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Statistical fluctuations in laser transients
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Laser fluctuations are measured and characterized with a new technique based on the concept of
first-passage-time distributions. This first-passage-time technique makes it possible to discern quan-
tum noise in a dye laser even in the presence of pump fluctuations that are many orders of magni-
tude larger. %e report new analytic and experimental results for the mean, variance, and skewness
of the first-passage-time distributions. The analytic results agree well with numerical computations
and experimental measurements. Our technique is particularly suited to the quantitative description
of 1aser fluctuations above threshold; it complements the conventional photoelectric counting and
correlation methods which are valuable for lasers below and near threshold but are difficult to im-

plement for lasers far above threshold. The 1imits of validity of the theory containing a cubic non-

linearity are examined in the context of passage-time measurements. The effects of multiplicative
noise and saturation on the variance of the intensity Auctuations are also discussed. A new signa-
ture of multiplicative noise is predicted.

I. INTRODUCTION

Statistical fluctuations in laser radiation determine the
limits on the use of lasers in almost every application.
The information transmission rates in optical communica-
tions, the accuracy of optical computing techniques, and
the reliability of spectroscopic data are all crucially depen-
dent on and limited by the amplitude and phase fiuctua-
tions present in laser light. While lasers are operated far
above threshold in practically every application, previous
studies of laser fluctuations have focused on operation
below or slightly above threshold. '

To characterize the fluctuations of laser light far above
threshold one must examine the effects of intrinsic quan-
tum noise due to spontaneous emission and also of
"pump" noise due to external sources. In this paper we
describe the use of a novel technique based on the concept
of first-passage-time (FPT) distributions to describe the
statistical fluctuations of a laser. These are the distribu-
tions of times taken by the laser to develop from spon-
taneous emission to a given value of the intensity, under
the influence of both quantum and pump noise sources.
The technique requires fast photodiodes and simple elec-
tronics; it complements the standard but delicate pho-
toelectron counting and correlation methods which
remain valuable near threshold. In contrast to the diffi-
culties encountered in the latter methods, fluctuations in
lasers pumped high above threshold are easily measured
and the effects of quantum noise and pump fluctuations
are clearly distinguished by the FPT mcasurcmcnts. In
the experiments described here on ring dye lasers, the
measured IPT distributions enable us to determine the
time scale and magnitude of external pump noise and
quantum fluctuations (which are almost 8 orders of mag-
nitude smaller than the pump noise) much more efficient-
ly than has bccn possible %'1th other methods.

The time development of laser radiation is initially

dominated by spontaneous emission. Only fully
quantum-mechanical or augmented semiclassical laser
theories provide an adequate theoretical framework for
the description of this process. By "augmented" we mean
those theories where spontaneous emission is accounted
for by appropriate Langevin sources in an otherwise semi-
classical theory. The basic approaches to laser theory
have been comprehensively presented by Haken Sargent,
Scully, and Lamb; and by Lax and Louisell. The results
of the augmented semiclassical and fully quantized
theories have been shown to be extremely close; both
predict the same statistical features of the laser radiation
for a single-mode laser model.

The single-mode laser theories' have been successful
in describing the experimental results of Arecchi and co-
workers and of Meltzer and Mandel on transients in
He-Ne lasers. Their elegant photon-counting experiments
measured the growth of the mean intensity with time, and
the development of the variance of the photon number
with time. Arecchi, Mandel, and others (see Refs. l —4
for reviews) have also performed detailed measurements
on the photon statistics and intensity correlations of the
light from single-mode He-Ne lasers operating in the
steady state. Satisfactory agreement with theory was ob-
tained.

Recently, it has becoine clear that parametric (pump)
fluctuations can affect the steady-state fluctuations and
correlations in a rather drastic way. Experiments on dye
lasers ' showed that the conventional laser theory'
which contains only quantum noise fails to predict the
statistical properties of light from these lasers. The sub-
sequent theoretical developments by Sehenzle and
Graham, ' Sancho, San Miguel, and their colleagues, "'
Dixit and Sahni, ' Fox, James, and Roy, ' ' Lindenbcrg,
West, and Cortes, ' Jung and Risken, ' and others have
examined the importance of pump fluctuations in laser
systems.

While all the work mentioned so far concentrates on the
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calculation of photon statistics and correlations, there has
been much interest expressed recently in the calculation of
first passage times in lasers and other systems. Gordon
and Aslaksen, ' Suzuki, ' Haake, Haus, and Glauber,
Arecchi and Pohtr ' Young and Singh and de
Pasquale, Tartaglia, and Tombcsi ' have examined the
first-passage-time problem with additive (quantum) noise
only. Polder et al. and Goy et a/. have examined the
question in the context of superfluorescence and Rydberg
masers.

We should point out that the concept of first-passage-
time distributions is not near; it has a long and dis-
tinguished history. Schrodinger, Kramers, Darling
and Siegert, ' Montroll and Shuler, Landauer and Swan-
son, Stratonovich, and %'eiss have contributed to the
theory of first-passage-time problems in different areas of
physics and chemistry. The recent texts of Van Kam-
pen, 3 Schuss, Gardiner, 3 and Risken give very read-
able treatments of the passage-time problem.

