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First-passage times for non-Markovian processes driven by dichotomic Markov noise
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The first-passage time problem for a general non-Markovian process driven by a dichotomic
Markov noise is solved. An equation for the probability to be found in an interval without ever

having left this interval is deduced. Exact results for first-passage time moments are obtained.

There has recently been a great deal of interest in the
problem of first-passage times for non-Markovian process-
es. ' 6 The formal theory for this kind of non-Markovian
problem has been developed in Ref. I. The difficulties en-
countered in obtaining exact first-passage time results for
non-Markovian processes have been recently illustrated
by an exact study of a non-Markovian, diffusivelike flow
x =g(t ), wherein g(t ) is a dichotomic Markov noise. 7s

The subtleties arise from the fact that the retarded master
operator that characterizes the dynamics of the unrestrict-
ed probability must be adjusted so as to prevent backflow
of probability into the interval I under consideration.

In this Rapid Communication we study the first-passage
time problem for a general non-Markovian flow driven by
a dichotomic Markov noise,

x =f(x)+g(t)g(x) .

An equation for F, (xp), the probability that the system is
still in interval I at time t, given that it started at xp c I,
is obtained. From this equation exact results for first-
passage time moments are obtained.

The process g(t ) (Refs. 7 and 8) is a discrete two-state
Markov process taking the values a'& 0 and a & 0 with
transition rates p' and p, respectively. The stationary
mean value of g(t) will be assumed equal to zero: i.e.,
pa'+p'a =0. For the correlation function we find an ex-
ponential decay

(g(t)g(s)& =—exp( —
i t —s i/z),D

where D =a'~ a
~ z, z (du+ p') '. Using the backward

I

aF, (xo,a )
F, (xo,a') - [f(xp)+a'g(xo)]

+p'Ft (xo,a) —p'Ft(xo, a') .

In the following, we consider an interval I—= [A,B] such
that f(xo)+a'g(xo) &0 and f(xo)+ag(xo) &0 for all
xpc 1. This situation corresponds to I lying inside the
domain bounded by the zeros of (f+ag )(f+a'g). s The
initial conditions and absorbing boundary conditions are
given by

Fo(xo,~) =e(xo —W)e(B —x.), A=a, a',
F, (xp, h) 0, 5 =a,a', xp g [A,B],
F, (~',a)=0, F, (B ,a')-0, t&-0,

(4a)

(4b)

(4c)

where 8 is the Heaviside function. The conditions (4c)
account for the fact that a process that begins at
xp A (B) with initial negative (positive) velocity escapes
with certainty.

Now, if we initially prepare the system in state
xp c [A,B] with g(0) =a, our goal is to derive an equation
for F, (xp,a). Taking into account conditions (4a) and
(4b), we obtain from (3b)

equations for the Markov process (x,g), one obtains the
following equations

8F, (xo,a)
F, (xp,a) = [f(xo)+ag(xo)]

xp

+p Ft (xo,a') pF—, (xo,a ),

F, (x.,a') =O (t )e(x, —W)e(B —x )+p'„dt'0 (t —t')e(B —x,)F, (xp,a),
where we have introduced the operator

(5)

0+(t )=—exp —p' —[f(xo)+a'g(xo)]
8xo

Note that the second condition (4c) is also satisfied. We remark that the use of the Heaviside function in (5) prevents
transitions back into the interval [A „B].

Using (5) in (3a), we have

8F, (xo,a )
Fi(xo a) = [f(xo)+ag(xo)] —pF (xo a)+ p o+(t )+(xo —& )+(B—xo)

Xo

+p'p „dt'O+(t —t')8(B —xo)F, (xo,a); xoe [A,B] .
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F, (xp, a) -O (r )Fp(xo,a)+p
t t'+» dr' dr"O (r —r')e(x, —W)O, (r' —r")e(8 x,)F—,-(x,,a),

This is the main result of the paper. We remark that in contrast to the retarded backward equation derived in Ref. 3, Eq.
(7) does not contain transitions back into the interval [A,B].

