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Solidification cells at low velocity: The moving symmetric model
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This paper is the first in a series of theoretical studies of singular cells in. the small solute Peclet
number limit (8~0) of two-dimensional models of directional solidification. In this li~it solute dif-

fusion in the frame of the moving front is nearly Laplacian in which case solidification cells and

Saffman-Taylor fingers are closely related. Here Langer's moving symmetric model in the absence

of temperature gradient (which also describes solidification in a channel of width X at unit under-

cooling) is considered. A boundary integral equation describing steady-state cells is derived and it is

shown that in the P~0 limit this equation can be expressed in terms of a single dimensionless pa-
rameter o ~ dol/k, . The endpoint singularity is studied analytically and physically admissible solu-

tions are found numerically to only exist for a discrete set of values of o. The small I' dependence

of 0 is also examined.

I. INTRODUCTION

The problem of pattern selection in interfacial non-
equilibrium systems has received an increasing amount of
theoretical and experimental interest. In particular den-
dritic crystals' and viscous fingers in Hele-Shaw
cells ' have been the subject of numerous studies.
These studies have shown numerically and more recently
analytically that pattern selection in both systems is con-
trolled by surface tension. Capillary forces break the can-
tinuum of steady-state solutions (Ivantsov family of nee-
dle crystals or Saffman-Taylor family of fingers), yielding
a discrete set of solutions among which only one is gen-
erally stable and relevant in experiment. This seltLtion
criterion can be expressed in tetms of a nonlinear solvabil-
ity condition which corresponds to the requirement that
physically admissible steady-state interfaces remain
smooth at the tip of the cell. In dendritic solidification
the presence of some form of crystalline anisotropy, either
static or kinetic, is essential for this discrete set of solu-
tions to be nonempty (at least in 2D), while in viscous
fingering such inclusion is not necessary, the netirby chan-
nel walls playing a role similar to crystalline anisotropy.

I.et us now group in, say, class 1 those interfacial pat-
terns for which a discrete set of solutions of the steady-
state equations exists for given values of the external pa-
rameters (undercooling, applied pressure gradient, . . . )

and in class 2 those patterns for which a family of solu-
tions exist. Clearly, crystal dendrites and Saffman-Taylor
fingers fall within class 1. However, what is not so clear
at this point is to what extent this class is universal and
encompasses other interfacial patterns of theoretical and
experimental interest. In particular, does directional soli-
dification fall within class I'? To examine this question let
us differentiate between two different kinds of steady-
state cellular interfaces which can occur in directional
solidification: (1) small amplitude cells and &2) (quasi-
infinite amplitude) singular cells or solidification
"fingers" which have been observed experimentally at rel-
atively slow solidification rates. With regard to

small amplitude cells, numerous theoretical studies'
have already shown that these states can exist near thresh-
old of the planar instability (MuBins-Sekerka instability)
within a continuous band of wave numbers, their slow
dynamics being described by an amplitude equation simi-
lar in form to the equation of Newell and Whitehead, i'
and Segel, for convective cells. Thus, the cell spacing in
an array of small amplitude solidification cells or an array
of convective cells (as opposed to the tip radius of a needle
crystal or the width of a viscous finger) is left undeter-
mined by the steady-state equations, and these states fall
within class 2. However, for singular cells, the existence
property of steady-state solutions has not yet been estab-
lished. In previous work, deep cells were found numeri-
cally2i at half the critical wave number (where the planar
instability first occurs) but the problem of cell-spacing
selection was not examined. Other attempts~ ' were
based on small amplitude expansion in the interface dis-
placement, either in real or Fourier space, which by the
nature of the expansion can not describe properly singular
solutions (infinite amplitude states). These attempts,
despite their own merits, thus failed to establish on a firm
basis the existence of singular solutions in fully nonlocal
models of directional solidification.

In this series of two papers we investigate this question
of pattern selection in an array of solidification fingers.
For this purpose we adopt the following strategy. We
first investigate the simplest nontrivial nonlocal model of
directional solidification which exhibits singular cells, and
progressively incorporate complicating features of a more
realistic model which, hopefully, finally leads us to a rela-
tively accurate description of the experimental system.
The advantage of this procedure, over starting immediate-
ly with a complicated model, is that we gain a systematic
understanding of which complicating features are crucial,
in that they alter significantly the existence properties of
singular solutions and which ones are unimportant, in
that they only have quantitative effects. Note that a simi-
lar strategy has been used in the past in the study of small
amplitude states. ' ' Following this path, we first study
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Langer's moving symmetric model in the absence of tem-

perature gradient (model A). The reason for neglecting
the temperature gradient is that its presence destroys the
existence of steady-state singular cells in a symmetric
model of directional solidification. With infinite cusp
singularities and a temperature gradient present simul-
taneously, overall solute conservation demands that infi-
nite lateral solute concentration gradients be present in the
solid, a situation which clearly cannot occur if solute dif-
fusion is allowed in the solid. Therefore model A is the
simplest nontrivial mathematical structure which, as we
shall see, exhibits at finite surface tension a discrete set of
singular spatially periodic solutions.

