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Periodic Freedericksz transition for nematic-liquid-crystal cells with weak anchoring
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Lonberg and Meyer [Phys. Rev. Lett. 55, 718 (1985}]have recently discovered in polymer nemat-

ics the existence of a critical value r, =0.303 for the ratio r =%2/Kl between the twist and splay

Frank elastic constants, below which a periodic splay-twist distortion is energetically favored with

respect to the weB-known aperiodic splay distortion which appears in a Freedericksz transition. In

this paper the effect of weak-anchoring conditions on the critical r value and on the other parame-

ters of interest is theoretically investigated. Analytical expressions between these parameters are

given. It is shown that the periodic transition is not allo~ed in the range 0.5 g r g2. Outside this

range either the periodic or aperiodic transition appears, according to the surface treatment, the

sample thickness, and the direction of the magnetic field. Hence the critical value of r can be con-

trolled in a wide range.

I. INTRODUCTION

One of the most interesting effects in the physics of
nematic liquid crystals, from both the fundamental and
practical points of view, is the Freedericksz transition.
As is well known, it is a kind of second-order phase tran-
sition from a static uniform director configuration to a
distorted one, under the action of an external magnetic (or
electric) field. The most interesting cases are those where
the initial distortion is pure splay, pure twist, or pure
bend. In these cases the critical field depends only on one
of the three elastic constants E&, E2, and E3.

In Fig. 1 the distorted director configurations are
shown, in the case of initially pure-splay transition. In
the distorted configuration the (x,y) plane is no longer a
symmetry plane of the system, and two equivalent
mirror-symmetric distortions may exist. The maximum
distortion angle 80 plays the role of an order parameter,
which continuously decreases by decreasing the field, go-
ing to zero for H ~H„where H, is the critical field. Re-

cently, the existence of a new form of transition has been
found by Lonberg and Meyer, where other symmetry ele-
ments are broken. In particular, the full translational
symmetry along the y axis is substituted by a periodic one,
in which the angle eo is a harmonic function of y. In this
distorted configuration the director is no longer parallel to
the (x,z) plane, and its orientation depends on the y and z
coordinates. Since it is a periodic function of y, a new or-
der parameter is present, the wave vector q associated
with the periodicity along y.

This configuration has been theoretically studied in
Ref. 2 only in the limit of small distortions, i.e., for the
value 0+ of the previous order parameter. In this case it
is found that a new kind of second-order phase transition
exists between the periodic and the aperiodic distortion.
In fact, the latter deformation is simply the limit for
q —+0 of the periodic one. In the case of strong-anchoring
conditions (and within the limits of small distortion am-
phtudes) this transition is only controlled by the ratio
r =E2/Ei, since the distortion is splay and twist. The
critical value of this parameter is found to be, according
to a numerical computation, r, =0.303. In a very recent
paper the analysis given by Lonberg and Meyer is extend-
ed to the case of oblique director orientation and oblique
magnetic field. The periodic distortion is of great interest
from both theoretical physics and practical application.
The former comes from the discovery of a new critical pa-
rameter. From this point of view, our analysis, consider-
ing a weak-anchoring situation, is particularly devoted to
the relation between the parameters of interest in the
proximity of the critical point and to the possible depen-
dence of the critical value r, on the anchoring constants.

The practical interest, potentially very great, seems to
be limited by two facts.

FIG. 1. Director configuration in the case of pure-splay
Freedericksz transition.

(a) The first is related to the quite low value of the criti-
cal parameter r„and to the difficulty of controlling this
parameter. As long as strong-anchoring conditions are
imposed, r, may only be changed (for a given nematic) by
temperature control.
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(b) The second is related to the response time for the oc-
currence of the periodic configuration that has been found
to be very long (on the order of an hour, see Lonberg and
Meyer). Further, the spatial periodicity seems to be be
quite irregular. The possibility of reducing the response
time and of obtaining a regular pattern is under study.

