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Uniform convergence to an effective Fokker-Planck equation for weakly colored noise
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Uniform convergence to an effective Fokker-Planck equation for weakly colored noise is proved.
Corresponding constraints on the correlation time for the colored noise are obtained. Examples of
bistable nonlinearities are presented and discussed.

I. INTRODUta ION

In a recent paper, ' the full functional calculus was used
to elucidate the connection between stochastic differential
equations and associated Fokker-Planck equations. Of
particular interest in that paper was the fact that for weak-
ly colored noise, i.e., a non-Markovian process, an effective
Fokker-Planck equation may be derived, both for additive
and multiplicative noise. It was also shown that certain
numerical simulation resultsz for mean first-passage times
in bistable systems could be directly explained by the ef-
fective Fokker-Planck equation. However, a key step in
the derivation of the Fokker-Planck equation was left im-
plicit. Moreover, the character of the results has also been
misinterpreted. In this paper, an explicit proof of uniform
convergence to the effective Fokker-Planck equation for
weakly colored noise is provided.

Attention is restricted here to stochastic differential
equations in one variable x:

x -W(x)+g(x)f(t),
in which W(x ) and g(x) may be nonlinear functions of x,
and f(t) is the noise term. When g(x) 1, the noise is
"additive"; otherwise it is "multiplicative. " The noise
function f(t ) is assumed to be Gaussian, and it may be ei-
ther "colored" or "white. " The white-noise case was dis-
cussed in detail in the earlier paper, ' so that the colored-
noise case is emphasized here, although the white noise
case may be retrieved in an appropriate limit. It is as-
sumed that f(t ) has first and second moments

in which r is the correlation time. The weakly colored
noise regime corresponds to small i, and white noise re-
sults in the limit r 0.

Functional calculus may be used to characterize the
noise. The probability distribution functional for f(t ) is

P lf) N exp ——,
' „ds „ds'f (s )f(s') K (s —s'),

in which the normalization factor N is defined by the func-
tional integral (path integral)

„Sfexp ——,
' ds „ds'f(s)

xf(s')K(s —s')

The kernel K(s —s') is the inverse of the correlation func-
tion C (t —s ) in (3) and satisfies

„ds K(t —s)C(s —s') -b(t —s'),

in which 8(t —s') is the Dirac 8 function.
The functional integral is also used to define the proba-

bility distribution functional for x (t ), the solution to (1).
This functional is

P(y, t) -„„2)fPiflb(y x(t))—,

&f(t)) -0,
&f(t)f(s)) —exp — —=C(t —s),D it —si

'r

(2) in which x(t) is implicitly a functional off(t).
We show below that for sufficiently small r, an effective

Fokker-Planck equation exists for P (y, t ) given by

a a
lW(y )P I+D g (y ) g (y )tI 8

cit 8y By By
1 —r W'(y) — W(y) ~P,

g(y)

in which 8" and g' denote the first y derivatives of 8' and
g, respectively. The diffusion term in (8) differs slightly in
form from the diffusion term given in our earlier paper. '

This is a result of the systematic procedure used here, and
in the case of additive noise [for which g(y) =1, so that
g' 0] the results are identical.

The following points deserve emphasis: (1) Colored-

I

noise problems are non-Markovian whereas Fokker-Planck
equations are traditionally derived for Markov processes
only. The existence of an effective Fokker-Planck equa-
tion for weakly colored noise is not guaranteed and should
be viewed as a surprise. (2) The effective Fokker-Planck
equation in (8) is valid for weakly colored noise only, i.e.,
small ~, and not for arbitrarily large ~. Explicit conditions
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for "large" and "small" e are given below. (3) Uniform
convergence to (8) means that this equation is approached
irrespective of the value of y. It is this feature of the
analysis which has been missing previously, and which was

only implicit in an earlier paper. An explicit proof of uni-
form convergence is given below. (4) The approach used
here is not a perturbation analysis in r. Instead, a nonper-
turbative technique is used to obtain results valid for suffi-
ciently small r Be.low, it will be shown that a correspond-
ing perturbative interpretation violates uniform conver-

I

gence, and it is this feature which has plagued all earlier
approaches.

II. UNIFORM CONVERGENCE TO AN EFFECTIVE
FOKKER-PI.ANCK EQUATION

In order not to reproduce here the analysis contained in
an earlier paper, ' I refer the reader to that paper for im-
portant preliminary details. Ultimately, a rigorously exact
equation is obtained [Eq. (53) in Ref. 1]:

ts g

[W(y)P]+ g(y) ds'C(t —s') „2)fP[f]b(y x(t—))
y

xexp „,ds [W'(x(s))+g'(x(s))f(s)] g(x(s')) .

This is not yet a Fokker-Planck equation because the diffusion term does not contain P(y, t ) because the functional in-

tegral contains non-Markovian dependence on x(s ) [and x(s')] for s & t. It is now shown that for sufficiently small z,
an effective Fokker-Planck equation may be obtained uniformly in y.