We emphasize that in first studying singular cells in the
absence of a temperature gradient we cannot investigate
the effects of the coupling between the solute and tem-
perature fields. This important coupling is responsible for
fixing the absolute position of the interface in the frame
of the moving front (i.e., the position along an apus paral-
lel to the direction of motion of the front), and, in its ab-
sence, this position is left arbitrary. Also, in the absence
of this coupling, long-wavelength perturbations are likely
to be unstable and alter significantly the global stability of
the pattern. Consequently, in the context of model A, our
study is restricted to the existence properties of steady-
state solutions. Additional questions of stability and the
effects of this coupling can be best studied in the context
of the more realistic, but mathematically more complex,
one-sided model of directional sohdification in the pres-
ence of a temperature gradient (model 8). The steady-
state singular solutions of this model will be investigated
in part II. There we shall find that the presence of the
temperature gradient by itself does not affect the qualita-
tive structure of the problem (in this respect models A
and 8 are very similar), but that the coupling between the
interface and the temperature gradient via the miscibility
gap, which is strongest for small partition coefficient, has
profound qualitative effects (in this respect models A and
8 differ significantly). Results for model 8 with unit par-
tition coefficient have been published in Ref. 26.

Finally let us note that although here we have intro-
duced model A as a starting point to a systematic investi-
gation of directional solidification, this model also de-
scribes solidification fingers in a channel of width A, at
unit undercooling (where overall heat or solute conserva-
tion requires that the asymptotic width of the finger
equals the width of the channel). Clearly, this is because
solving the steady-state equations with periodic boundary
conditions (BC's) within one "unit cell" or solving them
with zero-fiux BC's along the normal to the walls are
completely equivalent tasks. In this respect, apart from
diffusion in the solid which does not have a direct analog
in the Saffman-Taylor problem, there is a clear connection
between viscous fingers in the limit where they fill the
channel (the limit of large surface tension) and the singu-
lar solutions of model A in the small Peclet number limit.
This connection will be explored in more detail in the fol-
lowing sections.

The scheme of this paper is as follows. In Sec. II we in-
troduce model A -and derive a closed integral equation for
steady-state cells in the small-P limit. In Sec. III we

analyze analytically the endpoint singularity of steady-
state solutions (i.e., the cusp region). Section IV contains
the details of the numerical solution of the integral equa-
tion derived in Sec. II. Our results are then discussed in
Sec. V, and finally concluding remarks are included in
Sec. VI.

II. INTEGRAL EQUATION FOR
STEADY-STATE CELLS

A complete description of the moving symmetric model
of directional solidification can be found in Ref. 18. We
now review briefiy the model and its starting equations.
We study the model in the absence of temperature gra-
dient and restrict our attention to steady-state spatially
periodic interfaces of wavelength (cell spacing) k. Consid-
er a two-phase system (a and P phase) and a solidification
front moving at constant velocity v in the +z direction; a
and P denote the liquid and solid phases respectively, with
C and Cii defined as the equihbrium solute concentra-
tions in each phase at some reference temperature To. We
introduce the solute field

1 C(p) —C
O'P =P (2.1)

where

(2.2)

V p+P =0,a =
Bz

(2.3)

the condition of mass conservation at the interface,

cos8„= n[(Vg—) (Vy)~];—„, , (2A)

and the condition of local thermodynamic equilibrium at
the interface (Gibbs-Thomson relation) which in the ab-
sence of temperature gradient takes the simple form

(q );„,=—,~(g) .
2V

(2.5)

All lengths are measured in units of 1,, 8„ is the angle be-
tween the local normal and the z axis,

is the solute Peclet number, l=(2D/v) is the solute dif-
fusion length, D is the coefficient of solute diffusivity
which is taken to be equal in the n and P phases, C(p) is
the solute concentration at points p=(x,z), where (x,z)
represents a coordinate system moving at velocity U with
the solidification front, C is equal to C or Cp in the a
or P phase respectively, and hC =—C —C~ is the misci-
bility gap assumed to be a constant independent of tem-
perature and local curvature of the interface. Note that
we have introduced the solute field y(p) in place of the
field u(P)=—C(p) —C used previously in Ref. 18. This
choice has been made to facilitate the discussion of the
small-P limit where p(p) is the direct analog of the pres-
sure field in Saffman-Taylor fingering. Here p(p) obeys
the steady-state diffusion equation in the frame of the
moving front,
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a(g) = — 1+d'g dg
dx

2 —3/2

(2.6)

where do is the capillary length. Finally the solute con-
centration far ahead of the moving interface, C„, is
chosen equal to Cp which implies

1=—((p(z=+ oo)= ——.00 P
(2.7)

is the local curvature of the interface, where g(x)—:(z);„,
denotes the position of the interface, and we have intro-
duced the dimensionless surface tension or velocity,

e
—PZ

((p(z)= for z »0 (2.8a)

form to (2.5) apart from a trivial renaming of the effective
surface tension (2V/P ). Finally the analog of the BC's
(2.7) is simply the constant gradient BC's ((},(p)„= const
corresponding to uniform fluid flow far ahead of the
finger. To probe the connection between the two prob-
leins further consider the spatial variations of the solute
field (p(p) far ahead of a solidification front consisting of
an array of cells. The asymptotic form of (Ip(p) for z »0
can be obtained by simply replacing the array of cells by a
constant potential plane: ()o(x,z =0)=0 and solving
(2.3)—(2.5) and (2.7) accordingly. We obtain

Here (2.7) is equivalent to the condition of unit undercool-
ing, 5=1, where

1
(p(z)= —z for —))z ))0 .

