaluate the specific mass shift using a wave func-
tion which adequately accounts for electron correlation.

The energy shift due to the specific mass term, AEgys,
has been calculated by two procedures in the present
work. AEgys has been evaluated by first-order perturba-
tion theory using the wave function determined from the
normal Hamiltonian (no specific mass shift operator
present). The appropriate expression is

AESMS=—%<¢ S V.-V, ¢>, (5)
i j

1,
i<
where p is the reduced electron mass. The appearance of
J
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m,. (the electron mass) in the denominator of u/M is
often omitted; its impact on the value of AEgyg is below
the current uncertainty in the experimental measurements.
AEg\s has also been determined by including Hgys with
the rest of the Hamiltonian and solving

3

1 &2 1 3
Vi V-V, +V |y=Ey, (6)
2u i§1 M igljgi !

from which AEgys has been evaluated as the expectation
of Hgys, Eq. (4), using the eigenfunction obtained from
Eq. (6). In Eq. (6), V is the appropriate potential operator
for the lithium atom. An alternative operator form for
AEgys has been given by Vinti,'® but this has received far
less attention in the literature.?’

The calculations reported in this work were carried out
using a 352-term Hylleraas-type wave function of the
form

352
Vv=o 3 C,d.X,, (7)
p=1

where 7 is the antisymmetrizer and C,, are the variation-
ally determined expansion coefficients. The basis func-
tions ¢, are of the form

¢y(r1ar2:r3:ul’u27u3)

=¢,(i,j,k,lm,n,a,B,7)
i jok, 1
= r'{‘rjz“r Jufu ;n“u '3’“ exp(—auri —Bura—vurs) (8)

where u,=r,3, u,=rs, and u3=rj,, and the exponents
iys jus Kus Iy, my, and n, are each gra'tter.than or qqual
to 0. In Eq. (7) X denotes the doublet spin eigenfunctions.
There are two such functions:

X =a(1)B(2)a(3)—B(1)a(2)a(3) (9a)
or
X=2ﬁ(1)a(2)B(3)—/3(1)a(2)a(3)—a(1)B(2)a(3) .
(9b)

For a complete description of the details on the basis
functions selected in Eq. (7), the reader is referred to Ref.
13.

Since the basis functions given in Eq. (8) depend expli-
citly on the interelectronic coordinates, considerable sim-
plification of the necessary matrix elements results if
Hgys is expressed in terms of the interelectronic coordi-
nates. In these coordinates Hgys takes the form (in a.u.)

i=1j>1
1 ||, 29
= +
M {igl[ u‘2 U; au,-
+ 3 “i2+uj2““13 3? _ "i2+’j2““l% 3’ ’iz_"jz"'uls 32 (10)
g,ijk 4u,~uj auiauj 4r,~rj ar,-arj 2r,-uk ariauk )
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TABLE 1. Basis functions and coefficients resulting from the action of the operator 3, ; ., Vi'V;
on ¢(i,j,k,l,m,n,a,B,v) [see Eq. (11)].

Coefficient®
Term i'—i J'—J k'—k I'—1 m'—m n'—n c,'J,’dfm"""‘

1 -1 0 0 0 0 0 alm +n —k —j)
2 0 -1 0 0 0 0 Bl +n—i—k)
3 0 0 -1 0 0 0 vy +m—i—j)
4 -2 0 0 0 0 0 iG+k—m—n)
5 0 -2 0 0 0 0 jli+k—1—n)
6 0 0 -2 0 0 0 k(i+j—1—m)
7 0 0 0 -2 0 0 —I2I+2+j+k+m+n)
8 0 0 0 o -2 0 —mQ2m+2+i+k+1+n)
9 0 0 0 0 0 -2 —n2n+2+i+j+I1+m)
10 1 0 0 0 -2 0 am

