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Three related systems, two of which describe diffusion of an ideal gas through a porous plug, are
optimized so as to minimize the work required to move the plug from one equilibrium position to
another equilibrium position in a given time v. All systems folio~ a "turnpike" (i.e., boundary-
singular-boundary branch) trajectory, and the dissipation (work required) is proportional to ib /)'/r,
where h, l is the distance moved, at least for slow processes. The result is of interest as a lower bound
for the separation of gases by diffusion.

I. INTRODUCTION

Diffusion at a nonvanishing rate is inherently dissipa-
tive. Nonetheless, it has been used to separate mixtures of
gaseous compounds, e.g., containing different isotopes of
the same element. Finite-time thermodynamics' has been
developed to provide lower bounds on the dissipation in
rate processes. In this paper we use one of the methods of
finite-time thermodynamics, optimal control theory, to
examine the minimum dissipation associated with finite-
time passage of an ideal gas through a porous plug.

Two basically different physical situations are readily
identified, one in which the system is closed and the total
amount of gas thus constant (Fig. 1), and the other in
which the system is open and diffusion occurs against a
gas reservoir of constant pressure (Fig. 2). In both cases
control is achieved by varying the position of the plug.
The plug is assumed to be movable without friction or in-
ertia, and it is further assumed that the process is done
sufficiently slowly so that the gas is isothermal and in
internal equilibrium on each side of the plug (i.e., dif-
fusion through the plug is slow compared to internal
equilibration and heat conduction to a surrounding heat
bath). This assumption of separability of time scales is
equivalent to endoreversibility (literally "reversible on the
inside, "meaning that all irreversibilities are located across
the boundary to the environment ) and is justified by our
intent to explore only that portion of the irreversibility as-
sociated with the passage of gas through the porous plug.

Ex. 1

Under these assumptions the solutions turn out to be of
the "turnpike" form previously observed in finite-time
heat engines. (The expression turnpike solution is fre-
quently used to indicate that the optimal path goes as
fast as possible to the turnpike along which the system
follows a solution of the Euler-Lagrange equations, and
finally gets off the turnpike at the last moment which al-
lows enough time to reach the final state. ) While this
turnpike property is difficult to prove even for these sim-
plified examples, it is likely to be generally true for en-
doreversible systems in the absence of friction and inertia.

The solution of the optimal control problem for the ex-
ample in Fig. 1 is quite difficult. This prompted us to ex-
plore the example in Fig. 2, which is of a very similar
mathematical form, but is simpler to solve. The progres-
sion from the example in Fig. 1 to the example in Fig. 2
in fact suggested an even simpler problem of the same
mathematical form, which has a physical counterpart
shown in Fig. 3. This problem served mainly as the
mathematical compass which provided direction for the
progressively more difficult problems. Consequently, in
the following our arguments will be given in parallel for
the three examples termed Exl (Fig. 1), Ex2 (Fig. 2), and
Ex3 (Fig. 3).

Section II will define the three examples in mathemati-
cal terms. Section III states a number of theorems for the
optimal trajectories with the proofs given in the Appen-
dix. This information is collected to form the actual tra-
jectories and to calculate the dissipation along each one in
Sec. IV. The physical examples are chosen as a means of
obtaining a bound on the irreversibility in simple separa-
tion processes using semipermeable membranes; this is ex-
plored in Sec. V of the paper.

control

L-l
Ex. 2

FIG. 1. Box of total length L, cross sectional area A, and
containing X moles of an ideal gas at fixed temperature T is
separated into two compartments by a porous plug permeable to
the gas. The left compartment of length I contains n moles of
gas. The rate of diffusion through the plug is proportional to
the pressure difference across it. The position of the plug is
used to control the system.

control

FIG. 2. Right compartment of Fig. 1 is replaced by an envi-
ronment of constant pressure I', .
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Ex. 3

FIG. 3. Dashpot, whose resistive force is proportional to its
velocity, is connected through a spring to a control. The posi-
tion of the dashpot relative to some fixed point is n, that of the
control is I., and the extension of the spring away from its
equilibrium position is I.

II. PROBLEM FORMULATION

A. Example 3 (Fig. 3}

Given: An incompressible fluid in a cylinder contain-
ing a dashpot which is connected to an external control
through a spring.