P
(2.8b)

b, =(C —C )/b C

is the direct analog of the thermal undercooling

& =(T~—T„)/(&/c~ )

which measures the difference between the melting tem-
perature and the temperature at infinity in units of the ra-
tio of the latent heat to the specific heat. Also note that
C„=C~ requires that the width of the liquid region in
between the solidification fingers shrinks to zero infinitely
far down in the cusps (z~ —oo ). This must be so since
overall solute conservation demands that the total amount
of impurities far ahead of the interface be absorbed in the
P phase as the solidification front progresses.

Next we wish to investigate the existence of singular
solutions of the steady-state equations (2.3)—(2.5) and
BC s (2.7). This investigation is best carried out by recast-
ing [(2.3)—(2.5) and (2.7)] into a closed integral equation
for the interface, then analyzing analytically the endpoint
singularity (cusp region), and finally solving numerically
this integral equation making use of the known analytical
behavior of the endpoint. Before describing these steps in
detail, we first discuss qualitatively the limiting form of
the steady-state equations for P«1 using the analogy
with the Saffman-Taylor problem. Our hope here is to
provide some physical intuition for the small-P limit and
the connection between the two problems before plunging
directly in a more mathematical analysis.

The steady-state equations describing viscous fingering
in a Hele-Shaw cell, in the absence of a gravitational
field, differ from the ones of the present model in the fol-
lowing way. The analog of (2.3} is simply the Laplacian,
the Pdz~ term being absent. The term (V(P)p does not ap-
pear in the equation corresponding to (2.4), the analog of
diffusion in the solid being absent in viscous fingering.
The analog of the Gibbs-Thomson relation is identical in

2V )r(g)=(p„+ I dx'6(M, bg), (2.9)

where dec =x —x', hg=g(x) —g(x'), and 6(x —x',z —z')
satisfies

V' P, 6= —5—(x —x')5(z —z'),
az' (2.10)

with periodic BC's. To derive an expression for 6 we
substitute the form

(X) 006 ~ d e(2z'n(x —x')+iq(z —z')6
n 9' (2.11)

into (2.10), calculate the inverse Fourier transform, and
evaluate the resulting expression on the interface [i.e.,
z —z'~g(x) —g(x')]. We obtain the exact expression for
6,

The structure of (2.8a) and (2.8b) then suggests that, in the
P~O limit, we might be able to replace the BC's (2.7) by
the constant gradient BC's (B,(p)„=—1. Furthermore in
the tip region the spatial variations of (p are of order one
and we might neglect the Pd, p term in (2.3). At the end
of this section we shaB demonstrate that such procedures
are indeed correct. Thus, in the P~O limit, the steady-
state equations for the two problems are almost identical,
the difference arising solely from (2.4) (diffusion in the P
phase), and all P dependence is contained in the effective
surface tension (2V/P ).

We now turn to the integral formulation of the steady-
state (2.3)—(2.5) and (2.7) for a periodic array of cells. We
study a single cell over the interval x =[0,1], with the
two endpoint singularities at x =0 and x =1, and impose
periodic BC's. The appropriate integral equation is then
(Ref. 18}

1 p( ~ag(+ay)y2 e ~ pe(xm2I(nM —
~

6'g
~

[1+(P/4m'n ) ] })

P n[1+(P/4~n) ]'~ (2.12)
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A'-=1+e-' { &~ —2e-' ~ &{ cos[2m(x+x')].

Using (2.7), we then rewrite (2.9) in the form

1 1
2cr«(g—)= f dx' G(M, bg)

(2.13b)

(2.14)

where we have defined

CT=
V do 1

P 4A,
(2.15)

Let us now examine the P~O limit of (2.14). If we can
bring this limit under the integral sign and simply expand
the integrand, then (2.14) can be rewritten

1

2cra—(g)= J) dx'GJ (doe, bg)+O(P)+, (2.16)

where

Gi (bx, bg) = lim G(du, hg) ——
P~O P

= ——,'(
~

b,g ~
+kg) — lnA+

4m'
(2.17)

is the Green's function for the free Laplacian with a con-
stant external field BC's. Thus, if the above limiting pro-
cedure is valid and we neglect terms of order P" (n & 1),
(2.16) is indeed the integral equation corresponding to the
steady-state equations (2.3)—(2.5) and (2.7) with (2.3) re-
placed by the free Laplacian and (2.7) by the uniform gra-
dient BC's (B,y)„=—1, in agreement with the physical
arguments presented earlier. To prove the validity of this
limiting procedure let us rewrite (2.14) in the form

dx pa /2—o«(g) = —f e ~/ (lnA++ lnA )
8~

In the small-P limit the square-root term in (2.12) can be
replaced by unity and the resulting sum over n can then
be expressed exactly in terms of a logarithm. The small-P
expression for G then becomes