In this paper the point (a), and in particular the depen-
dence of r, on the anchoring conditions, is considered. In
fact, it is evident that r, must depend on the anchoring
forces, and more specifically on the ratios between the ex-
trapolation lengths and the sample thickness. At least in
principle, this could provide a simple way of controlling
the critical r, value and the pitch 2mlq of the periodic
patterns.

Some of the results presented in this paper, and more
precisely Eqs. (16) and (19) of Sec. V, have already been
published previously, without demonstration. Here a
more complete analysis of the problem is given.

II. PHYSICAL MODEL AND EQUATION SYSTEM

A nematic slab between plane-parallel walls of area S at
z =+d/2 is considered, in the limit S~ao. The director
is parallel to the x axis in the undistorted configuration
(planar homogeneous alignment), while in the distorted
one it makes angles Hi and Hz with the (x,y) and the (x,z)
planes, respectively. Rotations of the director in
correspondence to the surfaces of the sample are allowed.
It is assumed that the restoring torque at a surface point
only depends on the angles 8i and 82 at this point, and is
equal to ( —wiHi —w28z}, where wi and wz are the an-
choring constants for deformations of splay and twist,
respectively. In the distorted configuration 8, and 82 only
depend on the coordinates (y,z}. An x dependence, which
implies bend distortion, is possible but is not considered
here. The imtial form of the distortion is evaluated by use
of linearized equations, and more precisely by assuming
that the free-energy expression is given by

F=—, f dx f dy f [K,(82y+8, ,)'+K,(8„—8, „)' g, HzH',—]
+-,' f dx f dy[(wlHi+w282)g= d/2+(w—181+wz82)g=d/z]

III. APERIODIC SOLUTION

Let us first consider solutions of the type

Hi ——a cos(q, z), 82 ——0 . (4)

A solution of this type does exist for a critical field
strength

where X, =X~~ —Xq is the magnetic anisotropy, which in
the following is assumed to be positive, and H is the mag-
netic field, assumed as parallel to the z axis.

In the case of a magnetic field parallel to the y axis the
fro: ener y F' is given by a similar equation, with

X,H 2 instead—of X,H Hi. O—ne may notice that F
and F' become identical by interchanging 8i and —82,
Ki and K2, and w i and wz. For any director configura-
tion which minimizes F there exists a director configura-
tion which minimizes F', and is obtained by rotating H
by m/2 and interchanging the indices of the quantities
H, K, w. This analytically trivial fact is of great practical
interest, since values of the parameter r, giving such
periodic distortion are found near a nematic-smectic tran-
sition.

The variational problem gives the bulk equations:

K28l,yy+K181,zz+(Ki K2)82,yg+~aH 81—0 ~

(2)
KiHp ~+K28z ~+(Ki K2)Hi ~ ——0—

and the boundary conditions

+Ki(82 y+Hi, )+w i Hi ——0

+K2(Hz, —8i y )+w28z ——0,
where the signs + and —correspond to z =+d/2 and
—d /2, respectively.

' 1/2
10 =QC C d

where u, satisfies the equation
T

I i1ruq tail u~ = 1C

and where 1i is the reduced extrapolation length for a
pure-splay deformation, i.e.,

& E&
1i ———

d w&

The distortion amplitude a is arbitrary, since linearized
equations have been used and q, is given by

qa = ~C:~C

where h, is the critical value of the quantity

h =H(X. /K, )'"
which gives a measure of the magnetic field, and has the
meaning of an inverse magnetic coherence length. As is
well known, aperiodic distortions are found for any
H ~H„but are not given by the approximated equations
(2) and (3). In Sec. IV we consider periodic solutions of
the type given in Ref. 2. We stress the fact that in both
cases the linearized equations, which come from a free-
energy expression where higher-order terms are neglected,
only give the initial slope of the distortion.