Find: The control trajectory necessary to move the
dashpot from one equilibrium position l(0) to another
equilibrium position 1 (~) in a given time ~ with minimal
work.

Assuine: (i) The system is free of inertial effects, (ii) the
resistance of the dashpot to movement is proportional to
its velocity, and (iii) the tension in the spring is propor-
tional to its displacement from its equilibrium length.

The variables used are shown in Fig. 3.
Since the system has no inertia, the force on the control

must at all times equal both the tension in the spring and
the resistance force on the dashpot,

~control Tspring +dashpot

=kspring(1 n)=kdashpotn (1)

where the dot indicates tiine derivative. To simplify the
situation, we select units of distance such that k,p „g——1

and units of time so that kd„h~t ——1. Then the work done
on the system by the control is

l(w)

Fcontrol dl
l(O)

= J (1 n)ldt —. (2)

In order to ensure the existence of a solution, we make the
admissible set coinpact by constraining the velocity 1 to be
bounded. Thus the final mathematical statement of ex-
ample 3 becomes the following: minimize

W= J (1 n)ldt, —

subject to

n=1 n, —
s

& +max ~

n~0,
n (0}=l(0},
n(7)=1(~) .

T

P, A
=AT

RT 1

with

P, A

A RT

As in example 3, we simplify the expressions by selecting
units of distance such that P, A/RT=1, units of time
such that k/A =1, and units of energy such that RT =1.
Then the mathematical statement of example 2 becomes
the following: minimize

W= 1 —n (10)

subject to

ri =1 n/1 =(1 n—)/I, —

+ +max ~

n~O,

l)0,
n (0)=1(0),
n(v )=l(~) .

C. Example 1 (Fig. 1}

(12)

(13)

(14)

Given: A rectangular box containing an ideal gas and a
porous plug which divides the box into two compartments
and which can be moved back and forth within the box to
control the system.

Find: The trajectory necessary to move the plug from
one equihbrium position 1(0}to another equihbrium posi-
tion 1(~}in a given time r with minimal work.

Assume: The assumptions as in example 2 except (i).

B. Example 2 (Fig. 2}

Given: A rectangular box with the right side open to
the environment through a porous plug which can be
moved in order to control the system. The box and the
environment contain an ideal gas.

Find: The trajectory necessary to move the plug from
one equilibrium position 1(0) to another equilibrium posi-
tion 1(~) in a given time r with minimal work.

Assume: (i} The environment has constant pressure, (ii)
the rate of diffusion of the gas through the plug is propor-
tional to its concentration difference across the plug, (iii)
the process is carried out isothermally, (iv) the system is
free of inertial effects and friction, (v) internal degrees of
freedom equilibrate rapidly compared to the time scale of
diffusion through the plug, (vi) the velocity of the plug is
bounded.

The variables used are shown in Fig. 2.
Using the ideal gas law, we find the work done on the

system by the control
v(r)8'= hP V

V(0)
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The variables used are shown in Fig. 1.
Using the ideal gas law we find the work done on the

system by the control

T

A dl
(N n)R—T nRT
(I. —1)A IA

S—n n=ET I dt,i. —I I

with

k N n—n
Pl =—

A I I —I
(18)

&umax ~

0+71 +1,
O~l g1,
n (0)=l(0),
n(r) =l(r) .

(21)

(22)

(23)

(24)

The similarity of the thrm examples now becomes clear
since they all fit into the following format: minimize

W= f fudt (26)

with the control
u=l

and the forcing function

where

=n, (28)

(I n) (Ex3)—
(I n)/I (Ex—2)
(I n)/I (1—I) (Ex 1 )—.