—P b,g/2
G(~ gg) e P{ {—hg{+ag)/2p' 4m

for P « 1, (2.13a)
4m

i/2 dx' x{g)
sr~—(g) = —f (lnA++ lnA ) —f dx' bg

(2.20)

which is valid for V=oPz« l. Equation (2.20) is the
analog for solidification fingers of the small undercooling
equation of Pelce and Pomeauz for dendritic crystals, the
condition of small growth velocity —V«1—playing the
role of the small undercooling condition —b, «1. The
cell spacing A, is quantized and given by

d I
i/2

1 y2y ~ ~ ~

2 0].
(2.21)

where the P-independent cr s are determined by (2.20) and
the P dependence of the o s for [P/4m] «1 is deter-
mined by (2.18). Finally, let us note that at zero surface
tension (o =0) the interface is a line of constant p (i.e.,
p=O) which implies that q must be constant inside the
solid and therefore (Vp)~ ——0 in (2.4). Thus, the cr=O
solution of (2.20) must be the limit where the finger fills
the channel of the zero surface tension Saffman-Taylor
family of steady-state fingers, namely, the planar inter-
face.

First consider the first term on the rhs (right-hand side) of
(2.19). From (2.13a) and (2.13b) it follows that lnA+-de-
cays exponentially in 5 on a length scale o order one
and consequently e & can be expanded in a Taylor
series in P b,g. Next the integrand of the second term on
the rhs of (2.19) can be expanded in a Taylor series in
P bg only if (dx'/dg') decays to zero much faster than
e~& as g'~ —~. In Sec. III we shall analyze the end-
point singularity at x=0 and find that asymptotically
(dx'/dg')-e'~, where t is rdated to o by the transcen-
dental equation (1/2t )cot(t/2)=cr; o is in turn deter-
mined by the requirement that singular solutions of (2.19}
exist (the inner-outer matching condition}. Furthermore
in solving (2.19) [or equivalently (2.18)] numerically we
shall find that singular solutions exist for a discrete set of
values of o: {7»o 2 & oi, with the corresponding
values of t: ti, t2, ti, . . . , of order one. Thus, the in-

tegrand of the second term on the rhs of (2.19) can be ex-
panded in powers of P b,g. Neglecting terms of order P"
(n &1} [Eq. (2.18)] can then safely be rewritten in the

f+ dx
0

(2.18)

III. ENDPOINT SINGULARLY
where we have combined (2.14) with (2.13a) and (2.13b)
and used the reflection symmetry about x = —,':
g(x)=g(1 —x) to restrict our domain of integration to
x =[0,—,

' ]: x(g} denotes the interface with x as function
of g. We then change the integration variable from
x'=x(g') to g'=g(x') which maps the interval x'= [0,—,

'
]

to g'=[ —ao, g„~] for singular cells and rewrite (2.18) in
the form

—a'«'(g) = — f dg', e ~ (lnA++ lnA )
1 ~tip, dx pg

8m. —~ dg'

To analyze the endpoint singularity at x =0 (g~ —oo )

we first rewrite (2.18) in the form

=R(g), (3.1)

where we have used the asymptotic form of the curvature
«(g) =(d x/dg ) for (dx /dg)2 ((1 and defined

d '
R(g)= — f dg', e ~/ (lnA++ lnA ) . (3.2)

8~ — dg'
—Pd,g+f (2.19) We start our analysis from (2.18) to demonstrate explicitly

that for 8 &g 1 the asymptotic behavior of the solution
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d'x dR dix
x(g) —o — =P 0 +R{g)

dg' dg dg'
(3.4)

Next to evaluate R(g) we assume a simple exponential
asymptotic solution of the form

near the singularity point is independent of P, except
through o, thereby verifying the vahdity of (2.20) derived
in Sec. II. Differentiating (3.1) with respect to g we ob-
tain

x ~
dye

dx pgg dR
(3.3)

dg' dg

Then eliminating the second term on the lhs (left-hand
sid ) of (3.3) via (3.1) and simply noting that

I dg(dx'/dg') =x(g), (3.3) can be written in the form

where the asymptotic behavior of solutions near the end-
point is a simple exponential given by (3.5).

IV. NUMERICAL TREATMENT

In this section we present the details of our numerical
treatment of the integrodifferential equation (2.18). We
start from (2.18) rather than (2.20) in order to include in
our calculations the small P dependence of o; o corre-
sponding to (2.20) is then the P~O limit of o(P). The
method we use is very similar to the one used previously
in numerical studies of Saffman-Taylor fingers and
dendritic crystals. ' Its essence is to represent the inter-
face by N grid points and solve the set of nonlinear equa-
tions defined by (2.18) with an N-dimensional Newton
method.

x(g') =x(g)e (3.5)

(recall b,g=g g') and su—bstitute (3.5) in (3.2). Using the
definition of A+-(2.13b) with cos2m(x+x')=I for x,
x'-0 (3.2) becomes

tx(g) ~'&
dpi t ~ 1

—
( 1

2m i ag i

—)+0(P)
2 lT' c

R(g)=—

(3.6)

Then, changing the integration variable from g' to
to=——2ir hg, (3.6) can be written

tx(p) "~4 -~~
R(g)= — dice" ' ln(1 e

—
I i)