Several recent treatments of FPT problems address the
question of colored (non-5-correlated) additive and multi-
plicative noise. Hanggi, Moss, and co-vrorkers,
Fox, ' Masohver, Lindenberg, and West, and de
Pasquale et al. have developed the theory of stochastic
processes driven by noise sources with nonzero correlation
times. References 43 and 45(b) are concerned directly
with the first-passage-time problem for the laser, and con-
tain analytic results for the mean and variance of the FPT
distributions measured experimentally and computed nu-
merically in Ref. 46.

In this paper we present the results of first-passage-time
measurements on a single-mode dye ring laser, and com-
pare the experimental observations to the predictions of
theoretical models. In Sec. II we describe the laser system
and measurement techniques used. Two theoretical
models, the first with additive noise only, and the second
with both additive and multiplicative noise, are described
in Sec. III. In Sec. IV we survey the available analytic re-
sults on FPT distributions and present new analytic re-
sults for a model with both additive and multiplicative
noise. The techniques used for numerical computations
are discussed in Sec. V, and a comparison of the analytic,
numerical, and experimental results is presented. The
models considered so far are based on the third-order
Lamb theory of the laser; in Sec. VI the limits of this
theory are examined in the context of FPT measurements.
Section VII describes the effects of multiphcative noise on
the laser intensity fluctuations in the transient regime.
Saturation effects on the statistics are also considered. A
discussion of the present status of theory and experiment
concludes the paper.

II. EXPERIMENTAL APPARATUS

The experiments were performed on a single-mode, uni-
directional ring dye laser (Fig. 1) that is extremely stable
in steady-state operation. The laser is mounted on a
vibration-isolated table and contained within a dust-free
enclosure. A Pellin-Broca prism and coated etalons main-
tain single-mode operation. This is monitored constantly
with a confocal Fabry-Perot interferometer. A Faraday
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FIG. 1. Apparatus for passage-time distribution measure-
ments.

rotator and compensator are used to obtain unidirectional
operation of the laser. The length of the ring cavity is 160
cm and the round-trip loss per pass is -12%.

An acousto-optic modulator (AOM) in the laser cavity
is used to turn the laser on and off. The time required for
the modulator to go from maximum transmission (2% in-
sertion loss) to the maximum loss condition (60% diffrac-
tion efficiency) requires —15 ns, which is much shorter
than the time scale for the growth of the laser field to the
steady state. A pulse generator is used to turn the laser
on; it takes several microseconds to reach the steady state
with a mean intensity I„.The laser is allowed to stay on
for about 600 p,s. It is then turned off for about 400 ps.
This process is repeated several hundred thousand times.

The laser output beam is incident on a fast photodiode
with a rise time of -1 ns and a linear response over
several decades of intensity. As the laser is turned on
with the AOM, a trigger pulse marks the beginning of the
turn-on time. The laser intensity I(t) develops from a
random, spontaneous emission background. When the in-
tensity crosses a reference value I„f the photodiode volt-
age crosses a preset threshold on the discriminator and a
pulse is generated. The initial trigger pulse and this pulse
are the start and stop inputs for a time —to—pulse-height
converter which generates an output pulse with amplitude
proportional to the separation in time between the start
and stop pulses. These output pulses are measured by a
pulse-height analyzer which then generates the passage-
time distribution for the growth of the laser radiation.

In the context of conventional laser fluctuation stud-
ies, ' a pump power 1% above the threshold value is
considered "far" above threshold. Fluctuations in the in-
tensity (root mean square) due to quantum noise are al-
ready reduced to less than 0.01% of the steady-state aver-
age intensity. In our experiments the laser was operated
up to -20% above threshold.

A microcomputer, interfaced to the pulse-height
analyzer, was used for storage and analysis of the data.
The 1024 data channels of the pulse-height analyzer pro-
vide adequate resolution in time. A zero calibration is
necessary for the output of the time —to—pulse-height
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converter. Such corrections were included in the comput-
er program used for the data analysis.

The experimental measurements of the first-passage-
time distributions were performed after the laser had been
operating for several hours, and experimental conditions
were thermally and mechanically stable. The laser was
adjusted to operate in a single longitudinal mode, which
was monitored constantly with the confocal Fabry-Perot.
More than 20 such measurements were made over a two-
hour period, with the laser about 6% above threshold.
The measurements published earlier were made with the
laser about 20% above threshold. It is extremely impor-
tant to operate the laser in a clean, single longitudinal
mode during the measurements. The presence of addi-
tional modes or significant mode-hopping results in FPT
distributions with multiple peaks. These will be the sub-
ject of a later study.

The FPT distributions show a progressive shift to the
right as the reference intensity is increased, i.e., the laser
takes a longer time to reach a higher intensity. The distri-
butions also grow in width and develop a decided asym-
metry. We will quantify our discussion of these three
features by calculating the mean, variance, and skewness
of the FPT distributions. We note here that the measure-
ments of the skewness are extremely sensitive to points in
the tail of the distribution. These measurements are thus
susceptible to the largest errors.