11 1 0 0 0 0 -2 an

12 0 1 0 -2 0 0 Bl

13 0 1 0 0 0 -2 Bn

14 0 0 1 -2 0 0 vl

15 0 0 1 0 -2 0 ym

16 2 -1 0 0 0 -2 —pBn

17 2 0 -1 0 -2 0 —ym

18 0 2 —1 -2 0 0 —vl

19 —1 2 0 0 0 -2 —an

20 0 -1 2 -2 0 0 —pBl

21 —1 0 2 0 -2 0 —am

22 -2 2 0 0 0 -2 in

23 -2 0 2 0 -2 0 im

24 2 -2 0 0 0 -2 jn

25 0 -2 2 -2 0 0 jl

26 2 0 -2 0 -2 0 km

27 0 2 -2 -2 0 0 kil

28 0 0 0 -2 -2 2 Im

29 0 0 0 -2 2 -2 In

30 0 0 0 2 -2 -2 mn

31 1 —1 0 0 0 0 af

32 1 0 -1 0 0 0 ay

33 —1 1 0 0 0 0 aff

34 0 1 -1 0 0 0 By

35 -1 0 1 0 0 0 ay

36 0 -1 1 0 0 0 By

37 —1 -1 0 0 0 2 —apf

38 -1 0 -1 0 2 0 —ay

39 0 —1 —1 2 0 0 —By

40 -2 1 0 0 0 0 —iB

41 -2 0 1 0 0 0 —iy

42 1 -2 0 0 0 0 —ja

43 0 -2 1 0 0 0 —Jjy

44 1 0 -2 0 0 0 —ka

45 0 1 -2 0 0 0 —kB

46 -2 -1 0 0 0 2 iB

47 -2 0 -1 0 2 0 iy

48 -1 -2 0 0 0 2 ja

49 0 -2 -1 2 0 0 ir

50 -1 0 -2 0 2 0 ka

51 0 —1 -2 2 0 0 kB

52 -2 -2 0 0 0 2 —ij

53 -2 0 -2 0 2 0 —ik

54 0 -2 -2 2 0 0 —jk

*Each coefficient entry must be multiplied by -
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In Eq. (10) 2 signifies summation over the six permu-
tations (} ,2 3). With the preceding form for Hgys, ad-
vantage can be taken of the fact that

- MHSMS¢( i’j’ k’ 17 m,n,a,B, Y )

3
= 2 Vs'vt¢(i)j’k711m)n;a,3,}’)
(ss’<‘t)

= 2ctgl{;fn'rll’m,n,‘p(i',j,;kl,llam"n"a’va) , (D

where the c,'Jih’;;"'" are determined coefficients in the
linear algebraic decomposition of the left-hand side of Eq.
(11). The decomposition given by Eq. (11) is significant
because the expectation value of Hgys can be represented

as a sum of overlap integrals of the form
I(i’j;k)l’m’nra)B)Y)

—ar;—Br,

= f ririrkululule Tdrdrdry . (12)
The method used to evaluate these integrals is that of
Ohrn and Nordling.?! The 54 terms generated in Eq. (11)
are tabulated in Table I. The I integrals [Eq. (12)] arising
from the first group of 30 terms given in Table I are also
required in the evaluation of the electron nuclear potential
energy and the kinetic energy. A significant reduction in
computational effort can be obtained by calculating part
of the expectation value of Hgyg at the same time the ma-
trix elements of the electron nuclear potential energy and
the kinetic energy are evaluated.

III. RESULTS

The results of the calculations are presented in Tables
IL, 11, and IV. The expectation value ( 3., . ; ., Vi'V;)
has been appropriately scaled using the scale factor

—5(V)
77=——<-ﬁ- ’ (13)

where (V') and (T') are the potential energy and kinetic
energy, respectively. For the final value of
(X i<jyVi'V;) reported in Table II using the 352-
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term wave function, the scale factor has the value
1.000 001, and clearly this has an almost negligible impact
on the calculated expectation value.

In Table III, the value reported for ( 3, ; ., Vi'V;)
for Martensson and Salomonson was deduced from their
reported isotope shift (in GHz) and the value of (V;-V,)
for Lit calculated by Pekeris,® that is, —0.2889940 a.u.
The conversion factor from atomic units to GHz em-
ployed is 1 a.u.=85.61841 GHz. This factor corresponds
to