(2ir)

(3.7)

2

1 ot' —[g(t)+—g—( —t)]=0 (3.8)

for P « 1 and t & 2n where we have defined

g(t)=- oo

dw e "~i~'"ln(1 —e ~) .
0

(3.9)

To evaluate g(t)+g( t) we chang—e the integration vari-
able in (3.9) from tu to y =e, (3.9) then becomes

1g(t)= —
2 J dyy-" ' ' 'ln(1 —y), (3.10)

where (3.10) is tabulated in Ref. 27 and

In the asymptotic region —g&&1 and the upper bound of
integration in (3.7) can be replaced by + Do as long as
(t/2m }& 1. Then combining (3.4), (3.5), and (3.7) we ob-
tain

A. Parametrization of the interface

Because of the endpoint singularity at x =0, g(x) does
not provide an adequate parametrization of the interface.
Using x(g) instead and rewriting (2.18) in the form (2.19)
removes the singularity at x=0 but introduces a new
singularity at the tip (x = —,

' ). To remove these difficulties
we parametrize the interface by a polar-coordinate system
in the tip region and x(g) in the cusp region, thereby re-
moving singularities at both endpoints simultaneously. A
similar parametrization has been used previously in Ref.
23. The interface is broken up in three regions. Region I
is delimited by gi & g & g„p and described by a polar coor-
dinate system r(8) where 8 varies from 0 to (m. /2) as g
varies from gi to g„p. The origin of r(8) is at (x�—,',

=z�=g)

and the interface is then defined parametrically by
x(8)= —,

' r(8) cos—8 and g(8)=gt+r(8) sin8. Region II
is delimited by gl (g (gi and parametrized by
r(g) = —, —x(g). This choice is equivalent to parametriz-

ing the interface by x(g) and r(g) is introduced such that
the variable r is continuous at the junction between re-
gions I and II [i.e., r(gi) =r(8=0)]. The interface in re-
gion I+ II is discretized with n grid points, l equally
spaced points in g, and n —1+1 equally spaced points in
8 [note that although (n —i+1)+(1)=n+1 there are
only n grid points since the grid point at 8=0, g=gt is
common to both regions]. Let us define b=gt —g, ,
hi ——[b/(i —1)],and h~ [n/2(n ———1)]. Then for i &i &n

8;=(i—l)hi,
r;=r(8;},

g(t)+g( —t) =
1 ——cot

2 2
r

2

(3.11)

1x- =——r- cos8.I 2 I I

g;=gi+r; sin8;,

and for 1&i &i

(4.1)

Finally combining (3.8) and (3.11) we obtain that t is
determined by the roots of the transcendental equation

1 /'

2t
cot —=o for I' ~~1, t (2m {3.12)

g; =pi+(i —1}h2,

r; =r(g;),
1

Xg —
2 I I ~

(4.2}

Region III is delimited by —ao &g&g, which, following
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the analysis of Sec. III, we describe by an exponential
form

q=g, q, =gj, for I&j&n .

I is the integrand of (2.18)
t{,g—gl )

x(g) =xie

where t is determined by the matching condition

X2t= ln
h2 x)

(4.3)

(4.4)

I (x,x', hg) =L(x,x';kg)+E(b g)

with lg=g; —g,

~
—P hg/2

L(x,x';kg)= — (InA++ lnA-)
8

(4.8a)

(4.8b)

The value of t determined by (4.4) can then be compared
with the analytical prediction (3.12) as a self-consistency
check.

~
—P{

~
ag~+ag)/2

E(hg) —= (4.8c)

B. Discretixation of the integral equation
and the logarithmic singularities

Next we rewrite integral equation (2.18) in the form

f dg I (x. x(g)'g —g)+ g It+~a =0 (4.5)
dx (g)

j=1

The first term on the lhs of (4.5) represents the part of the
integration over region III where x(g) is given by (4.3).
To evaluate this integral we first evaluate analytically the
contribution from E(b g). This contribution is simply

where ~; is the curvature at (x;,g; ) and we have defined
X1

[ Pt+t—(e ' ' —I)] .
Pt (P+t) (4.9)

It= f dq I (x;,x(q};g;—g(q))
eJ+( dx(q)

ej' dq

with in region II

q=g(q), qj
——gj, for 1&j &I—I

and in region I

(4.6)
Next we map the interval g=[—0(),gi] to the interval
y =[—1, 1] by the rational transformation

2 1

g(y) = (g, &0)
1+y

and change the integration variable from g to y. The con-
tribution from L(x;,x(g);g; —g} is then

R(x;,g;)= 2gixit —dy 2
e ' L(x;,xie

1 ~[g{y)-g,j ~(g{y)—g)]
;g; —g(y) ),

( I+y)' (4.10)

where (4.10) is evaluated by standard Gauss-Legendre
quadrature with 20 points (which was found sufficient to
provide good accuracy}. Equation (4.5) then becomes

n —1

Q(g; )+R (x;,g; )+ g It+as; =0 . (4.1 I)

3

r(q)=rj+ g, r~ (q qj ), qj &q &qj—+,Im) m

Pl . (4.12)

where the derivatives

To evaluate Ij defined by (4.6) we need expressions for
x(q) and g(q) within each interval qj &q &qj+i. For this
purpose we represent r(q) by a Taylor series in (q —qj)
truncated at third order

are evaluated by central differences in terms of
(rJ+2, rj+„rj,rj, , rj. 2) and hi in region I, or h2 in re-
gion II. (At the boundary points between I and II modi-
fied central difference expressions are derived to account
for unequal grid spacing, h) and hq appearing simultane-
ously. ) Then x(q) and g(q) appearing in (4.6) are related
to r(q) by x(q)= —,

' r(q), g(q)=q, in r—egion II, and
x(q) = —,

'
r(q) cosq, g(q —}=gt+r(q) sinq, in region I.