An important pro:aution in these measurements is to
ensure that the acousto-optic modulator turns the laser off
completely before letting it turn on again. This requires
that it is aligned accurately for maximum diffraction effi-
ciency (60%), thus ensuring that the laser is far below
threshold before it is Q switched. We also note that the
pump laser is always maintained constant in our measure-
ments. Thermal stability of the dye is thus maintained,
and we do not have to consider the time taken to create a
population inversion. This issue has been discussed in
some detail in Ref. 5.

III. THEORETICAL MODELS

Model A: Additiue noise The con.ventional theoretical
model for a single-mode laser contains only quantum
noise. Spontaneous emission is included in a density™
matrix formalism through the quantization of the elec-
tromagnetic radiation field. Equations of motion for the
diagonal elements of the field density operator are derived
which describe the development in time of the laser inten-
sity. ' The results of such a model have been demon-
strated to be equivalent to those obtained from an aug-
mented semiclassical theory. The third-order Lamb
theory equation of motion for the complex electric field E
is augmented by the addition of a Langevin noise term, as
shown below:

where a and A are the net gain and self-saturation coeffi-
cients, and q(t) is a complex, 5-correlated, Gaussian noise
source which represents the effex:t of spontaneous emis-
sion on the field E. Until very recently, this model was
the basis for calculations of laser fluctuations in the
steady state' and in transients. '

The actual electric field E' has been scaled as follows, 2

E ——1 p,

6al b

1/2

Et

(q (r)qj'(r')) =P'5J5(t r') (ij =1—,2)

which implies

(6)

to render it dimensionless. Here p, is the dipole moment
of the laser transition and y, and yb are the lifetimes of
the upper and lower lasing levels. Other scale factors
have been used by various authors 4 this is largely a
matter of individual preference and convenience.

The statistics of the laser field may be determined from
Eqs. (1) and (2) by converting them to a Fokker-Planck
equation for the probability function Q(E, t).'

The mean, variance, and higher moments may be obtained
from the steady-state probability distribution for the field,
while the time-dependent solution of the Fokker-Planck
equation is essential for the correlation functions of the
field. The time-dependent solutions also provide the
statistics of the laser field during the period of transient
growth from a spontaneous emission background.

The passage-time calculations in Refs. 18—26 apply to
this model of the laser. In Sec. V we will review some of
the analytic results available for FPT distributions based
on this laser model.

Model 8: /Idditiue and niultiplicatiue noise. The experi-
ments described in Refs. 7 and 8 demonstrated that the
conventional laser model was not adequate to describe the
steady-state statistics or correlation functions of single-
mode dye lasers. It soon became clear that parametric
fluctuations played an important role in the fluctuations
of these lasers, ' and thus a new source of external
"pump" noise must be included in order to obtain a realis-
tic statistical description of these lasers. While a micro-
scopic density-matrix approach to such pump fluctuations
is available' ' it is perhaps most convenient for calcula-
tions to utilize the counterparts of Eqs. (1) and (2) given
below:

dE/dt =aoE —A
~
E

~
E +p (t)E +q (t),

dp (t)/dt = yp (&)+y—q'(t)

dE/dt =aE —3 iE i E+q(r)
with

(q;(&)q, (t')) =P5;;5(t t') (ij =1,2), —(2)

while Eq. (2) remains unchanged.
In this model, the net gain a, previously assumed con-

stant, is considered a stochastic quantity. Thus the net
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gain is ac+p(t), where ac is the average net gain and

p (t) is the pump noise term .Instead of taking p (t} to be
5 correlated, Eqs. (5}—(7) allow us to assign a time scale
(1/y) to the pump fluctuations. The pump noise is thus
described by an Ornstein-Uhlenbeck process with an ex-
ponential correlation function.

The p (t) noise term accounts for fluctuations in the net
gain of the laser. These fluctuations may arise from tur-
bulence in the dye jet, or from pump laser noise. ~ In the
dye laser, the magnitude of the pump fluctuations may be
far larger than the quantum noise. The steady-state pho-
ton statistics and correlation functions wiH thus be totally
dominated by the pump noise. The experimental measure-
ments7's have been satisfactorily explained by theoretical
treatments which contain only pump noise.

It is of great interest to attempt to disentangle the ef-
fects of quantum noise and pump noise. Clearly, from
Eq. (4), the p(t)E term contributes but little when the
field is in its initial stage of growth. At that time it is the
quantum spontaneous emission noise which is the dom-
inant factor. One is thus likely to discern the effects of
quantum noise if measurements are performed on the
transient growth of the laser intensity. It is possible to ex-
amine the effects of additive and multiplicative noise on
the moments of the transient laser intensity, or instead
examine the passage-time distributions as we have done in
our measurements. Even though the main emphasis here
will be on FPT distributions we will examine the effect of
the multiplicative noise on the moments of the transient
intensity in Sec. VII.