;
—L2R7Li ,

6
29.9792458 | —E 2R,  —
SLi M7L1

M,

where M 6Li and M 7, are the nuclear masses for the lithi-

um isotopes 6 and 7, respectively. The values employed
are taken from the atomic mass tables of Wapstra and
Bos,2* and have been corrected for the mass of three elec-
trons: M, ,=6.0134775 u and M, ,=7.0143588 u. u
and "u denote the reduced mass of the electron for iso-
topes 6 and 7, respectively. Rg;; represents the reduced
mass Rydberg constant for isotope 6 and R, has a simi-
lar meaning for isotope 7. The values employed were cal-
culated from R_ (using?®> R_=109737.31521 cm™!);
R;,=109728.73 cm~' and Re;=109727.31 cm ™",

The value of (3, ;Vi-V;) reported in Table III
for Chambaud et al. was calculated from their reported
absolute shift using their conversion factor 1 a.u.=85.647
GHz, which corresponds to replacing u by m, and Ry, by
R in the conversion factor reported above.

For each of the isotope shifts tabulated in Table IV, ex-
cept the present calculation, the transition shift has been
determined from values calculated for Li and Li* in each
of the studies reported. The isotope shift calculated in the
present study employed the absolute shift for Li* deter-
mined from Pekeris’s accurate calculation,® that is,
24.743 18 GHz.

IV. DISCUSSION

A. Convergence characteristics

The convergence of the calculated value of the matrix

element ( 3, ; ; ;) Vi-V;) as a function of the number of

TABLE II. Expectation values (in a.u.) of the operator 3;_; 37, V;-V; as a function of the number

of terms in the wave function.

Number of ( 3 Vf'Vj> Number ( > V,~-V,->
terms i of terms® i
(<)) (i <j)

60 —0.312133 50 —0.303 609

150 —0.302 706 100 —0.302253

210 —0.302218 150 —0.301970

280 —0.301 898 200 —0.301915

320 —0.301 888 251 —0.301859

352 —0.301 848

*Both spin functions included.
*Only spin function 1 included; Eq. (9a).
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TABLE III. Absolute specific mass shifts for the %S ground-state levels of °Li and 'Li. MBPT stands for many-body perturbation

theory.
Absolute specific
(2 V,--Vj> mass shift (cm™!)
Number of Wi
Wave function Type terms (a.u.) Li SLi
Prasad and Stewart® CI 45 —0.3014 5.173 6.033
Martensson and
Salomonson® MBPT —0.3002¢ 5.152 6.009
Chambaud, Lévy,
and Stacey® C1 —0.3055¢ 5.243 6.116
Veseth? MBPT —0.3047 5.2296 6.100
Present work Hylleraas 251 —0.301 86 5.1805 6.0426
(single spin
eigenfunction)
Present work Hylleraas 352 —0.301 85 5.1803 6.0424

(both doublet
spin functions)

*Reference 22.

"Reference 3.

‘Reference 4.

dReference 5.

See the text for comments on the calculation of these values.

terms in the wave function can be gauged from the results
presented in Table II. The convergence is not monotone.
The nonuniform convergence is tied in part to the pro-
cedure employed for the basis set selection. The larger
change in the matrix element for the last 32 terms
(~4X107% a.u.) compared with the previously added 40
terms (~1X1075 a.u.), reflects a superior selection of
basis functions that have much greater impact on the en-
ergy, and also account for electron correlation in an im-
proved manner. Since (3. _;Vi'V;) is sensitive to
electron correlation effects, the change in the value of this
matrix element over the last 32 terms directly reflects this

TABLE IV. .
(AEsky —AEGs)—(AEskT — AESS).

fact.

Because of the nonuniform nature of the convergence,
it does not appear useful to attempt an extrapolation pro-
cedure for ( 3, ;Vi'V;). A rough estimate of the
error in this expectation value is ~5X 1073 a.u. Since the
variational approach leads to generally better results for
expectation values emphasizing the energy important re-
gion of configuration space, the aforementioned estimate
of uncertainty should be reasonable. A cautionary note,
however, is that the specific mass shift is somewhat more
sensitive to electron correlation effects than the matrix
elements of the kinetic and potential energy.