The inteIIrable logarithmic singularities appearing in I
and I are then subtracted and evaluated analytically
within the intervals q; &q &q;+1 and q; 1&q &q;, respec-
tively. Following the scheme developed by Meiron in Ref.
4 the logarithmic part of I,'

s(+( dq —(p/2)[g; —g(q)I dx (q) +l InA++ InA
8m dq

d r(q)
(4.13)

is rewritten in the form

(4.14)

[a;+b;(q —q;)+c;(q —q;) ][lnA —In(q —q;) + InA ]— S;,
i+ I I

Sm' 4m
(4.15)
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bh eh bh ch
S;= a;h+ + lnh —a;h+ +

2 3 4 9

(4.16)

and h =h
&

or h 2 I regions I or II respectIvely. The coef-
ficients a;, b;, and c; are evaluated in terms of r ' in re-
gion II and r;, r ', cosq;, sinq; in region I, by Taylor-
series expansion of

dx (q} P[l, g(—q)]/2—

tious point r„+1 which corresponds to the continuation of
the interface at 8=(m /2)+hi, this point being introduced
in order to evaluate r„'",r„' ' (and therefore the tip curva-
ture s'„), and r„' ', by central differences. We fix r„=—,

'

and for given values of n and b choose l as the integer
part of (4nb+n)/(4. b+n) .This choice for l ensures
r~h&- —,'h&-h2 at 8=0, and distributes the grid points
evenly between the two regions (I and II). The absolute
height of the interface is arbitrary and gi is chosen such
that $„~=0. Finally we need to specify the n unknowns
(w ). This is done in two different ways.

about q;. A similar procedure can then be used to sub-
tract the singularity in I ' for arbitrary i and (4.10) for
i =1. Also note that lnA is nonsingular except in the in-
terval q„ 1 &q &q„when q; =q„(i.e., x+x'~0). There-
fore in evaluating I„" ' the log singularities of ]nA+ and
1nA need to be removed simultaneously. Finally the I~'s
are calculated by standard Gauss-Legendre quadrature
with two or four points within each interval qj & q & q, +1,
and ~; is given by w =fr 1, . . . , r„(,P]. with rn+( —rn —1 (4.21)

1. Zero slope BC's

In this method we impose zero slope BC's at the tip of
the cell (which implies r„+1 r„ —

1
—in central differences)

and let the dimensionless cell spacing P become an un-
known to be determined together with the shape of the in-
terface in the Newton method. The n vector of unknowns
is then

r(2)
l

[1+(r( ) )2]3/2

in region II and

2)

[1 ~ ( g(1))2]3/2

(4.17)

(4.18a)

2. Finite cusp BC's

In this method ' ' P is fixed but the zero slope BC's is
relaxed in which case r„+, becomes an unknown. In this
case

in region I, where

(2) (1) 2
(2} l l lr(r —r ) —2(r )l

(1) 3( —r; cos8;+r( sin8; )

and

(1) ~

(1) r( s1118(+r(cos8(
(1) ~

r; cos8—;+r; sin8;

(4.18b)

(4.18c)

C. Neo&ton method and comparison
with an exact analytical solution

Next to solve (4.11) we use an n-dimensional Newton
method. Given the n vector of unknowns at the rnth
iteration w ~={w1, . . . , w„j and the n vector
g = {gi (w ), . . . ,g„(w )), w

' which solves
g(w')=0 is found recursively to arbitrary accuracy by
solving the linear system

w=[r( ~ ~ ~ r —1 " +1] (4.22)

with fixed P. The magnitude of the cusp at the tip
[(dr/d8)]t, ~=r„"' is calculated for several values of P and
the zero crossings of [(dr/d8)]((~ versus P determine the
physically admissible singular solutions. The advantage
of this method is that more than one solution can be
found while method (1) is more efficient to follow a
branch of solutions as function of a control parameter, the
dimensionless velocity V in the present case.