(3)

(11)
(20)

Their solution is accomplished by optimal control theory
from which we know that the Hamiltonian

H(A, ,f,u)=A, ogu+A, &/+A, 2u, (29)

where the A, 's are Lagrange functions conjugate to Eqs.
(26), (28), and (27), respectively, is constant along the op-
timal trajectory. This can be rewritten as

As before, we simplify the expressions by letting the
length of the box be our unit of distance I. =1, the total
amount of gas in the box be our unit quantity of gas
X =1, and selecting units of time such that k/A =1 and
units of energy such that RT =1. This gives the follow-
ing mathematical statement of example 1: minimize

1 —I I
(19)

subject to

1 nn— I n—
1 —I I 1(l I) '—

H=ou+A, ig,
where

cr =A,of+ A.2 . (31)

i, , = —aH/an,

A, 2
———BH/BI,

(32)

(33)

valid for all three examples.
The Pontryagin maximum principle now states that, for

all admissible values of the control u, the control corre-
sponding to the optimal trajectory maximizes the Hamil-
tonian. Therefore, if o is greater than zero, the optimal
trajectory will require [cf. Eq. (30)] u to obtain its max-
imum admissible value (i.e., u =u,„). Likewise, if o is
less than zero, u must obtain its largest admissible nega-
tive value (i.e., u = —u, „). For this reason, a is referred
to as the switching function, since it determines when one
may switch on or off a boundary trajectory. Thus the
control is determined by the boundary constraints on u

whenever o+0. For o =—0, u is obtained as the solution of
Eqs. (27), (28), (32), (33) in optimal control theory or of
the Euler-Lagrange equations in a calculus of variations
approach. This trajectory is referred to as the singular
trajectory.

III. OPTIMAL TRAJECTORIES

We now proceed to identify the possible solution trajec-
tories and show that the required combination of these
trajectories corresponds to the turnpike form. Without
loss of generality, we may restrict our discussion to pro-
cesses with n (r) & n(0).

First we make some observations which hold for all
three examples.

(i) The set of equilibrium points is the line I =n.
(ii) If n &I, then n &0.
(iii) If n & I, then n & 0.
(iv) At all singular points (cr =0), P= A2 and H =A

iraq.

(v) At all equilibrium points /=0 and H =A,2u.
(vi) No equilibrium points are singular points.
The last statement is easily seen from the fact that, if

any equilibrium point is also a singular point, then at that
point H =gu =0, implying n =1=0, so that the entire
trajectory must consist of only that one point.

Next note that, as the allowed time ~ increases, the
minimum work decreases monotonically. This is readily
seen from the fact that if we accomplish the objective in a
time ~ with a certain amount of work, we can accomplish
the objective in time ~+e with the same work by just sit-
ting at the initial equilibrium position for the duration e

The conjugate function A,o(t) is actually a nonpositive
constant, so if Ao&0 we may divide the Hamiltonian by

effectively rescaling the A, 's such that A.o= —1.
Consequently, we have only two possibilities, A,o

——0 or
k.o ———1. In either case, the optimal trajectory obeys the
dynamical equations

(28)
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where

(34)

(35)

n=

kz ———(Bg/8/)(A, i
—u) .

(27)

(36)

(37)

This set of equations has three possible types of trajec-
tories, namely, the two boundary trajectories (u =u
and u = —u,„),and the singular trajectory (o:—0).

Here we recall the observation that the singular branch
trajectory can never cross the equilibrium line, and we

and then following the same trajectory as before. Thus
the minimal amount of work, given time ~+@,must be no
larger than the amount of work given time ~.

The shortest possible time for passage between two
equilibrium states is achieved by increasing / as fast as
possible (i.e., u =u ) until a point when the system can
just return to equilibrium at the desired final state in the
remaining time while moving at the maximum permissi-
ble compression rate (u = —u,„). This is the "bang-
bang" (boundary-boundary branch) solution 5 which has
a trivial trajectory. We can decrease the work by allotting
additional time, so this is only the optimal solution if the
given time r is exactly equal to the minimum possible
time. For this reason, we are not interested in the bang-
bang solution.

We are now in a position to prove a number of
lemmas the actual proofs may be found in the
Appendix —which will lead to the optimal trajectory.

Lemma /. If Q=O then the optimal trajectory is the
bang-bang solution.