Isotope shifts for the 2§ ground state of the lithium atom. The isotope shift is defined by

Shift for °Li-'Li

Shift for °Li*-’Li+* Isotope shift

Wave function (GHz) (GHz) (GHz)
Prasad and Stewart? 25.80; 24.81, 0.993
Martensson and Salomonson® 0.962
Chambaud, Lévy, and Stacey® 26.165 25.077 1.088
Veseth? 26.090 25.007 1.083
Present work
(single spin eigenfunction) 25.845 1.102
Present work
(both spin eigenfunctions) 25.844 1.101
Experimental® 1.1114+0.006

*Reference 22.
PReference 3.
‘Reference 4.
9Reference 5.
“Reference 23.
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B. Effects of one versus two spin eigenfunctions

From Table II, it is apparent that the value of
(2iji<pVi'V;) is changed only by a very minor
amount when it is evaluated using a wave function con-
taining only the spin eigenfunction given in Eq. (9a). This
behavior is not totally unexpected, and supports the gen-
eral observation, based on the calculation of a number of
different expectation values, that the second doublet spin
eigenfunction has a very minor impact on the calculation
of a spin-independent property.!?

C. Comparison with experiment

The principal experimental measurement available for
comparison with the calculations of this study, is the
work of Lorenzen and Niemax,?> where the transition iso-
tope shift of the %S ground state of Li relative to the 'S
ground state of Li* has been measured. The value report-
ed for this transition shift is 1.111+0.006 GHz. The
value calculated for this shift in the present work using
first-order perturbation theory is 1.101 GHz, with an es-
timated probable error of +£0.040 GHz. The uncertainty
is based on the error estimate given in Sec. IV A.

The results of other accurate calculations of this shift
are tabulated in Table IV. The most accurate value re-
ported previously is that of Chambaud et al.,* who report
a value that is approximately 2.1% too low. Unfortunate-
ly, their close agreement with the experimental result rests
on a cancelation of errors in the difference between the
calculated specific mass shifts of the neutral atom and the
single positive ion, a fact the authors themselves point
out. Their result for the absolute shift of Li* is some-
what above the accurate value obtained by Pekeris.® If the
transition shift of Chambaud et al. is recalculated using
the more accurate value of Pekeris for Lit, then the re-
sulting value is 1.422 GHz, which is about 28% too high.

The result reported by Veseth® (Table IV) is approxi-
mately 2.5% too low. It is to be noted that Veseth’s close
agreement with the experimental result also rests on a
cancelation of errors between the calculated shifts for the
neutral atom and positive ion. If Veseth’s isotope shift is
recalculated using the Pekeris value for Li*, then the re-
sult is 1.347 GHz, about 21% above the experimental re-
sult. The purpose of recalculating the transition isotope
shifts of Chambaud et al. and Veseth (using the Pekeris
result for Li*) has been to provide an estimate of the er-
ror cancelation that occurs in their calculations. The
present recalculation does highlight the extremely useful
feature of their calculations, namely, a quality and con-
sistent basis set description of the 1s core for Li and Li*
is adequate for a very accurate calculation of the transi-
tion isotope shift. This advantage is obviously lost when
the Pekeris result for Li™, with its far superior description
of the 1s core, is employed.

It should be clear from the calculations of Chambaud
et al. and Veseth, that a very high accuracy is required in
the calculation of each individual shift (both neutral atom
and ion), since the transition isotope shift corresponds to
the difference between two values which are rather close
together. For excited states of the lithium atom of S sym-
metry, the situation is much more demanding, since the

FREDERICK W. KING 34

isotope shifts are much smaller than for the ground state.
There is clearly a challenging theoretical problem to be
resolved for these states.

When the entire eigenvalue problem [Eq. (6)] was
solved, the results obtained for the expectation value
(3iji<pVi'V;) were —0.301660 au. for 'Li and
—0.301 628 a.u. for ®Li, and the relative isotope shift was
determined to be 1.071 GHz. These values, not surpris-
ingly, are in close agreement with the values presented in
Tables II and IV, which are based on first-order perturba-
tion theory.

A possible explanation for the increased discrepancy of
the nonperturbative result with the experimental measure-
ment is as follows. The higher-order specific mass shift
contributions for Li are not canceled by the expectedly
similar contributions left out of the first-order result em-
ployed for Li*. Unfortunately, it is not possible to test
this conjecture, since a nonperturbative result with the
Pekeris wave function is not available for Li*. It is also
important to keep in mind that the slow convergence of
the present calculation leads to an error in the transition
isotope shift, which is larger than the changes obtained on
going from first-order perturbation theory to the nonper-
turbative approach.