An integral equation for F, (xo,a ) can be derived from (7) using conditions (4a) and (4b):
~t

dh'O (r r—')e(xo A—)O+(r')Fp(xp, a)

where we have introduced the operator

O (r ) -exp —p —[f(xp)+ag(xp)]
8Xp

dX

F,(x,a) .

An equation for the first-passage time moments, given by

Note that again the Heaviside functions in (8) suppress transitions back into the interval.

In order to obtain first-passage time moments, we perform the Laplace transform of (7):
f+Z

exp —(p'+s) dy[f(y)+a'g(y)1
$F, (xo,a) —1 [f(xo)+ag(xo)] —pF, +Ju

8xp ~ xo f(x)+a'g(x)
9Z

exp — (p'+s) dy [f(y)+a'g(y)]
+pp' dx4 Zo f(x)+ag(x)

(10)

8" 'F, (xo,a )
T„(xo,a) -(—1)"n

s 0

can be derived from (10). The equation satisfied by T„ is

8 Tg—rlf (xo)+a'g (xo) l[f(xo)+ag (xo)]
8Xo

f(xo)+ r[f (xo)+a g(xo)1[f (xo)+ag'(xo)]] " -S. , (12)
Xo

I

(10), respectively. These boundary conditions and Eq.
(12) have been obtained for n 1 in Ref. 4(b).

The equation obtained in Ref. 3 for the mean first-

passage time Tj coincides with (12) for n 1. However,
the absorbing boundary conditions T

~ (B,a ) 0 used there
disagree with (14b). For moments of order n ) 1, the
term S„ in Eq. (12) differs from the corresponding Marko-
vian one, This is in agreement with previous results for
n 2 ~~'~

Using (14) in (12) we obtain
~xp

T„(xo,a) =k„dxG(x,&)
xo ~x

+ dx dx'G (x,x')S„(x'), (IS)

S„-—nT„,+n(n —1)(1—2a„,)rT„,
8Tn —l+ r[2f (xo)+ (a+a')g(xo)]n ~ (To 1)

8Xo

with the boundary conditions

T„(~,a) =0,

(14b)

Conditions (14a) and (14b) are obtained from (4c) and
I

[f(8)+ag(8)] "
p T„(a,a) —nT„((a,a) . -

xo 8

G(x,x') =— e(x —x') '"
p + p.

'

r[f( )+xg(a)] x[f ( )+xg(a)1x""' f(y)+ag(y) f(y )+a'g(y )

[f(8)+ag(8)] G(a,x)S„(x)dx —p„dx~ dx'G(x, x')S„(x')+nT„((a,a)
N r B

dxG(x, ~ ) —[f(8)+ag(8)]G(8,~)

It is easy to see from (12)-(14) that in the white Gaussian limit, ~a ~

-a' ~, r 0, D- ~a ~
r=const, we recover

the well-known results for one-dimensional Markov process.
We finally consider in connection with recent work the first-passage time probability density, W, (xo,h)
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—(r)/8r )F, (xo,i5,) (h a,a'), that obeys Eqs. (3), but with the following conditions:

Wo(xo,~)- —lf (xo)+~g(xo) j [a(xo —~ ) —a(a —xo) l, ~-a,a',
W, (a,a) -W, (a,a') -b(r ) .

(18a)

(18b)

Then, W, (xo,a ) satisfies Eq. (8) with the initial condition (18a). If we Laplace transform this integral equation, we get

$V, (xo,a ) exp
p«+g «Xo

"f(y)+ag(y) dy —p dx
exp — [(p +s )If(y ) +ag (y ) jdy

f(x)+ag(x)
g

&exp — [(is'+s)/f (y )+a'g(y) j dy

«xo—iii«' dx dx'
exp —

~ [(p+s)If (y )+ag(y )j dy

f(x)+ag(x)
«

exp —„[(p,'+s )/f (y )+a'g (y )]dy
W, (x',a ) .f(x')+ a'g (x')

(19)

This integral equation was also obtained in Ref. 4(a) for the particular case, f 0 and g 1, and in Ref. 4(b) for the gen-
eral case using an entirely different procedure. We finally note that Eqs. (13) and (14) can be also derived from (19).
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