Since this solution is not of interest, we will consider
only Q= —1 for the rest of this paper and thus find the
optimal trajectory from among the continuum of admissi-
ble trajectories which exist for values of ~ larger than the
minimum possible time. Then

realize that, if we start at equilibrium and move along any
boundary branch, this will not take us to another equili-
brium point. This tells us that if we are "left" of equili-
brium (i.e., / &n), in order to reach another equilibrium
point we must approach that equilibrium along the
u =u, „boundary trajectory. Similarly, if / & n, to reach
an equilibrium point we must approach it along a
u = —u, „boundary trajectory. This leads to the follow-

ing lemmas.
Lemma 2. The Hamiltonian is positive.
Lemma 3. The initial branch is the boundary branch

toward the final state [i.e., u =u,„if n (~) & n (0)].
Since we limited our discussion to n(~}&n(0), at least

the initial part of the optimal trajectory will be "to the
right of equilibrium" (/ & n)

Lemma 4. If we reach an equilibrium point from the
right (i.e., with / &n} it must be the final equilibrium
point.

Thus the optimal trajectory can never cross the equili-
brium line, and in our case the entire trajectory is to the
right of equilibrium. Now to find the exact form of the
solution trajectory, it is reasonable to assume that the
form of this solution will be independent of the actual
value of u,„. Consequently, to make the calculations
easier we set u,„=I. The general case of an unspecified
u, „will be discussed later.

Lemma 5. If we switch to a u = —1 trajectory from a
point to the right of equilibrium (/ & n), then we will nev-
er reach another point where the switching function al-
lows us to switch (i.e., o =0).

Thus, once we switch to a u = —1 trajectory, we must
continue to the final equilibrium and cannot cross the
singular trajectory. This means that the overall trajectory
must start along a u =+1 trajectory until a switching
point from where we follow the singular trajectory to the
point where the u = —1 trajectory will take us to the final
equilibrium state. This is the turnpike form and it has
been shown for u,„=l.

If we now look at u,„&1, it is easily seen that the
technique used in the proof of lemma 5 will hold for ex-
amples 2 and 3, but for example 1 it is not clear that this
is true. Nevertheless, it seems reasonable to assume that
the turnpike form of the solution will be the optimal tra-
jectory form regardless of the value of u

IV. SOLUTIONS OF INDIVIDUAL BRANCH TRAJECTORIES

Substituting the values for i/p, BQIBn, and Bf/8/ from Eqs. (28), (A4), and (A5) into Eq. (A10) yields the singular tra-
jectories

/ —2h (Ex3)
/ —2/h [(1+& )'i —/i] (Ex2)
/ —2/(1 —/)h(I1+[/i(1 —2/)] I' —h(1 —2/)) (Exl)

(38a)

{38b)

(38c)

where for convenience we have defined /i =~H /2. Further using the expressions for ri in Eqs. (3), (11),and (20) we find

2h (Ex3)

g, =i/=g = .2h [(1+6')'"—h]=/i, (Ex2)

2h(I 1+[/i (1—2/)] j'i —/i (1—2/)) =—/i, (Exl)

(39a)

(39b)

(39c)
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2h (Ex3)
2h [(1+h )'~~+h] (Ex2)

H

2h(I 1+[h(1—2/)]'J' '+h(1 —2/)) (Exl)

(40a)

(40b)

(40c)

n
u =I=

(dn /dl)

2h (Ex3)
h 2/(1 —h z ) (Ex2)

21 (1—/)h

I 1+[h (1—2/)]'I '" (Exl) .

(41a)
(41b)

(41c)

These singular branch trajectories are shown graphically in Fig. 4.
The differential equations for the boundary branch trajectories in example 1 are greatly simplified by again choosing

u,„=1.Then with u =1,

(42)

i/i=ri =n /I =dn/dl,

which for the three examples yields

(43)

/ —1+(np —lo+1)e ' (Ex3)

no/o I —lo2 2

(Ex2)

1+ ln
/o«o —1)

I 1 —lii 1 —lii
(Exl ) .

