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Effect of dissipation on squeezed quantum fluctuations
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The decay of squeezed quantum fluctuations of a system coupled to a dissipative environment is

discussed. For a model where the heat bath consists of an infinite set of harmonic oscillators, ex-
act results for the time evolution of the mean-square fluctuations are obtained for arbitrary bath
temperature and arbitrary damping strength.

Recently, there has been a great deal of interest in the
generation of quantum states with fluctuations of a
dynamical variable which are reduced below the size of the
vacuum fluctuations at the expense of enhanced noise in
the conjugate variable. The theoretical discussion of these
so-called squeezed states started over a decade ago. ' In
the last few years various experimental setups to generate
and detect them were suggested, ' and recently a first suc-
cessful experiment using four-wave-mixing techniques3
has been reported. While the theoretical interest in

squeezed states arises primarily from fundamental ques-
tions connected with the quantum theory of measure-
ment, 5 their experimental relevance lies in the possibility
of improving the signal-to-noise ratio of high-precision
measurements in fields such as gravitational wave detec-
tion, fiber optics, or optical communication systems.

The purpose of the present work is to discuss how a
squeezed state, once it has been generated, evolves in time
when coupled to a dissipative environment. The period of
time over which the squeezing persists is of considerable
interest since even the best experimental setup will be af-
fected by environmental influences causing dissipation.
This problem was previously discussed by Milburn and
Wallsv using a Fokker-Planck equation approach. Their
results are valid for weak damping (which seems to be the
interesting regime for most applications) and also (and
more restrictively) for not too low temperatures. The fol-
lowing analysis relies on a functional integral method
and gives exact results for a model Hamiltonian for arbi-
trary strength of the damping and arbitrary temperatures.

We consider a quantum mode which we will describe as
a particle with mass M, coordinate q, and momentum p
(e.g. , q may represent the amplitude of an electric field
component). This mode is damped through a bilinear cou-
pling to a heat bath which we assume to consist of har-
monic oscillators such as phonons or photons. The system
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is then governed by the Hamiltonian
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This modified definition of the initial squeezed state p, is

certainly more realistic since the environmental coupling is

always present and cannot be switched on and off. In the
limit of zero damping and zero temperature the "real"
squeezed state (2) reduces to the "ideal" squeezed state
discussed in the literature. Using the form

describing the situation when the squeezed state is pro-
pagated away from its source. Although the time evolu-
tion of a squeezed state may well be described as the
motion in a harmonic potential, the mechanism to gen-
erate it is necessarily nonlinear. Without going into de-
tails, the preparation of squeezed states always requires a
perturbational force acting on the system which has com-
ponents proportional to da +d'(at) for squeezing the
variances which are frequently combined with components
proportional to ca+c'a for displacing the state. Here a
and at are the usual boson creation and annihilation
operators. Such a perturbation leads to terms of the form
of the displacement operator D(ao) exp(aoat —aoa)
and the squeeze operator S(z) exp[ —,'za2 ——,' z'(at) ] in

the time-evolution operator.
In previous work' 's it was assumed that the perturba-

tional force acts on the oscillator vacuum. In the following
we will let it act on the equilibrium state ptt of a damped
harmonic oscillator at temperature T I/kttP according to

pit(q, q') -(2tt&q')tt) ' ' tpex— l q+q'
2&q')tt , (q —q')'&p') p

(3)

for the reduced equihbrium density matrix of a damped harmonic oscillator with variances &q )& and &p )p, the coordinate
representation of the initial state (2) is readily found to read

p& (q,q') [2trcrv (0)] t exp
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Here cd(0) &q &pexp( —2z) and trz(0) &p &pexp(2z)
are the initial variances of coordinate and momentum,
awhile the initial first moments q0 and p0 are connected to
the displacement parameter u0 by

gp (Mrpp/2A) qo+i(2hMroo) pp .

In writing the form (4) for the initial density matrix we
have assumed the squeezing parameter z to be real, which
means that the nondiagonal variance

~„(0)-—,
'
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vanishes. Then the principal axes of the uncertainty ellipse
initially point in the p and q direction which is the case of
interest, generally.

