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It is shown that the formation of stationary waveforms in a driven nonlinear microwave resona-

tor with dissipation can be attributed to the generation and parametric amplification of
Korteweg-de Vries (KdV) solitons by a pump wave traveling in the same direction. The interac-

tion process and the soliton propagation are described on the basis of a perturbed KdV equation

which is solved numerically. The results of an approximate analysis are compared with measure-

ments performed on a transmission line resonator.

In the last years, a growing interest has been given to
the evolution of nonlinear dynamical systems to which an
external force is applied. The systems are often described
by nonlinear partial differential equations with one spatial
dimension, for example, the damped and driven sine-
Gordon equation, '2 the stochastic Korteweg-de Vries
(KdV) equation, 3 or the forced nonlinear Schrodinger
equation. 4 Besides, discrete systems like the Toda lattice
are also under investigation. 5s With respect to the solu-
tions of the underlying equations, in all these systems the
spatially coherent and stable structures play the most im-
portant role. Special emphasis is placed upon the forma-
tion of solitons which are well understood in the nonper-
turbed case. The main questions are concerned with the
mechanisms of soliton formation out of dissipation and, as
a consequence, with the soliton content of the generated
waves. 's Furthermore, with respect to the field of self-
organization it is important to understand the emergence
of such coherent states out of a chaotic one. '6

Taking applications into account, the behavior of such
ultrashort pulses in optical devices has additionally
aroused much attention. ' For instance, with the help
of an external pump signal it seems to be possible to com-
pensate the losses of a long-distance fiber-optic com-
munication system' where solitons are the carriers of
information.

Quite recently, we have shown that the experimentally
observed bistable and multistable behavior of nonlinear
microwave ring resonators can be discussed on the basis of
characteristic soliton modes"'z propagating in a nonlinear
medium which has the properties of a lossy KdV system.
In this paper, the parametric formation of these stationary
waveforms as a result of the influence of an external pump
is investigated in detail both experimentally and theoreti-
cally.

The experimental observation and theoretical treatment
are based upon an iterated high-frequency transmission
line where the nonlinearity is introduced by voltage-
dependent capacitances. To describe vrave propagation in
such a medium the equivalent circuit of a single element as
shown in Fig. 1 can be used. Here the shunt admittance
per section is that of the varactor diode under reverse bias
voltage and the series impedance is the lossy inductance of
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Here V„ is the voltage across the nth element and the non-
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FIG. 1. Equivalent circuit of the nth element of the high-
frequency transmission line using varactor diodes under reverse
bias as nonlinear elements in a Lecher 1ine (Refs. 11-13). Ex-
perimental values are I 3 cm; L 16.4 nH; R 0.8 mA;
G 0.7 S; Co 6.6 pF; b 0.1 V ' [cf. also Eq. (4)].

the Lecher-type wire line. ' Using this nonlinear medium
in a ring resonator setup" bistability and multistability
have been observed"'z where the different states of
transmission could be characterized by well-defined soli-
ton modes. 'z As an experimental example a typical
waveform is illustrated in Fig. 2 which is interpreted as a
sinusoidal pump wave with angular frequency ra~ and am-

plitude Vz and a superimposed pulse with amplitude V and

phase p with respect to the harmonic wave. Measurements
at different positions along the line reveal that the
waveform is almost stationary. On the basis of this experi-
mental situation the following theoretical model has been
developed in three steps showing that the system can be
characterized as a parametric amplifier where a pump
wave continuously supplies energy to a dissipative
Korteweg-de Vries soliton.