IV. PERIODIC SOLUTIONS

The procedure used to find more general solutions is
the following.
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For any value of q, four solutions are found, with

qo ———,h —q ——,h 1+4 q„/h z

T

rqo+q (1 r)q—qo

(1 r)qq—o rq +qo h— (12)

The two values of qo are real and of opposite signs in the
whole r interval where a periodic solution exists. The
four solutions are therefore given by +q, and +iqb, where

First we search for solutions of the bulk equations (2) of
the type

8) c(
exp[1(qy +qoz)] ~ (10}

82 cz 8i ——[a i cos(q, z)+b i cosh(qsz)] cos(qy),

8z = [02 siil(qgz)+b2 slnli(qbz)] sin(qg),
(13)

where bi/bz coincides with the ratio ci/cz given by Eq.
(10} (with qo ——qs), and a&/az coincides with —ci/c2
(with qo

——q, ). A second independent solution is that ob-
tained by interchanging the parity with respect to z of the
functions 8i and 8z. It seems evident that the solution
given by Eq. (13), where 8i is an even function of z, is the
one which minimizes the energy of the magnetic field,
hence giving a lower critical field.

By inserting Eq. (13) in the boundary conditions (3) one
obtains

q, and qs are real quantities. A linear superposition of
these solutions gives the functions considered in Ref. 2,
1.C.,

&i Iq [az sin(q, cf/2)+~2 slnh(q&d/2)] —a iq, sin(q, &/2)+b iqs sinh(qsd/2) I + to i [a & cos(q, d/2)+b
& cosh(qb&/2)] =0,

(14)

&2 [azq, cos(q, d/2)+bzqs cosh(q&d/2)+q [a i cos(q, d/2)+bi cosh(qbd/2)] I +ttiz[az sin(q, d/2)+b2 sinh(qsd/2)] =0 .

From these equations, together with Eqs. (11) and (12),
the ratios between the four parameters a i,az, bi, b2 can be
calculated and, further, the parameter q can be obtained
as a function of the external field H. The latter is con-
sidered as an imphcit de6nition of the function
H =H(q). The minimum value of the function H(q) is
evidently the critical field for the Freedericksz transition.
The corresponding value of q is the initial periodicity.

The curve H =H(q} has indeed an enhanced minimum
for small values of r=E2/Ki. By increasing r, the
minimum is shifted towards lower q values, and a critical

value r =r, is found, such that for r )r, only the solution
with q =0 exists. The corresponding field strength is the
critical field H, for the aperiodic distortion. For r ~r,
only the aperiodic distortion is allowed. We recall that
the corresponding critical field is independent of Ez and
therefore of r.

Equations (13} and (14) have been solved numerically.
In Figs. 2—4 the quantities H, q, q&, q„ai/bi, a2/bi,
and az/b2 (corresponding to the initial distortion) are
plotted as a function of r for different values of the an-
choring constants. These figures remind us of a second-
order phase transition, where q plays the role of the order
parameter and r the role of the temperature. Figure 2(a)
shows that the critical exponent for q is —,'.

The same curves show that the critical value strongly
depends on the anchoring constants w i and tc2, and is an
increasing function of the extrapolation length l2 and a
decreasing one of li. The practical interest of this fact,

0
0

0

FIG. 2. Computed values of (qd/m)2, ~here q is the in-plane
wave vector for the periodic splay-twist deformation [Fig. (2a)],
and of the critical field [Fig. (2b)), for different values of the re-
duced extrapolation lengths: (1) I» ——1, l2 ——0; (2) l» ——0.25,
l2 ——0; (3) l» ——l2 ——0; (4) l» ——0, l2 ——0.25; (Q l» ——0, 12 ——1, where
l» ——E»/(dN») and l2 ——IC2/(dto2), and up» and Mp are the an-
choring constants for splay and twist deformation, respectively.
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FIG. 3. Plots of the wave vectors q, qb, q, in units of m/d for
the same values of the anchoring constants reported in Fig. 2.
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By inserting Eqs. (9') and (10') in the boundary conditions
ratio (14), and taking into account the approximated ex-
pression

FIG. 4. Plots of the ratios between the amphtudes defined by
Eq. {12},for the same values of the anchoring constants as those
given in Fig. 2.

and the intrinsic interest of the critical point in any
second-order transition, suggests that the dependence of
», and of the other critical parameters on the anchoring
constants should be studied in great detail.