IV. ANALYTIC KP&)ULTS
ON FIRST-PASSAQrE-TIME DISTRIBUTIONS

AI~f
2aol 1—

Qp

2

Qp

OI'—~pIr f'e

P 1 — (1—e ')-Za, ~

Qp

W(A. )=I dte ~'W(t)

-u p~/PA
Qpe Qp

-c2/EA
PA(1 —e ' ) .

' '
(A, /2ao)

ref

Qp

X8 ( 1 —A /2a c, 1 +A, /2a 0 )

X iFi(1 —A, /2ao, '2;ao/PA ),

where 8 is the beta function and iFi is the degenerate hy-
pergeometric function. Differentiating Eq. (9) we obtain
after lengthy calculations the mean first-passage time

where I„t is the reference intensity of the laser field and
a =ao in Eq. (1). The moment generating function2' of
W(t) is of the form

The two models described in Sec. III have been used to
calculate the first-passage-time distributions. While most
of the analyses use model A with additive (spontaneous
emission) noise only, ', some efforts have very recently
been made to obtain the FPT distributions for model 8
with both quantum and pump noise. 3 We apply the
tax:hnique developed by Haake„Haus, and Glauber ' first
to model A and obtain analytic approximate expressions
for the E'PT distribution and its mean and variance. The
results of de Pasquale et al. , 'b' based on a linearized
analysis of the two-dimensional problem with additive
and multiplicative colored noise, are reviewed. We also
describe the one-dimensional analysis of Fox which con-
tains both additive and multiphcative noise. Finally, we
present a new two-dimensional treatment of the FPT
problem for model 8 which includes nonlinear effects.
The results from these various theoretical analyses are
compared to the results of experiments and numerical
simulations in the next section.

A. Theory of Baal, Haus, and Glauber (Ref. 21)

This theory may be directly applied to the equations of
motion for the laser field I'Eqs. (1) and (2)] with 5-
correlated additive white noise. The FPT distribution ob-
tained from the application of their theory is

(t)tt-— 1

2ap

p Ip
2

C+ln +ln
p

(10)

the variance

((4t) )tt-(ir /24ac),

and the coefficient of skewness

2 g —
3 114,

((4t) )0 ~ t=, l
(12)

where C =0.5772. . . is Euler's constant and Ic
AI t/ac is the —reference intensity normalized by the

semiclassical steady-state intensity I =ac/A.

B. Linear approximation af de Pasquale et al. [Ref. 45(b)]

A formal analytic solution for the laser intensity has
been obtained by de Pasquale, Sancho, San Miguel, and
Tartagha ' 'for the model in Eqs. (4)—(7}. It is

i ~ ( ) i

2 2[aot+V(tie

1+2A ~h(t) (' J dr'

where
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h(t)= I dt'e ' q(t') (14) D(x) =P/2+P'xF, (x)/2, (24)

V(t)= J dr'Re[p(r')] . (15)

In the linear regime which corresponds to an intensity
range beyond the immediate vicinity of the initial unstable
state and also far from the final equilibrium state, Eq. (13)
is approx&mated by

I(t)= [h i
e (16)

In the absence of pump noise (P'=0}, the asymptotic
value of the mean first-passage time is

l Qor-ro= »

0

When the correlation time r is short (r &pi}, an approxi-
mate passage-time generating function is

x(1—2aos)+4Arx
Fi(x)=

[1—r(ao —3Ax )]
(25)

&(bt)'(O, I,",f') ) =(t(O,I,",f'))'
ref & (t(0,z))

o o D(z)

If the laser field begins with x =0 and the intensity
reaches the reference value I„f, the mean first-passage
time and its variance are given by

11/2

(t(O,I,'r ))=J dx f dz exp[ —U(x)+U(z)]
o o D(z)

(26)

I"(A, /2ao+ 1)e
8'(A, ) = . . i&z exp

A,P'

Qo

A,2( To —r)P'
It

2ao 1+
Qp

in which

&(exp[ —U(x)+ U(z)]

(27)

1

2Qp

P' Qp
2

C+ +ln +lnIo
Qp

T * r

, + ', '+1. ,„z n P' P' ao

24Qp 2Qp

where I (x) denotes the gamma function. From this gen-
erating function it follows that

U(x)= f dz (28)

1 2Q0 Ip
( t)~- C+ln +ln

2Q0 0

If the correlation time r is very small (multiplicative
white noise}, the approximate mean first-passage time and
the variance are given by

o (20)

2

((gr)')F=, +, C ——', +ln
ao 2Qo . .

C. One-dimensional approximation of Fox (Ref. 43)

If the complex field E is expressed as E =xe'&, a one-
dimensional contracted model may be obtained,

3
T —Ip Ip+ +In(1-I,)' 1-Io

(30)

dx =aox —Ax +x Re(p)+Re(q),3 (21) D. Model mth additive and multip1icative vrhite noise

where the correlations of q and p are given in Eqs. (2) and
(7). For short correlation times ~ (compared to the times
of observation) of the pump noise p(t), an effective
Fokker-Planck equation is obtained for the probability
function Q(x, t),

(FQ)+ (DQ),
Bt Bx

(22)

where

F(x)=aox Ax +P'Fi(x)/2, —

In this section we give analytic results for the mean and
variance of the FPT distributions obtained by a somewhat
different technique than those of Refs. 21, 43, md 45.
We note that the colored nature of the multiplicative noise
plays a role only in the results of Ref. 45, which, howev-
er, employs a linearized treatment. If we let y~ 00 in Eq.
(7), we obtain the hmit in which the colored noise p(t) is
replaced by ~hite noise.

