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Small-signal amplification in the electrical conductivity of barium sodium niobate crystals
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%e observe a resonance behavior of oscillations prior to Hopf bifurcations in an autonomous
system. The system studied is a barium sodium niobate crystal in which voltage oscillations are
induced by a periodically modulated current density. The resonance behavior is measured as a
function of the dc-offset current density. The shape of the resonance peak and its dependence on
the dc offset are found to be in fair quantitative agreement with recent theoretical studies.

The amplification of small signals in nonlinear dynami-
cal systems prior to the onset of period-doubling bifurca-
tions was first studied by Heldstab, Thomas, Geisel, and
Radons. ' The theory has been extended by Wiesenfeld
and McNamaraz and by Hackenbracht and Hock. 4 The
concept predicts an enhanced sensitivity of nonlinear
dynamical systems to small external excitations as a result
of a coupling between the signal and internal fluctuations.
The magnitude of amplification should grow substantially
as the critical parameter approaches the instability point.
So far, experiments with nonautonomous systems have
confirmed the theoretical pedictions. The systems studied
are analog simulations, z' voltage driven p-rt junctions, s

and parametrically modulated NMR lasers. In this Ra-
pid Communication we present experimental results ob-
tained in an autonomous system. We study the small-
signal amplification near a Hopf instability in the electri-
cal conductivity of barium sodium niobate (BSN,
stoichiometric composition Ba2NaNbsOis) single crystals.

The experimental setup and procedure for observing
electrical instabilities in BSN crystals are described else-
where. s "The control parameters are sample temperature
and oxygen partial pressure at the sample and current den-
sity. In the experiments described here we set the sample
temperature at 500'C and the oxygen partial pressure at
1000 mbar. A constant current density is applied and the
voltage across the crystal is measured. At a critical value
of the current density the voltage begins to oscillate, indi-
cating the first Hopf bifurcation, and at a higher critical
current density we observe a second Hopt bifurcation. For
the chosen experimental conditions, the first critical
current density is j,i 0.566 mA/cm, the second is

j,2 3.1 mA/cm . The internal oscillation frequencies
here are fi 216 mHz and f2 365 mHz, respectively.
The oscillation amplitudes are in the order of few milli-
volts superimposed on a dc offset of about 65 V at the first
bifurcation and about 90 V at the second bifurcation.

In addition to the dc offset, we now apply an ac current
density with a small amplitude j«and with the frequency
f«. This leads to driven voltage oscillations with the same
frequency. We measure the amplitude of these oscillations
Using a fast-Fourier-transform signal analyzer in order to
enhance the signal-to-noise ratio. The dc offset is set
belo~, but close to, either the first or the second critical
value and the frequency f„is varied over a region around
the corresponding internal frequency.

In Fig. 1 the measured amplitude of the voltage oscilla-
tion is plotted as a function of the driving frequency. The
measured data for three different dc-offset values are indi-
cated by circles, squares, and triangles, respectively. Fig-
ure 1(a) shows the results obtained from measurements

0
-10-8-6 -4 -2 0 2 4 6 8 'lp rnHz

Frequency difference (f„-f, )

(mV)
Ql
ci s 8p

60—
4 C$.Q 40-
ci-'g 20-

-~p-8-6-4-2 0 2 4 6 8 10 mHz

Frequency difference (f„-f,)
FIG. l. The squared amplitude of the measured voltage oscil-

lation is shown as a function of the difference between the fre-
quency of the external modulation signal f„and the internal
critical frequency f& (a) and f2 (b). The symbols indicate mea-
sured data, the curves are obtained by Lorentzian fits. For the
three curves in each figure hjs, (j„j~), (i —1,2) is de
creased from hjs, 27.4 pA/cm (triangles) to Ajar, 17.1
ttA/cm (squares) to Ajar, 10.3 ttA/cm (circles). The ampli-
tude of the modulation signal is j„0.034 ttA/cm2 for alt
curves. (a) Results from measurement below, but close to, the
first Hopf bifurcation with j,i 0.566 mA/cm2 and fi 216
mHZ. (b) Results from measurements below, but close to, the
second Hopf bifurcation with j,2 3.1 mA/cm and f2 365
mHz.
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near the first Hopf bifurcation and Fig. 1(b) the results
from near the second bifurcation. We note here that in
both cases the chosen value of the amplitude j„is much
smaller than the smallest deviation ~jd, j« —jd,
(i =1,2) of the dc offset from the critical value. This
means that the ac and dc components of the current densi-

ty combined are by themselves not sufficient to induce the
internal oscillation. Rather, the system reacts to the
periodic excitation by exhibiting a resonance bebavior.
The heights of the resonance peaks increase as j4, ap-
proaches j„,indicating an increase in the amplification of
the input signal. Simultaneously the widths decrease,
which means that the system's frequency selectivity is
enhanced.

In order to study the resonance behavior quantitatively,
we try to fit Lorentzians' 3 to the squared oscillation am-
plitude values. The curves in Fig. 1 are Lorentzians of the
form

fitted by a least-square method. Here S is the squared
voltage amplitude, d, (f„-f„) is the frequency detun-
ing, and EC and 8 are fit parameters. For each curve we ob-
tain a E value to within an error of less than 1%. For all
three curves in Figs. 1(a) and 1(b), respectively, the E
values are nearly the same to within an error of 12%. The
constancy of K is expected for Lorentzian-type resonances
as the current density amplitude is kept constant. The
determination of a for each curve yields errors of about
8%-10%. The errors in s are largest when j4, is nearest to
j,~ or j,z. For the three different curves within Figs. 1(a)
and 1(b) we get different e values.

The quantity a has the property of a bifurcation parame-
ter, being related to the deviation of the control parame-
ter from its critical value. e is zero at the bifurcation and
should increase with the deviation. We compare the e
values obtained from the Lorentzian fits with the corre-
sponding values of the deviation d jd, and find a definite
dependence of s on hjd, . At the first bifurcation e in-
creases linearly with Ajd, to within an error of less than
1%. At the second bifurcation a linear plot yields errors of
more than 10%; a better fit with an error of only 2.5% is
obtained for a scaling relation of the form ea:hj),'.

Increasing the excitation amplitude we find a saturation
of the small-signal amplification. We attribute this to the
influence of nonlinear effects, as has been recently investi-
gated generally by Bryant and Wiesenfeld. On the other
hand, a suppression of the instability or a shift of the bifur-
cation point due to the external excitation are not found in
our case. More detailed experimental results will be pub-
lished elsewhere. '

We have shown that in the driven electrical conductivity
of BSN crystals the sensitivity to periodic small-signal ex-
citations is enhanced near the first and the second Hopf bi-
furcation. The shape of the resonance peaks can be ap-
proximated by Lorentzians in both cases. We obtain a
clear dependence of the height and width of the resonance
curve on the deviation of the control parameter from the
critical point.
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