We begin by observing that

g(x(t))-g'{x(t)) x(t)-g'(x(t))[W{x(t)) +g(x(t))f(t) ]

[W(x(t))+g(x(t))f(t)]g(x(t)) .
g'(x(t ) )
g(xlt ))

This yields the formal expression

(10)

g(x(s')) -exp ds
" [W(x(s))+g(x(s))f(s)] g(x(t)) . (11)gxs

W'hen this expression, together with the explicit exponential form for C(t —s') given by (3), is inserted into (9), we
obtain

a a a " D
[W(y )P]+ g(y ) „ds'—exp—

I

„DfP[f]S(y —x(t))

xexp, ds W'(x(s)) — W(x(s)) g(x(t)) .g'(x(s))
I

g x s

Notice the cancellation of the gf terms in the exponential. Now, change integration variable from s' to (t —s')l&=8.
The integral in the diffusion term now becomes

t E/v t E g'(x(s))
d8e SfP[f]b(y —x(t))exp ds W'(x(s)) — W(x(s)) g(x(t))

aJ 0 al ~ E-re g(x(s))
P

te oo g'(x(t ))
D d8e ' SfP[f]b(y —x(t))exp r8 W'(x(t)) —g W(x(t)) g x(t)i-0 g(x(t ))

p OO g'(y )
Dg d8e exp r8 W'(y) — W(y) ~~ SfP[f]b(y —x(t))g(y)

g(y)

I —r W'(y) — W(y) 'P(y, t) .
g'(y )
g(y)

(13)

In the limit r 0, we have replaced the integral argument
of the exponential by the first term of its Taylor expansion
about time t. In the second step, each x(t) has been re-
placed by y because of b(y —x (t )). The third step is
valid, uniformly in y, provided

This provides the constraint on r. This is the same condi-
tion for which the first step is valid. The resulting effec-
tive Fokker-Planck equation is clearly (8).

III. SISTASILITY EXAMPLE

1 —r W'(y) — W(y) &Ofor ally .
g'(y)
g(y)

(14) A popular example is W(x) ax bx with either-
g(x) 1 or g(x) x. The first g choice corresponds with
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decay of a metastable state according to the Kramers
theory for chemical reactions. 3 The second g choice corre-
sponds with the theory of dye-laser fluctuations which in-
clude pump noise. Consider the multiplicative case
(g (x ) x ) first. The z condition (14) requires

1 —z[a —3by —(a —by )] 1+z2by &0 . (15)

This is clearly valid for all y C ( —eo,ee). Thus, there ex-
ists no restriction on r in this case.

In the purely additive case [g(x) 1 &g' 0], this
condition is instead

1
—z(a —3by ) 1 —az+z3by2&0 .

This is true for all y iff a z & 1, i.e.,
j.

0

Thus, in the additive-noise case the condition is more
restrictive.

IV. PKRTURSATIQN EXPANSION QF THK
MFFUSN)N TERM

The diffusion term in (8) yields a perturbative expan-
sion in z previously obtained by the perturbative method
called the z expansion: 's

I I

Dg 1 —z W'-~8' ~Dg 1+z W' —~W' . (18)
g'

Now we notice that when condition (14) is satisfied, the
left-hand side of (18) is positive, uniformly in y, whereas
the right-hand side becomes negative for sufficiently large
y [for either g(x) x or g(x) 1]. [In each side of (18),
ignore the sign of the overall factor of g because the com-
plete diffusion term in (8) contains a second overall factor
of g which compensates this particular sign. ] Thus, the
perturbative result is not uniform in y. The substitution in
(18) not only requires that z is small but also that y is
small! The step in (13) which yielded the left-hand side of
(18) was not perturbative but resulted instead from the in-
tegral of an exponential (this reminds one of comparable
"nonperturbative" results obtained in field theory).

Two cases exist which can be treated exactly in closed
form. They are W(x) —Xx with either g(x) 1 or
g(x) x. In the first case [g(x) 1],one gets exactly

whereas in the second case one gets exactly

8 t)
— P k (xP)+D 1 —exp —— x xP . (20)

dr 8x z 8x 8x

Each of these cases corresponds with a simplification in
our general analysis, which is seen to occur in Eq. (12).
The last exponential there becomes independent of x(s)
and may be factored out of the functional integral, thereby
yielding (19) and (20) directly. Indeed, it was examina-
tion of these special cases which led to the derivation of
uniform convergence above. [Clearly, we can treat exactly
the case: W(x) —Xx"with g(x) -x".]

VI. HIGHKRWRDKR s RESULTS

VII. SESTASILITY AND MEAN FIRST
PASSAGE TIMES

In the earlier paper it was shown that for W(x)
ax —bx and g (x ) 1, the mean first passage time T is

given by the formula

T x 1+2a~ aT ~ exp (1+2a z) (21)

This formula exhibits an exponential dependence on z
which was first observed in computer simulations. ~ The
criticism has been raised that this expression becomes neg-
ative for large z. This result, however, was obtained for
weakly colored noise only, and my procedure requires the
constraint z & 1/a as was observed above in (17). Thus,
within its domain of validity, formula (21) is well behaved.
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