Now, the equilibrium variance of the coordinate is given
by10

&q'&p- g [m$+v2+ [ v„( j(( v„( )] ', (5)
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where v„2rrn/hp are the Matsubara frequencies, and
a&here
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is the frequency-dependent damping coefficient describing
the influence of the heat bath. Note that &qz&it is always
reduced by dissipation. For low temperatures and not too
weak damping we even find that the equilibrium fluctua-
tions in q can be considerably smaller than the vacuum
value &q2&„«-ft/2Mroo. This static reduction of coordi-
nate fluctuations must be distinguished from the dynami-
cal squeezing arising from the squeeze operators in Eq.
(2). In a dynamically squeezed state the variance periodi-
cally dips below the level set by the equilibrium state. On
the other hand, the static squeezing of the equilibrium
variance below its vacuum value does not arise from the
initial nonequilibrium state. Nevertheless, this effect of
the dissipative environment may also be of relevance in
connection with high-precision measurements.

To determine the time evolution of the initial state (5)
we use a functional integral method based on the influence
functional theory of Feynman and Vernon. s Since the ini-
tial state does not factorize into separate contributions
from the quantum mode and the reservoir, the method has
to be generalized to allow for a description of the initial
correlations between environment and oscillator. Details
of our approach will be given elsewhere. 9 The basic equa-
tion for the density matrix at time t is

p(qf, qf', t ) „dq; dq dq dq'l, (q;,q,q,q')Z Dlq]exp —'(S[q] —S[q']) ——S [q] F[q] . (7)

Here, the functional integral runs over all paths
II'
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on a contour C in complex time z s i z (Fi—g. 1) satisfy-
ing the boundary conditions q(0) q;, q(r) qf, q'(0)

q, q'(t) qj, and q(0) q', q(hp) q. The functions

S[q]- ' ds (q' —rojq'),

MS [q] „~ ds (q +rojqz)
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are the action of the particle in real and imaginary (Eu-
clidean) time, while

F [q] exp —— dz dz'E(z —z')q (z )q (z')
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is the influence functional describing the frictional influ-
ence of the environment. Here the integrals over z and z'
are along the contour C and z & z' means that z follows z'
in the direction of the arrows in Fig. 1. The functions
JC (z ) and p are given by
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Finally, the function
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X, (q,q, q', q') exp z + po(q q')

FIG. 1. The integration contour C in the complex time plane
z s —i z along which the functional integral (8) is defined.

&& b(q —(q —qp)exp(z ))

x b(q'+ (q —qp)exp(z ))

carries the information about the initial state (3).
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The main advantage of our approach is that the func-
tional integral (7) describing the decay of a squeezed state
can be evaluated exactly in terms of equilibrium properties
of the system. For the expectation value of the coordinate
at time t we find

(q), -MX(t )qo+Z(t )pn,

while the average momentum follows from &p),
Md&q&, /dt H. ere, X(t) is the response function of the

oscillator, which for arbitrary damping coefficient y(to)
can be written in terms of its Laplace transform

X(cu) [tu'+ tn j(tn) + an)]
l

M
(15)

For the special case of frequency-independent damping,
j(cu) y, this gives

Z(t ) sin(&t )exp —+t1

Mg 2
(16)

where g (too —
y /4)'t is the frequency of damped oscil-

lations. The relaxation of an initial displacement accord-
ing to (16) follows the classical trajectory and is tempera-
ture independent.