In a first step, wave propagation without external force
is studied. The theory is based upon the following
difference-differential equations as derived from Fig. 1:
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soliton solution is given by's
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FIG. 2. Experimental waveform as measured in a ring resona-
tor with 90 elements at f~ m~/2x 93.2 MHz. The dashed line

is a guide to the eye illustrating the harmonic pump wave of the

system.
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where the dashes now characterize distributed elements as
usual, for example, Q' Q/1. Moreover, the following
partial differential equation of the form of a lossy KdV
equation is derived from Eqs. (1), (2), and (4), cf. Ref. 13:

Vg 8VV,+ x'V„,—aV+bV„,

where g x/2uo and r r —x/uo are transformed coordi-
nates and uo (L'Co) '~z is the quasistatic small signal
phase velocity. Besides, b Vo ', x I/3ro„a R'/L;
and b Co/6' denote the parameters of nonlinearity,
dispersion, frequency-independent, and frequency-depen-
dent losses. The solutions of Eq. (5), which is an extended
KdV-Burgers equation, have been investigated thoroughly
and neglecting dissipative effects the well-known one-

linearity is introduced by a nonlinear relation between the
charge Q„of the nth capacitor and the appHed voltage
Vt „. In case of small dissipation and by setting

Vi,nQs-CoVo« I+
Vo

where Co and Vo are constants denoting the operating
point, Eqs. (1) and (2) describe the wave propagation in

the one-dimensional Toda lattice. '4 In the linear regime,
the propagation constant can be obtained by applying
Floquet's theorem. As a result of the periodic structure a
dispersion with low-pass filter characteristic is established,
the cut-off frequency being expressed by m, 2(LCo)

For the purpose of a continuum approximation it is now
assumed that the guide wavelength is sufficiently large as
compared to the length of one section and that the non-
linearity is weak. In this limit the index n can be dropped
and the charge voltage relation yields a quadratic non-
linearity

In the damped case, the amplitude V and velocity —3/bV
of the soliton additionally vary with g, cf. Ref. 15.

Now, in a second step, the observed interaction of a soli-
ton with a harmonic pump wave is taken into account. In
the parametric model to be considered it is assumed that
the pump gives rise to an explicit time and space depen-
dence of the charge now being given by

Q'-C,'V, (1 ——,
' bV, ) [1 —f(x,r )],

where the function f is determined by the impressed pump
wave. As above, a wave equation is derived which is found
to be identical with Eq. (5), with the exception of an addi-
tional term describing an inhomogeneity due to the pump.
Accordingly,

v, -bvv, +~v„,—av+ bv„+ (fv), ,

~here in the special case of a harmonic pump wave, f is
given by

f((,r) -bv~cos[ro~(r bg)], —

and 6(0 is a parameter of dispersion describing the phase
velocity of the pump within the nonlinear medium. "'
Splitting the last term of Eq. (8) into f,V+fV, it becomes
evident that on the one hand there is an additional damp-
ing or amplification depending on the sign of f,. For in-
stance, the case of f, const&0 leads to the situation
where the static losses "a" can be compensated exactly.
On the other hand, the expression fV, gives rise to a sup-
plementary contribution to the nonlinearity. A similar
equation has been studied by Yagi' to describe the
behavior of KdV solitons in an inhomogeneous medium.

Equation (8), together with Eq. (9), has numerically
been integrated by a finite difference method using period-
ic boundaries. As an initial condition the soliton solution
according to Eq. (6) has been used. As expected, in the
purely damping case (V~ 0) the amplitude of the soliton
and also its velocity decrease, whereas the width increases
with the normalized distance, cf. Fig. 3(a). For the same
values of the parameters, but with an additional finite am-
plitude V~A0 the situation is quite different. Provided
that the initial phase difference with respect to the soliton
has been chosen appropriately the waveform now remains
almost stationary as illustrated in Fig. 3(b). As can be
seen, the soliton experiences additional gain and travels
with constant velocity. Consequently, the compensation of
energy loss together with synchronization between soliton
and pump lead to stationary waveforms. Besides, it
should, however, be mentioned that in contrast to the ex-
perimental observation of Fig. 2, the pump wave in the
theoretical model serves only as a parametric energy
source and is therefore not visible in Fig. 3.