(44a)

(44b)

(44c)

The Lagrange functions A, i and A,2 are obtained by applying the identity A, =A, //=dA, /d/ to Eqs. (36) and (37), respec-
tively,

(Idio —1)e '+1 (Ex3)

(A, ip
—1)—+ 1 (Ex2)

I

1 0

I (1—Ii))
(A ip —1) + 1 (Ex 1 )

/o(1 —I)

(45a)

(45b)

(45c)

(~io —l)(1 —e ')+Azp (Ex3)

Io —I
(A ip —1 ) (2np+I —/p)+A2p (Ex2)X2- 2IIO

I/o(1 —I) 1 —/p /p(1 —/o) 1(1—/)

Io —I
+A,2p (Exl)

(46a)

(46c)

Similarly, for u = —u,„=—1,
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r

I + 1+(no —lo —1)e ' (Ex3) (47a)

o Io
I +lnn= I

L

(Ex2) (47b)

r

no(1 —lo) Io
+ln

Eo I
(47c)

(Aio+ 1)e —1 (Ex3)

Io
(A, io+1)——1 (Ex2)

1 I

lo(1 —I)
(bio+1) —1 (Exl)

0

(48a)

(48b)

(48c)

(Aio+1)(1—e ' )+Azo (Ex3)

lo I (lo —l)(lo —no)
(A, io+1) —ln —+ +Ago (Ex2)

I lo Elo

Eo, I 1 1 Eo —I

1(1—l)(1—Io) Io Eo(1 —Io) E( —I) l(1 —Io)

(49a)

(49b)

(49c)

r= hn/n = [n(r}—n(0)]/2h (50)

These boundary branch trajectories are plotted in Figs. 5
and 6.

If we now allow u,„ to increase without bound, the
porous plug will reach the singular branch trajectory be-
fore any of the gas has had time to diffuse through the
plug. Since we are only interested in the irreversible dissi-
pation associated with the passage of gas through the
plug, we will ignore the work along this initial boundary
branch as it will be rceovered along the final boundary
branch. Thus the dissipation of the process is equal to the
work expended along the singular branch trajectory.

For example 3 n is constant [Eq. (39a)], so that total
duration is

n =[n (r) —n(0)]/r

=(H+e'/4}'" —a/2,
[n (v )—n (0)]2

r[r —[n (r) —n (0)]J

(53)

(54)

8+a' 4'"—8 z

[n (r)—n (0)]
r—[n (~)—n(0})

The exact solution to example 1 is quite difficult since
n and u depend on I, but for long times an approximate
solution is tractable. In this case, the singular trajectory
will be close to the equilibrium line, i.e., n =I, and h is
small. Then Eqs. (38c) and (39c) simplify to

H=4h =
'2

(51)
n =I—2l(1 —l)h,

g=n =2h .

(56)

The work along this trajectory, Eq. (26), is then, by Eqs.
(38a) and (39a),

%ith ~ now approximately a constant, the equations may
be solved as before to yield

'2

I dt

=[n (r) —n(0}]2/r . (52}
and

n (~) n(0)—
I =n [1+2h (1—n)], (59)

Example 2 is almost as simple because, again, the
singular branch trajectory has a constant forcing function
f [Eq. (39b)] and a constant velocity u [Eq. (41b)], so

l(~)
$V= I 2h dl

=[n(~) n(0)] /~. — (60)
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Q~
Q

0
0

FIG. 4. Singular trajectories for example 1 (a), example 2 (1),
and example 3 (c) for selected values of the Hamiltonian. The
equilibrium line corresponds to h =0.

In conclusion we see, for all three examples, that for
large times the work is proportional to (hn) /r, and from
Eqs. (41) and (38) it is also clear that It ((1 and I =n (i.e.,
we do not get very far from equihbrium). Consequently,
we obtain the relationship that for large times work is
proportional to Q,I) /~.

FIG. 5. u =1 boundary trajectories for example 1 (a), exam-

ple 2 (1), and example 3 (c) for different initial conditions, Time
evolution is indicated by arrows, and the equilibrium line is
dashed.

is proportional to the concentration difference of that gas
across the plug. Then, with the same assumptions listed
for examples 2 and 1 and the assumption that the external
pressure on the box is zero, we get the following expres-
sions for the flow rates and work (for notation see Fig. 7):

A I. —I I
(61)

(62)

V. RELATIONSHIP TO SEPARATION PROCESSES

One of the applications of this result is the separation
of a mixture of ideal gases by diffusion. This can be
achieved by an arrangement of two concentric interlock-
ing boxes of the same length, as shown in Fig. 7. The
middle compartment contains a mixture of two ideal
gases, A and 8. The left end of the right-hand box is a
semipermeable plug (a) which allows diffusion of gas A,
but is impermeable to gas 8, while conversely the right
end of the left-hand box (b) is peianeable to gas 8 but not
to gas A. As in the previous examples the rate of dif-
fusion through a plug of the gas to which it is permeable

(Ng +Na ) (nq +ns)—8'=AT Ply +Ply
Idt .