Let us now discuss the more interesting question of how
I

the squeezed fluctuations decay toward their equilibrium
values. We find [g exp(z)]

a, (t ) -2MX(t )S(t )(I —g) —2Mi(t )S(t )(1 —g-')
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while the cross variance is given by a~v(t ) ,' Ma—v(t).
Hence, the entire dynamics of the variances can be ex-
pressed in terms of two functions; namely, the response
function X(t ) and the symmetrized coordinate autocorre-
lation function S(t) —,'(q(t)q+qq(t)&. Again, for arbi-
trary damping mechanism S (t ) can be given in terms of
its Laplace transform

which for frequency-independent damping can be evaluat-
ed in closed form to yield'

S (t ) exp( —Xzt )coth —hPX2 —exp( —k~t )coth —hPXt
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where Xt z y/2 ~i g. Since the system under consideration is linear, the initial state (5) remains Gaussian for all times
so that the density matrix at time t is determined uniquely by the expectation values (14), (17), and (18). In order to dis-
cuss the decay of the squeezed fluctuations in more detail it is convenient to introduce the Wigner representation W(p, q )
of the density matrix. We readily find

~(p,q, t )- [ (at) (at)k(t)l 't'exp —— ' +1,, 1 (q —
&q&, )' (p —&p), )'
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Let us further introduce the dimensionless variables

q (2Mtoo/h)'t q and p (2/AMtoo)'t p and the vari-
ances oq(t), a~(t), and a~(t) scaled accordingly. Set-
ting the expression in large parentheses in (21) equal to 1

defines an uncertainty ellipse in the (p,q) plane which is
centered at p (p&, and q (q), and characterizes the
width of the fluctuations. At t 0 the principal axes of
this ellipse ~oint in the

p
and q direction and they have the

lengths a~ (0) and ov (0). For t )0 the ellipse rotates
and the lengths of the axes oscillate. Note that we have
scaled the variables such that the vacuum state is
described by a unit circle, while the equilibrium state is el-
lipsoidal due to the dissipation.

The system is in a squeezed state as long as the minor
axis of the uncertainty ellipse is shorter than 1. The prin-

cipal axes of the rotated ellipse are given by
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FIG. 2. Time evolution of the principal axes x ~ (t} of the un-

certainty ellipse for a Drude model with coD lotuo, exp(z) -2.
The horizontal line marks the size of the vacuum fluctuations.
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where the plus and minus sign hold for the major and
minor axis, respectively. Figure 2 shows the time evolution
of these axes for a Drude model with j(ro) ymD/
(ro+ coD) for two temperatures. Dissipation influences the
squeezing in two ways. It leads to a decay of the squeezed
fluctuations and changes their absolute values.

Let us first discuss the lifetime of the squeezing. It is
seen from Fig. 2 that the decay rate is roughly tempera-
ture independent. This can be understood by using the ex-
plicit time dependence of the response and correlation
function for frequency-independent damping [Eqs. (16)
and (20)]. For high temperatures T & by/4irkn all terms
in Eqs. (17) and (18) for the variances decay as
exp( —yt) or faster so that the damping constant is the
only relevant parameter for the lifetime of the squeezing.
For lower temperatures we still have terms proportional to
exp( —yt), but some of the additional terms proportional
to exp(-( —,

' y+v„)i] decay slower. For moderate to
strong damping these latter terms determine the lifetime
of the squeezed fluctuations which is of the order of 2y
For weak damping (y(& coo) one has to note that all terms

which decay slower than exp( —yt ) are by a factor of y/coo

smaller, so that they become important only after a period
of time when most of the squeezing has already died out.
Hence, for weakly damped systems the lifetime of the
squeezing is of order y

' for all temperatures, and the re-
sult of the weak coupling theory is valid even at T 0.

Figure 2 also shows that the initial squeezing below the
vacuum fluctuations is increased by dissipation. While
stronger damping leads to a faster decay of the dynamical
squeezing, the static squeezing of the equilibrium variance
below the vacuum level is increased by the damping. This
second effect of dissipation is not described by a weak cou-
pling theory and it is more pronounced for lower tempera-
tures and stronger damping. However, even for the weakly
damped system shown in Fig. 2 it has the consequence that
the T 0 curve for the minor axis takes about twice as
long to reach the vacuum line than the finite-temperature
curve. The condition of low temperatures is not very
stringent in the optical regime where even at room tem-
perature knT &O. lhroo, but it requires millikelvin tem-
peratures if one works with microwaves.
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