In a final step, the conditions which allow for
parametric amplification and stationary propagation of a
soliton are examined by investigation of the mutual depen-
dences between soliton amplitude V, pump amphtude V~,
and phase difference p (cf. Fig. 2). In a first-order ap-



A. GASCH, T. SERNING, AND D. JAGER 34

b—cos Q
—ro s1nf

x
, (is)

tionary propagation effects, a transformation into the
reference system of the pump wave yields the following
steady-state solutions:

2b 2b 1

proach it is assumed that under the influence of the pump
wave the amplitude V and phase y of the soliton are slowly
varying functions of time and space. Accordingly, by sub-
stituting the modified soliton ansatz
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FIG. 3, Numerical results by integration of the inhomogene-
ous KdV equation given by Eqs. (g) and (9). (a) Damped soli-
ton motion as described by Eq. (5), i.e., Vp 0, (b) same as (a)
but with finite pump amplitude V~ 0.29 V. The length of the r
axis shown corresponds to four temporal periods of the pump
wave. Parameters are 8~0.1 V '; x 3.67X10 s2; a 4.8
&10 s ', b~9.6&10 ' s; co~ 5.87&10 s ' 5 -0.15;
V(O) -4.6 V; II(0) -1.5~.

b2
bV 3 —d, —BV cosp

2

According to Eqs. (15) and (16), the relations between
soliton amplitude V, phase p, and pump amplitude Vp are
illustrated in Fig. 4. Furthermore these analytical results
are compared with measurements where Vp has been
changed experimentally. It is.obvious that a soliton can
only be generated if the amplitude of the pump wave
exceeds a clear threshold value. From Eqs. (15) and (16)
this threshold value Vplh of the pump amplitude can be ob-
tained yielding

BVpth~a)p ' a—
2. -&j2

hb + 4bs 1+ b . (17)
Ir Ir Lmp
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As expected, the threshold value is enhanced for increasing
losses and vanishes in the nondamping case. Moreover,
there is an interval of Vp where two values of the soliton
amplitude exist. Here a stability analysis of Eqs.
(11)-(14) yields that in agreement with the experiment
merely the larger solitons are stable. As a result, in the
(V,p)-phase plane the stable solutions correspond to stable
foci or nodes, while the unstable ones are revealed to be
saddle points.

(io)
into Eq. (8) one obtains the following set of differential
equations;
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where p —alp(y+b(+bV(j3) has been taken into ac-
count. In the special case of b 0, similar equations have
been obtained from energetic considerations' and from
Eqs. (11) and (13) the following properties can be recog-
nized. The sohton amplitude is amplified by the pump in
the angular range from Ir& IS &2Ir and reduced by the
static losses. Aside from the influence of the dispersion as
represented by the parameter 6, the phase IS depends on
tile veloclt)' of tile solltoll whlcll ls a fllllctloll of lts owll
amplitude V and is again determined by Vp.

Now in the general ease b WO and with respect to sta-

1.3-

0.2
I I

0.4
I

0.6
I I

0.8

V (volts)

FIG. 4. Parametrically generated solitons; experimental re-
sults (+ ) and steady-state values (solid lines) according to Eqs.
(15) and (16) with 5 —0.06; remaining parameters as in Fig.
3. Dashed lines denote unstable soliton solutions.
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In conclusion, it is shown that spatially coherent struc-
tures in the form of solitons do play an important role in a
driven damped Toda chain or KdV system. The analytical
model which has been used elucidates the underlying
mechanism on the basis of a distributed parametric in-
teraction between solitons and a pump wave. Starting
from the experimentally observed soliton modes in a high-
frequency ring resonator, an extended KdV equation is ap-
proximately derived. The theoretical and numerical re-
sults which are confirmed by experiments yield stationary
propagation of solitons above well-defined threshold levels
of the pump wave. This model is quite similar to that
describing the behavior of a charge carrier in a particle ac-
celerator or in a microwave traveling wave amplifier
where, for example, electromagnetic energy is delivered to

the electron or vice versa, respectively. From a technical
viewpoint the soliton concept is that of a special modelock-
ing of the involved Fourier components leading to a pulse
compression by converting a cw input signal into short
video pulses of high power. Very recently a similar idea
has been discussed in connection with the soliton laser.
Additionally, such soliton modes are shown to be relevant
to the explanation of wave oscillations on anharmonic
molecular chains like the DNA. ' Finally, our further in-
vestigations have to deal with instabilities like chaos,
which has already been observed in the resonator, ~ ' and
their relation to soliton propagation.
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