The details of the derivation are given in the Appendix.
Here, we observe that if one integrates over the phase, the
Fokker-Planck equation for Q(x, t), the probabihty func-
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tion, may be written

Qox —Ax + + iPx Q

+—
z
f(P+P'x )Q] . (31)

E2 x——sing, and P and P' are the strengths of the additive
and multiplicative white noise sources.

If the laser field starts initially from x =0 and arrives
at a reference value x =I,',t, the mean and variance of the
FPT distribution are given by

I 1/2

J", d)
~& (32)

Here E =Ei+iE2 is the laser field, Ei ——x cog, and

(33)

where

V(x)=e '*', U(x)= f " dg,
s F(q)

D (rt)

F(x)=aox —Ax + + ,'P'x, —
2x

(34)

(35)

D(x)= —,'(P+P'x ) . (36)

1 &0 lo2

( t)= C+ln +ln
290 0

and

These multiple integrals [Eqs. (32) and (33)] may be
evaluated approximately as shown in the Appendix to give

Gaussian random numbers are generated to simulate the
Langevin force terms at each integration step. This pro-
cedure was repeated ten thousand times to construct the
FPT distributions.

In Fig. 2 we show three typical stochastic trajectories
obtained by this integration procedure Th.is illustrates
the nature of growth of the laser intensity in some partic-
ular realizations of the random process. The stochastic
behavior of the intensity after it reaches the plateau is due
almost entirely to the multiplicative noise term.

Two sets of experimental data have been compared with
the theoretical results. Set A was taken with the laser
operating about 6% above threshold and set 8 at about
20% above threshold. We show in Fig. 3 the measured
FPT distributions together with those obtained from the
simulations performed as described in the previous sec-
tion, for the first set of data. The experimental measure-
ments have been fit by the same values of constants ao, A,
P, P', and y. The constants are obtained by varying them
until the simulated distributions match the measured
ones, and are quite reasonable in value. The parameters
are ao ——0.7&10 s ', A =0.114&10 s ', 8=0.004

——+ln(4X10 )+ln2 A

(3&)

In the next section we compare these analytic results with
numerical computations and with experimental measure-
ments.

SAMPLE STOCHAST I C TRAJECTORIES

V. NUMERICAL SIMULATIONS:
COMPARISON OF THEORY AND EXPERIMENT

It is necessary to perform numerical calculations to ob-
tain the FPT distributions and its moments; we can check
the accuracy of the analytic approximations and also ob-
tain fits to the experimental data.

The numerical procedure followed to obtain FPT distri-
butions is that of Monte Carlo simulations. Equations (1),
(2), and (4)—(7) may be integrated step by step, ""noting
the value of the intensity I of the field after each step. As
soon as I &I„t, the number of the time step is stored.

0. C)

O. 0
T I M E. (~~~~)

FIG. 2. Samp)e stochastic trajectories generated by Monte
Carlo simulations of Eqs. (4)—(7).
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We note that the values of P, P', and y used for sets A
and 8 are quite close to each other. This points to the
consistency of the entire procedure of measurements and
calculations, since the experiments were performed after a
total realignment of the laser cavity. The differences in

ao and A are largely due to the difference in pump power
for the two sets of data. A factor which may contribute
to additional differences in operating parameters is a
difference in operating wavelengths. Once again, it is in-

teresting to compare the analytic results to the experimen-
tal data and the simulations. This is shown in Fig. 5; the
behavior is similar to that already noted in the discussion
of set A.

We have also examined the effect of changing y, the
time scale of the fluctuations, on the skewness. This is

shown in Fig. 6. It is seen that the skewness decreases as
y is increased. The shorter the time scale of the pump
fluctuations, the less skewed is the distribution of the
first-passage times. The curves all show an upward trend
for values of I„r/I close to 1. Figure 6{b) examines the
dependence of the skewness on y for the parameter values
used for set B.

VI. SATURATION EFFECTS:
LIMITS OF THIRD-ORDER THEORY

The models described in Sec. III both contain only cu-
bic nonlinearities; the theory thus includes saturation ef-
fects to third order in the field. We investigate in this sec-
tion and the next the limitations of the third-order
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dzr'dt = KE—+ +p(r)E+q(t),FE

1+—IA

F

(39)

theory —often called the cubic model.
A fuller account of the saturation properties of the laser

may be obtained from the following equation

have been done on Eqs. (4)—(7} as well; we examine three
different levels of excitation, as in the last section, and
point out saturation effects. However, we have also
discovered from our computations an alternative signature
of pump fluctuations if one normalizes the time-
dependent variance of the intensity fluctuations by the

with Eqs. (2) and (5)—(7) to describe the noise sources.
X=1.2&10 s ' is the cavity decay rate, I'=ao+K is
the gain factor, and A is the laser saturation parameter.
A simple binomial expansion of the denominator leads to
the cubic model.