V. ANALYSIS OP THE CRITICAL POINT

In any second-order transition the relation between the
various parameters near to the critical point is particularly
interesting and simple. In this type of transition, integer
or semi-integer exponents are to be expected. In fact, Fig.
2(a) shows that in the limit »~»„ the quantity (», —»)
depends quadratically on q, and Fig. 2(b) suggests that
(H, H) depends q—uadratically on (», —»). Therefore a
relation of the type (H, H}ccq4 is—expected. This is
shown in Fig. 5(a). Figures 5(b) and 5(c) show the q
dependence of the quantities qs and (q, —h, ). The
analytical expressions relating the various parameters may
be found by expanding the free energy as a power series of
the order parameter q. The calculations are quite long.
Here only an expansion up to q of some quantities is
given, to obtain the critical value», of the ratio
» =Xi/Ki as a function of the quantities rci, tet, and d.
In such an expansion the magnetic field must be con-
sidered as a constant and equal to H, . This gives h =h„
where h, is defined by Eq. (8). Equations (11) and (12}
give

1—2»
q, =h, + q

2»h,
(9')

gb =gP

cot{q,d/2)=nliu, '— (qd/2) [1+(eliu, ) ],~c
(15)

one obtains a relation between», and q, which in the limit
q~0 gives A/{B », )=(C—», )/(D— E», )—, i.e.,

», +(AE —C —B)r, (AD —B—C)=0,
where

A =u, e.(12+—,
' ),

B =1 ri liu, /—2,
C =1++ lilzu, ,

(16)

(17)

D = ——li+ —[1+(i»liu, } ],
2 4

F= (21,+1)—1
8

for li ——0, and

u, [21i+1+(nliu, ) ]—1
=~2 2 (19')

E =—[1+(nliu, )i] .
2

If one of the constants li, l2 is equal to zero, Eq. (16}
greatly simplifies, giving

r, +2Fr, —E=O, (18)

where
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FIG. 5. Plots of the quantities (H, —H)(d/m)(g, /EI)'
( d/m)q„and (d/m)(q~ —II(, ), for the same values of the anchor-
ing constants as those given in Fig. 2.

FIG. 6. Plots of the critical values of the ratio r =E~/E~ as
a function of the reduced extrapolation length l2, for different
values of the ratio I& /l2.. the curves 0, l, 2, 3, and 4 correspond
to I~ /I2 ——0, 0.2, 0.5, 1, and 2, respectively.
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for l2 ——0.
For l t ——lz ——0, i.e., in strong-anchoring conditions, one

obtains I' =sr /8 1—. This gives

—I + —1
8 8 8

rc=

=O.303 25. . . .

The value is very close to the value r, =—,', given in Ref.
2, which has been obtained by a numerical computation of
the distortion. Some plots of r, versus lz for different
values of the ratio l ~/l2 are shown in Fig. 6. They show
that r, may be changed in the range 0—0.5 by suitably
controlling the surface conditions and the sample thick-
ness.

least in principle, r, may be changed over a mde range by
suitable surface treatment of the cell. This fact increases
the potential interest of the periodic distortion, since the
r, value corresponding to strong anchoring is not easily
obtained with the currently known thermotropic liquid
crystals. Although the practical interest of the given
analysis is, at present, considerably limited by the fact
that no procedures for obtaining reasonably controlled
weak anchoring have yet been developed, this problem is
under study in many laboratories. It is not unreasonable
to hope that it may be solved in the next few years.¹teadded in proof. After submission of this paper, a
communication was published [W. Zimmermann and L.
Kramer, Phys. Rev. Lett. 56, 2655 (1986)] reporting some
results consistent with the present ones, obtained in the
particular case 1~ &~ l.

VI. CONCLUDING REMARKS

The analysis of Lonberg and Meyer for the
Freedericksz transition giving a periodic twist-splay dis-
tortion is extended to the case of weak anchoring, with
particular emphasis on the critical value r, of the ratio r
between the Frank twist and splay constants. A simple
analytic expression which relates r, to the anchoring con-
stants and the sample thickness is given. It shows that, at
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