Two factors have not been incorporated in the present
calculation of the transition isotope shift. The first is the
field shift contribution. For a light atom such as lithium,
this shift is expected to be very small. Veseth® has made a
recent calculation of the field shift contribution to the iso-
tope shift for lithium and obtains the value —0.0006
GHz.

The second factors not included in the present calcula-
tions are the relativistic corrections to the shift. For light
atoms, such corrections would be expected to be small.
For the lithium atom no relativistic calculations on the
isotope shift have been made. However, de Clercq et al.'®
have examined relativistic effects for the He atom, and
have found relativistic corrections to various transition
isotope shifts of approximately 0.01 GHz. It seems not
entirely unreasonable that part of the discrepancy between
theory and experiment for the Li atom may be accounted
for by small relativistic effects.

V. CONCLUSION

The present study has reported the most accurate calcu-
lation of an absolute specific mass shift for a system with
more than two electrons. The value obtained for the rela-
tive isotope shift is in very close agreement with the ex-
perimental value. There is, however, a clear need for
more accurate calculations in order to reduce the estimat-
ed error to approximately 0.001 GHz. If this can be
achieved, and the experimental error limits also further
reduced, the possibility exists to determine the importance
of nuclear mass dependent relativistic corrections to the
isotope shifts. This would provide an important test of
the Stone Hamiltonian. This proposal rests on the as-
sumption that the field shift is negligibly small for the
lithium atom.



34 SPECIFIC MASS SHIFT FOR THE 2S GROUND STATE OF . . . 4549

ACKNOWLEDGMENTS

The author thanks the University of Wisconsin—Eau
Claire computer center for their generous allocation of
computer time, which made this project possible. Ac-

knowledgment is made to the Donors of the Petroleum
Research Fund, administered by the American Chemical
Society, for partial support of this research. The author
was also supported by funds from the Camille and Henry
Dreyfus Foundation.

1. Bauche and R.-J. Champeau, in Advances in Atomic and
Molecular Physics, edited by D. R. Bates and B. Bederson
(Academic, New York, 1976), Vol. 12, p. 39.

2W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New
York, 1984).

3A.-M. Martensson and S. Salomonson, J. Phys. B 15, 2115
(1982).

4G. Chambaud, B. Lévy, and D. N. Stacey, J. Phys. B 17, 4285
(1984).

5L. Veseth, J. Phys. B 18, 3463 (1985).

6C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

8C. L. Pekeris, Phys. Rev. 126, 143 (1962).

9C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

10C, L. Pekeris, Phys. Rev. 127, 509 (1962).

B, Shift, H. Lifson, C. L. Pekeris, and P. Rabinowitz, Phys.
Rev. 140, A1104 (1965).

12Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516
(1971).

13F. W. King and V. Shoup, Phys. Rev. A 33, 2940 (1986).

144 P. Stone, Proc. Phys. Soc. London 77, 786 (1961).

I5A. P. Stone, Proc. Phys. Soc. London 81, 868 (1963).

I6E. de Clercq, F. Biraben, E. Giacobino, G. Grynberg, and J.
Bauche, J. Phys. B 14, L183 (1981).

17D. S. Hughes and C. Eckart, Phys. Rev. 36, 694 (1930).

18H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Plenum, New York, 1977), p. 166.

193, P. Vinti, Phys. Rev. 58, 882 (1940).

20M. R. Flannery and A. L. Stewart, Proc. Phys. Soc. London
81, 431 (1963); C. Froese Fischer and L. Smentek-Mielczarek,
J. Phys. B 16, 3479 (1983).

21y, Ohrn and J. Nordling, J. Chem. Phys. 39, 1864 (1963).

228, S. Prasad and A. L. Stewart, Proc. Phys. Soc. London 87,
159 (1966).

23C.-J. Lorenzen and Niemax, J. Phys. B 15, L139 (1982).

247, H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19,
175 (1977).

25T. W. Hansch, in Advances in Laser Spectroscopy, edited by F.
T. Arecchi, F. Strumia, and H. Walther (Plenum, New York,
1981), Vol. 65, p. 127.