The experiments performed until now have been within
the regime of validity of the cubic model. Thus, in this
section we will compare the results obtained from com-
puter simulations of Eqs. (4) and (39). Calculations of the
FPT distributions have been performed for the pump ex-
citation of Ref. 46 and also for twice and four times as
much above threshold. The values of the other parame-
ters A, E, I', P', and y have ben kept the same, in order
to provide a direct comparison.

The curves in Fig. 7(a) show the mean FPT for the
three pump levels. For the original set of parameter
values [curves a] the percentage difference between the
cubic and saturation models is extremely small, and would
also be indistinguishable in an experiment. As we go to
the higher values of excitation [curves b and c], the per-
centage difference grows progressively larger, and be-
comes quite noticeable in the curves c.

Figures 7(b) and 7(c) show the variance and skewness
for the cubic and saturation models for the three levels of
excitation. These figures once again demonstrate that
given the accuracy of the data that are available so far,
the cubic model gives a good representation of the fluc-
tuations for the levels of excitation at which the experi-
ments have been performed.

At present, there are no analytic results available for
the FPT distribution or its moments that use Eq. (39},to
our knowledge. It should be mentioned that the steady-
state photon statistics for a laser with only quantum noise
have been calculated taking into account saturation ef-
fects of the form shown in Eq. (39).

We also note that Schenzle + ' has considered the effect
of both loss and gain fluctuations on the laser field vari-
ance and correlation functions, but with only multiplica-
tive noise present.
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VII. EFFECT OF MULTIPLICATIVE NOISE
ON INTENSITY FLUCTUATIONS

1.0 2.Q 3.0
T (psee}

5.0 6.0

In the previous sections of this paper we have reported
on the effect of multiplicative noise on the passage time
statistics. The "signature" of pump (multiplicative) noise
was found to be the rapid increase in the variance of the
FPT distributions. In this section we examine in some de-
tail the effect of the multiplicative noise on the mean and
variance of the laser intensity in the transient regime.

Calculations of the variance of the laser intensity have
been performed by de Pasquale et ol. s(' on a one-
dimensional laser model and more recently ' ' also on the
model in Eqs. (4)—(7). The calculations presented here

FIG. 8. (a) The time-dependent mean intensity for the laser
transients. Curves a, b, and c correspond to the three values of
ao used in Fig. 7. , cubic nonlinearity [Eq. (1)); ———,
Eq. (39}. Only additive noise is included. (b) The time-
dependent variance of the intensity fluctuations, normalized by
I„. Curves a, b, and c correspond to three different values of
ao, as in Fig. 7. , cubic nonlinearity [Eq. (1)]; ———,Eq.
{39). Only additive noise is included. (c) The tine-dependent
variance of the intensity fluctuations, normalized by the time-
dependent mean intensity. The curves a, b, and c correspond to
three different values of ao, as in Fig. 7. , cubic nonlinear-
ity [Eq. (1)]; ———,Eq. (39). Only additive noise is included.
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time-dependent intensity. This will be described in detail
below.

Figure 8 shows the results of calculations on the cubic
model and Eq. (39) with additive noise only. The effects
of saturation are clearly visible in the graphs and increase
in percentage as the level of excitation above threshold is
increased. In these plots we have normalized the mean
and variance of the intensity in different ways. In Figs.
8(a) and 8(b), I„(the steady-state average intensity ) has
been used for normalization. The curves in Fig. 8(c) are
very similar to those of de Pasquale et a1.,

2' in addition
we see the saturation effects, which clearly play a major
role in curves b and c, as the level of excitation is in-
creased.

In Fig. 8(c), the normalization is with respect to the
time-dependent mean intensity. In this case,
((dd) )(t)/(I ) (t) decreases from the initial value of uni-

ty to the steady-state value. The initial value of unity is,
of course, what one would expect of thermal hght. The
curves thus show the transition from thermal to laser
statistics. We note that ((dd) )(r)/(I )(t) never in-
creases above unity for this case, which just contains addi-
tive noise.

Figure 9 is basal on Eqs. (4)—(7), which contain both
additive and multiplicative noise. Figures 9(a) and 9(b),
normalized by the steady-state average intensity I„,once
again demonstrate the effects of saturation beyond the cu-
bic model. The effects of the multiplicative noise are
clear in Fig. 9(b) where the steady-state relative intensity
fluctuations are seen to have a far greater value than in
Fig. 8(b). Also apparent is the large effect of saturation
relative to the cubic model. The predicted relative intensi-
ty fluctuations in the steady state in Fig. 9(b) are almost
twice that for the cubic model.

In Fig. 9(c) the intensity fluctuations are normalized by
the time-dependent average intensity. There is now a
clear and unambiguous sign of multiplicative noise:
((dd) )(t)/(I ) (t) now exceeds unity, the effect increas-
ing as the laser is operated closer to threshold. It is also
important to note that the relative fluctuations are consid-
erably larger if the saturation effects are accounted for
more fully than in the cubic model.