(63)

If now we construct the porous plugs such that k„=ks,
are can again choose units such that I.= 1, Nz+Xz ——1,
kz/A =ks/A =1, and RT =1. This results in the fol-
lowing mathematical formulation: minimize
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0&n ~1,
0(l (I,
n (0)=l(0),

n(~ }=1(r).

(69)

Since this is the same mathematical problem as exam-
ple 1 [Eqs. (19)—(25)] it tells us that, with the Fick's law
diffusion constants equal for the two porous plugs, the ir-
reversibility associated with the passage of gas through
the plugs is only dependent on the total amount of gas
passing through the plugs and not on the relative propor-
tions of gas A and gas 8. It also tells us that the overall
dissipation will be approximately proportional to (b,l) /r.
This supports the predictions of the thcery of thermo-
dynamic length. '
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APPENDIX

Proof ofLenIrna 1. If Q—=0, then by Eq. (29)

(A 1)

(A2)

0

FIG. 6. u = —1 boundary trajectories for example 1 (a), ex-
ample 2 (b), and example 3 (c) for different initial conditions.
Time evolution is indicated by arrows, and the equilibrium line
18 dashed.

where

(A3)

1 (Ex3)
1/l (Ex2)
1/1(1 —l) (Exl ),

(A4a)

(A4b}

(A4c)

From the expressions for P, Eqs. (28}, (3), (11), and (20),
me see that

subject to

1 —1l 7l
If =

1 —l l

f
l

/
&u,„,

(65}

(66)

—1 (Ex3) (A5a)

Bl
n /l (Ex—2) (A5b)

—[(1—n)/(1 l)I+n/—lI] (Exl), (A5c)

which are, respectively, positive,

I

nA ) Np,
- nA

0

I

Np-np ) ng
1
I

—Bg/Bn )0,
and negative,

—Bg/8/ (0,

(A6)

(A7)

L

FIG. 7. Box arrangement similar to Fig. l in which a mix-
ture of two ideal gases A and 8 is contained in the overlapping
region of the two boxes. Porous plug a is permeable only to gas
A and plug b only to gas 8. The relative position of the two
boxes is used to control the system.

due to the constraints on n and I. This in turn makes A,
&

of the same sign as A, I so that A, , never changes sign. It is
also apparent that A,2 must have the opposite sign of A,
Since the switching function in Eq. (Al} is o =A,2, A, I

——0
implies A, I

——0 and A,I——0, so that the switching function is
a constant, which means me can never smitch trajectories.
This is impossible since ~e cannot reach the objective on a
81Ilgle boundary tra)ectory, aIld kg=A, ( ——A,1=0 ls pro111blt-
ed. If A, 1&0, then A,z&0 and, since A,z is monotonic, it can
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be equal to 0 on at most one point. Thus the switching
function determines that the control u must always be on
the boundary trajectories u =u „or u = —u,„and can
switch boundary trajectories at most once. Therefore, the
only possible solution is the bang-bang solution. 0

Proof ofLemma 2. Along the singular trajectory o =—0,
P =A,2&0, and H =A, ,A,2 so that by Eqs. (36) and (37),

point, then the system will never reach the final equilibri-
um point. 5

Proof ofLemma 5. For this proof we consider the three
examples one at a time. In all cases at the switch to
u = —1, A,z&0, A, i ——H/kz &0, and A,»0. Thus, as in
lemma 4, A, ~ ~0 along this branch. From the expression
for o, Eq. (35), we have

A, =H/A,
~ 8

A2

H a11
(A, i

—u)= — — (A, i
—u)

Bn f22 c)l

(AS) a@ aq
c)l Bn

For example 3, using Eq. (3) for g, this yields

cr'= —A i+/ .