To check our code we first make contact with the exact
analytical solution for zero surface tension Saffman-
Taylor fingers. Accordingly we set (T=O and substitute
in (4.11}the expressions (4.8b), (4.8c), and (4.9) evaluated
in the P~O limit. As discussed at the end of Sec. II, this
solution is simply the planar interface (a trivial shape} in
the limit where the finger fills the channel. To check our
code against a nontrivial shape we perform the additional
transform ations

[J]dw =g (4.19)

where [/] is the Jacobian [J],z ——(Bg; /Bw/ ), and then re-
peating the procedure with

b /~a 'lg,
(x —x')~a '(X —x '),
(x+x')~a '(x+x ' —1),

(4.23)

(4.20)

as initial guess. Here we calculate [J] numerically and
solve (4.19) using a linear algebra subroutine of the Port
Library. All computations are performed on a Ridge
computer. The vector g, defined by (4.11) for i=1
through n, depends only on P, r, , . . . , r„, and the ficti-

in (2.18) [and their equivalents in (4.11)]. Equation (2.18)
then describes the shape of a viscous finger of width unity
with the endpoint singularity at x =0 and the wall of the
channel at X=(1—a)/2. By symmetry the other end-
point is at X = 1 and the other wall at x =(1+a )/2. The
exact shape of the finger in this parametrization is then
given by
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FIG. 1. (dr/de}„~ vs P for V=10 ~; the zero crossings are
at P) ——5.75X 10,P2 ——0.176, and P3 ——0.297.

FIG. 3. Higher-order solution corresponding to P2.

g, (X)= lnsin(nx) . (4.24)

Starting from smooth but arbitrary initial conditions with
b =1 and n =60 we found convergence to (4.24) for dif-
ferent values of a, with several significant figures of accu-
racy, in 6—10 iterations of the Newton method, the itera-
tions being stopped when

' 1/2
—g (g;)'
7l

10-10

V. RESULTS AND DISCUSSION

To investigate (2.18} for o+0 we first chose V=10
and calculated (dr/d8}t, ~ for several values of the dimen-
sionless cell spacing P using the finite cusp BC's method
(4.22) described in Sec. IV. We used typically 40—80 grid
points and values of b between one and two (recall that
b =pi —gi is the length of region II}. The results are plot-
ted in Fig. 1 showing the first three-zero crossing at

I'& ——5.75&10 2, P2 ——0.176, and P3 ——0.297. For each
zero crossing the result is then checked by repeating the
calculation with the zero-slope BC's method (4.21}. The
two methods are found to yield the same values of P;.
The interfaces corresponding to Pi, P2, and P3 are shown
in Figs. 2, 3, and 4, respectively. Note that Pi and Pi
are nearly odd integer multiples of P„each integer also
giving the number of extrema (points of zero slope per
cell} in the corresponding pattern. We have
P2/Pi ——3.06=3 and P3/Pi ——5.17=5 with accordingly 3
and 5 extrema in Figs. 3 and 4, respectively. This indi-
cates a clear connection between the value of the cell spac-
ing and the morphology of the cell, with Pi setting the
length scale of oscillations in the interface profile. In ad-
dition as P; increases the amplitude of the pattern in the
tip region decreases. This can be understood if we note
that o;=V/P; decreases with increasing P, and that
steady-state solutions must therefore approach the planar
interface as cr; ~0 (see the discussion at the end of Sec.
II}. It is even likely that this structure persists to higher
values of P; (smaller values of cr; ), beyond the first three
values calculated here, with a possibly infinite sequence of
higher-order steady-state solutions characterized by a de-

creasing amplitude (apart from the endpoint singularities)

FIG. 2. Finger solution corresponding to P&,' X and Z are
measured in units of the cell spacing A.;, with i =1, 2, and 3 in
Figs. 2, 3, and 4, respectively. FIG. 4. Higher-order solution corresponding to P3.
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and an increasing number of oscillations as cr; ~0.
Next the exponential behavior of solutions near the end-

point singularity was investigated as a self-consistency
check of the analytical predictions of Sec. III. For this
purpose we have plotted in Fig. 5

3. l

3.0

x(g)

dx dx
f2(P=— 2.6

3.05
1

' l
'

l
'

I
'

I

2.95—

2.S5—

235

2.65—

2.55—

2.45—
l i l i l i 1 i I

-2.2 - l.8 -I.O -6

FIG. 5. Plot of fi(g) =(dx Id/)/x(g) aiid fi(g)
=(d'x/dg )/(dx/dg) vs g, g~ (/&$1, for the finger solution of
Fig. 2 ($„~=0). Note that the asymptotic behavior of the inter-
face profile is consistent with an exponential solution.

versus g in the range gi &g&gi (region II) for the inter-
face of Fig. 2 corresponding to o=V/Pi =3X10 . In
the asymptotic regime it follows from (3.5) that
fi(g)=f2(g)=t with r given by the root of (3.12); for
cr=3X 10, i=2 45 . Fi.gure 5 shows the crossover of
the interface profile in the asymptotic regime with a decay
rate t in excellent agreunent with the analytical prediction
(i=2 45} . No.te a slight discrepancy between the values
of t determined by fi, and f2 which reflects a decrease in
numerical accuracy for higher derivatives. For smaller
values of o; (i =2,3) we also found good agreement with
(3.12), t~n as a; decreases.