VIII. DISCUSSION

FIG. 9. t,'a) The time-dependent mean intensity for the laser
transients. The curves a, b, and c correspond to the three dif-
ferent values of ao used in Fig. 7. , cubic nonlinearity [Eq.
(4)]; ———,Eq. (39). Both additive «nd multiplicative noise
are noir included. (1) The time-dependent variance of the inten-
sity fluctuations, normahzed by I„. Curves u, b, and c corre-
spond to three different values of ao, as in Fig. 7. , cubic
nonlinearity [Eq. (4)]; ———,Eq. (39). Both additive and mul-
tiplicative noise are noir included. (c) The time-dependent vari-
ance of the intensity fluctuations normalized by the time-
dependent mean intensity. Curves a, b, and ((. correspond to the
three different values of ao used in Fig. 7. , cubic non-
linearity [Eq. (4)]; ———,Eq. (39). Both additive and multipli-
cative noise are now included. The relative intensity fluctua-
tions now exceed unity before decreasing to the steady-state
values; this is a clear indication of multiplicative noise [compare
with Fig. 8(c)].

The analysis of laser fluctuations based on measure-
ments of first-passage-time distributions is examined and
shown to be a very powerful technique capable of detect-
ing the presence of quantum fluctuations that are many
orders of magnitude smaller than the pump fluctuations.
The magnitude and time scale of the pump fluctuations
can also be determined. The technique is implemented
with a photodiode and simple electronics, and is particu-
larly suited for the study of fluctuations in lasers operated
far above threshold. This is in contrast to the convention-
al but delicate photon-counting and correlation tech-
niques, which remain valuable below and near threshold.

The analytic results presented in this paper are in good
agreement with the results of the experiments and numeri-
cal computations. We note that the theory could be fur-
ther improved if both the nonlinearity in the equations of
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motion for the laser field and the colored nature of the
multiplicative noise could be incorporated in the analytic
treatment. The limits of the third-order theory have been
examined numerically, and its predictions are found to
agree well with the high-intensity form of the laser equa-
tions in the regime of the experiments. However, devia-
tions are evident at higher values of excitation above
threshold.

We also consider the intensity fluctuations of the laser
in the transient regime. We find a new indicator of the
presence of multiplicative noise; the variance of the inten-
sity fluctuations normalized by the tii2ie-dependent mean
intensity exceeds unity temporarily when multiphcative
noise is present. It would be of great interest to verify this
feature experimentally.

The present technique should be easily applicable to the
analysis of fluctuations in a variety of single-mode laser
systems; in particular, it appears that semiconductor-laser
fluctuations could be characterized conveniently by this
method. Some progress has already been made in the cal-
culation of switching transients in semiconductor
lasers. ' ' Such measurements of FPT statistics for semi-
conductor lasers would be of importance in optical com-
munications.

The existence of two or more longitudinal laser modes
may lead to multiple peaks in the FPT distributions. This
has been experimentally observed. ~2 We w'ill report on
this in a future publication.

In conclusion, we have developed a new technique for
the measurement and analysis of laser fluctuations that is
particularly useful for lasers operated above threshold.

(p;(t)pj(t') ) =P'5J5(t —t') (ij =1,2) (A3)

(p;{t)) =0 (i =1,2) . (A4)

The Fokker-Planck equation corresponding to Eqs.
(Al)—(A4) for Q, the probability density function, is
found to be'9

BQ 8at, , aE,
. ap —a

2

g E2 E.g .

2 2

P+P'', , aE,'
'

2

g E2 (AS)

where E =El +2'E2 is the laser field.
The use of polar coordinates

El ——x cos{(),

E2 =x sin()() t

with

(A6)

leads to the Fokker-Planck equation

(A8)

ag a
dt Bx

P
apx —Ax + + , P'x Q-

2x

E2 apE2 ~
I
E

I 'E2+Elp2+E2pl(t)+92(t) ~

Letting y~ co in Eq. (7) we obtain the limit in which the
colored noise is replaced by white noise. %'e now have
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APPENDIX: DERIVATION OF EQS. {31),{37),and (3$)

If the field E is written as E =E, +iE2, Eq. (4) may be
separated into real and imaginary parts as foBows:

1 8 [(P Pt 2)Q]
P+P x' a2Q

2 Bx 2x2 B{()2

(A9)

Since we are interested in measuring the intensity of the
single-mode laser field, we ill(tegrate over the phase in Eq.
(A9), to obtain [with Q = J g(a, k)dkl

ag a
apx —Ax + +TPx Q

P
Bt Bx 2x

2

(P+P'x )Q .
Bx

If the laser field starts initially from x =0 and arrives at a
reference value x =I~~, the mean and variance of the
FPT distribution are given by

I 1/2

«&=f""d. ' f'dyVy (A11)

E, =apE, —3
~

E
~

El +Elpl E2p2(t)+qi(t), — (Al) and

I1/2

({bt) )=4 f d f dy f dg f drlV(x) o V(y) P D(g) o D(g) (A12)