(A11)

(A12)

implying

al( H a11

Bn gi~c)l

The signs of the derivatives, Eqs. (A6) and (A7), finally
make it clear that H «0. 8

Proof of Lemma 3. Since the initial state is an equili-
brium point, it cannot be on a singular trajectory. If
l(~) & l(0) and we initially follow a 1=—u, „boundary
trajectory, we will be left of equilibrium (1 &n), but from
there one can never reach the final state since n (v ) & n (0),
whereas n &0 by Eqs. (3), (11), and (20). Consequently,
one must cross over to the right of equilibrium (1 & n) on
a u =u~,„ trajectory in order to get to the final state. At
the point where this switch is made o=0 (a ne:essary
condition to switch branches) and P &0 (since we are left
of equilibrium). This implies that A,,ig=H &0 or A, i &0 at
this point. The constraints Eqs. (A6) and (A7) further
make A, , &0 so that 1i, i must remain negative and A, z must
be positive throughout this u =u~,„ trajectory. When it
reaches equilibrium H =li,2u, „&0, so that A,2&0, but
since Az&0 throughout this trajectory, A,2 must remain
positive for the remainder of the trajectory, and the sys-
tem will never reach another singular point which would
require H =A, iA2 & 0. Thus it must remain on the
u =u,„ trajectory which cannot lead to the final equih-
briurn state. Consequently, one cannot start along a
u = —u,„branch from the initial point, and the only
other possible branch trajectory is u =u~~ which is the
boundary trajectory toward the final state. ~

Proof of Lemma 4. Since we are right of equilibrium
initially, the expressions for ri, Eqs. (3), (11), and (20), are
clearly positive. The approach to equilibrium must be on
a u = —u branch trajectory, and when the switch to
this branch was made, o=0, $&0, and H =A, ,g&0.
Therefore, A, i was positive and, by Eq. (36), must remain
positive throughout the rest of the branch. When it
reaches equilibrium H = —A.2u,„&0 so that A,2~0, but
Eq. (37) imphes that A, & &0 if this is not the final equih-
brium state, so for the remainder of the branch hz&0.
Again, this implies that the trajectory will never reach
another singular point since that would require
H =AiA2&0, with A, , &0 and A2&0. Therefore, one can
never switch off of this branch which leads away from
equilibrium, so if the equilibrium point which is reached
a1ong this u = —u ~ branch is not the fina1 equilibrium

Now consider

cr/A, if = 1/1i, i
—1/iI( . (A13)

This quantity must have the same sign as o since P and A, ,
are both positive right of equilibrium. At the switch to
u = —1, o'&0 as previously discussed for a switch to
u = —u,„. Consequently, cr/A, iil( (0 at this switch. If
we look at

d cr

dt A, ig
1 ~ 1

(A14)

cr'=(A, i1(t —A. i+/)/1 .

This time considering

cr'1/A, if= 1/A, i
—1//+ 1

(A15)

(A16)

eliminates mixed terms to ease evaluation. This quantity
is again of the same sign as cr' and is initially nonpositive.
The derivative

d ol
dt A,if

1 . 1
(A17)

with g= g/1 n/1 —&0 is—clearly negative by the fact
that g, n, and 1 are all positive. This again implies that
the system will never again reach a switching point.

For example 1 the same equations give us

cr=[i)'j—A,i+(I —21)QA, i]/1(1 —1) .

To eliminate the cross terms we consider

crl(1 —1)/A, ip'= 1/A, , —1/f+(1 —21),

(A18)

(A19)

which again has the same sign as 0 and is initially non-
positive since P&0 and A, »0. From

and recall A, i&0 and f= —f 1&0, we—observe that
(d/dt)(cr'/A, iiti) &0. Thus cr' is never positive, and o is
monotonically decreasing from a value of 0 at the switch
onto this trajectory. This means that the system can nev-
er again reach a point where the switching function cr al-
lows it to leave the u = —1 branch.

Similarly for example 2 substituting Eq. (11) into Eq.
(All) yields
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d ci/(1 —/)

dt A~/

0 l 0

A, )+ /+2
P/f +2= —1/t/ 1(l —/) —2n/(l —n), (A21)

which again proves that (d/dt)[ol (1—/)fk. ,g] & 0, so that
here too the system never again reaches a switching point.

some algebraic manipulation leads to
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