The small-P dependence of oi, the value of cr corre-
sponding to the finger solution of Fig. 2, was then studied
by using the zero-slope BC's method and calculating Pi
and oi ——(V/Pi) for several values of Vover four decades
10 & V&10 . A plot of oi versus Pi is shown in Fig.
6 indicating that o, varies relatively slowly with Pi. Con-
sequently the integral equation (2.20) and the scahng of A,

&

given by (2.21) remain quantitatively accurate up to values
of Peclet number Pi of about O. l, corresponding to di-
mensionless velocities V of order 10 . [Here the value of
0 i determined by (2.20) is the Pi ——0 crossing of the curve
in Fig. 6.] In addition the dependence of the shape of the
finger solution on Peclet number was found to be very
weak with, on the scale of Fig. 2, the finger solutions cor-

2.5

O. l 0.2 0.3 0.+ 0.5 0.6

FIG. 6. Effective surface tension a~ vs solute Peclet number

P~ (the index 1 refers to the finger solution of Fig. 2).

responding to values of P i between 5.7 X 10 (for
V=10 ) and Pi ——0.64 (for V=10 ) being nearly in-

distinguishable.
In terms of solidification in a channel of fixed width A,

the problem becomes one of velocity selection. The finger
solution (Fig. 2) with the largest value of cr then corre-
sponds to the state with the smallest velocity [i.e.,
rr ~ (dul/)(, ) and I =(2D/U)]. This situation differs from
dendritic growth where, for b,+I, the selected state corre-
sponds to the needle crystal solution with the largest ve-
locity. (As shown in Ref. 28 this solution becomes planar
in the limit h~l. } To see how this difference comes
about, we first note that, for dendrites, the selected state
also corresponds to the state with the largest value of
o ~ (dol/pi), where p, the tip radius, is the analog of A..
However, the largest value of cr does not correspond in
this case to the largest value of I because the ratio (p/I)
(the Peclet number} is fixed by the undercooling b, . Then
o ~ [do/pP(b, )] is maximum when p and therefore I are
minima (within the discrete set of needle crystals).

Also in connection with solidification in a channel our
present study could easily be extended to values of
5= (C —C ) /b, C less than unity. Here we have
focused our study on the limit of unit undercooling pri-
marily because this limit (where the finger fills the chan-
nel) is most relevant to directional solidification. When
b, & 1 it is easy to show that overall solute conservation re-
quires that the ratio of the width of the finger to the
width of the channel must equal h. Then the zero surface
tension steady state in the P~O limit is simply the
Saffman-Taylor finger given by (4.24) with a =(1/b, ) [for
a finger of unit width in a channel of width a =(1/6)].
At finite surface tension it is reasonable to expect a
discrete set of steady states. Furthermore the value of cr

corresponding to a fingerlike solution in the P—+0 limit,
cr,(h), should decrease with decreasing 6, this behavior
being strongly suggested by the analogy with the
Saffman-Taylor problem ' where cr i(b, )~0 when

1
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To conclude this section it is interesting to observe that

X,u, =4~(~, )'"
equals 2.18, 0.71, and 0.42 for i = 1, 2, and 3, respectively,
where X, =2m(dol)'~ is the stability length of the plane
interface. Therefore the finger solution of Fig. 2 lays
outside the band of unstable wave numbers of the plane,
with a finger width nearly half the stability length, while

the higher order solutions of Figs. 3 and 4 lay within this
band. The relative stability of these different solutions is
discussed qualitatively in our concluding remarks.

VI. CONCLUDING REMARKS

In conclusion we have analyzed singular cells in the
small Peclet number limit of the simplest nonlocal model
of solidification (symmetric model at unit undercooling)
and shown thata, t fixed velocity and finite surface ten-
sion, these states can only exist for a discrete set of values
of the cell spacing A, , where A, scales as (dol)'~ in this
limit; at zero surface tension the only steady state is the
planar interface.

Interestingly, steady-state singular cells and dendrites in
the symmetric model are very similar in that, at finite sur-
face tension, they both belong to discrete sets of states.
However, they differ significantly in that, for dendrites,
the finite surface tension state with the largest velocity
lays near one member of an underlying zero surface ten-
sion family of steady states (the Ivantsov family), while
for cells at unit undercooling the finger and planar solu-
tions are far apart. This difference indicates that—
unfortunately —the analytical methods developed recently
to study dendritic crystals or Saffman-Taylor fingers at
small surface tension (the limit where the width of the
finger is half the channel width) can not be used directly

for singular cells.
With regard to the stability of these states the finger

solution is likely to be the only stable steady state, the
higher-order solutions (with multiple oscillations) being
locally unstable against tip splitting. This, of course, is
for the sohdification of a single finger at unit undercool-

ing in a channel of width A, . In connection with direction-
al solidification, an array of fingers in the absence of tem-
perature gradient is likely to suffer a global instability
where one finger moves ahead of the solidification front,
enhancing its growth rate at the expense of its neighbors.
Thus, although model A has provided us with a simple
starting point to study sohdification fingers and has
helped us gain insight in the small Peclet number limit, it
fails to describe the important coupling between the tem-
perature and solute fields, this coupling playing a crucial
role in the global stability of a cellular array. In light of
this, it would be interesting to next elucidate how much of
the structure of singular solutions revealed here (i.e., a
discrete set of states) persists in the more realistic one-
sided model of directional solidification which incorpo-
rates this coupling. Our preliminary results for the one-
sided model indicate that a discrete set of singular cells
persists, at least in the case of unit partition coefficient. ~
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