$4

V(x) =e ' ', U(x) =f drl
» F(g)

D(rl)
'

F(x)=deox —Ax + + ,P'—x,
2X

regimes; 0&x &5X10 and 5X10 &x &(I„)'~ (with
I~=ao/A, since the two teaches in D(x) [Eq. (A15)] are
approximately equal for x =5X10 . Equations (All)
and (A12) may be written as

D(x)= —,'(P+P'x ) . (A15)

We separate the calculation of (t } and ((b,t)i} into two and

(A17)

F(x)=aox+ (0&x &5X10 )
P 4 (A18)

FOI O&x &5XIO, j..e., 0&I ~g2.SX10,theaddi-
tive quantum noise dominates the growth of the field. We
may thus neglect the multiplicative noise term and cubic
term in Eqs. (A14) and (A15) and get

(A21)

Therefore, we have, for the first integral in Eq. (A16),

f sx io-' 1 I » V(y)
V(x) "o D(y)

D(x)=—(0&x &5X10 ) .I'
2

(A19)
ln(2. 5 X, 10-')+C+ln

2Qo
(A22)

Also,

QoX
2

U(x)= +lnx, (A20)

where C is Euler's constant. As we will see ao/P-10',
which is typical for a wide variety of lasers, and hence we

approximate e ' =0. For the variance, Eq. (A17),
we may similarly evaluate the first part of Eq. (A17),

sx lo-' 1» 1 ~ V(g) & V(s) )

o p' o ~p' o D o ~D

I 5X10—4

2
Qo 0

-aors /P2

8 QoX
2

—G.
p l

—QoX
2

P

0~2/P
5X10 4

+ i dx
Qo X

QoX
2

p
QoX

2

—C—In
P

2+0 k=1

co I 00 1)k —1

k2
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D(x) —,P'x (5X10 &x &I~ ) .

From Eqs. (A13}and (A16}we get

urer 1 & V(y)
sx io-4 V(x) o D (y)

dx y

(A25)

1 —exp [F(x)—D'(x) ]

[F(x)—D'(x)]

(A26)

The exponential term in the above equation is very small
compared to unity for the entire range of values of x and

where we have used e;, the exponential integral function.
The domain of interest is x E(O,I„' ). In this domain

F(x) and D(x) are positive, which meiuis U(x) is mono-
tone increasing. The monotone behavior of U(x) and its
large size in most of the x domain (for typical values

of the parameters) allow us to expand the exponential of
Vjy)/D(y) around x for x e(5X 10 4,I„~2) in the
evaluation of (t ). Similarly, we expand the exponentials
of V(rl)/D(g) around g,

V & Vq
D(g} o D(s))

around y and

V(g) t V(q)
~ ".(,)

l' "g~ I ".(,)

around x for xC(5X10,I~ } in the evaluation of
&(ar)').

For 5 X 10 & x &I„',the multiplicative noise term is
dominant, and we may drop the additive noise. The cubic
nonlinearity must now be included. Thus

F(x)=aox —Ax + iPx (5X10 &x &I ) (A24)

hence may be neglected without appreciable error. Thus

Iree 1 " f (y)
sxio V(x) o D(y)

j.

2ap

Qp Ip—ln(2. 5X 10 )+ln +ln
p

Combining Eqs. (A22) and (A27), we obtain

1 ao Ip
2

(t)= C+ln +ln (A28)

~ U(g')

F(g) —D'(g) ' (A29)

where we drop the exponential term since
exp f

—g[F(g) —D'(g)]/D (g) J « 1 for the entire range of
g. Further, we obtain

V & Vq
o D(g) o D(rl)

4~ 2U(y)
(A30)

y [8(ao —Ay ) +10AP'yz —P'(6ao —P')]

and proceeding similarly

which is identical with Eq. (10). The presence of the mul-
tiplicative white noise has not appreciable effect on the
mean first-passage time.

From Eqs. (A13), (A17},(A24), and (A25) we have

V(i) )

D (rl)

Dt P
U(g') 1AD(g')

g exp g U&

D(g)

I.er 1 ~ 1 z V(g) 4 V(rl )4
I I

sxio-4 V(x} o V(y) o D(g) o "D(g)

(A31)
sx» x[16(ao—Ax )s —60P'(ao —Ax ) +SP'(ao —Ax )(5ao+4P') P' (24ao+P')]—

For typical values of the parameters we may neglect

[—60P'(ao —Ax ) +SP'(ao —Ax )(5ao+4P ) P(24ao+P )]—
in the denominator. Thus

1 1 V(g) & V(q) P' 1
dysxio-' V(x} o V(y) o D(g) o D(g) 2 2.sxio-' z(ao gz)s

( —, —Io)/(1 —Io} +ln
P'

2 Ip

2Qp 1 —Io

ao
+ln(4X10 }+ln

A
(A32)
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Combination of Eqs. (A23) and (A32) gives

pt
((ht) )= z + 3 ( —,

' —Io) +ln
24ao 2ac (1—Io)

——', +in(4y 10')+ln (A33)

Equations (A2g) and (A33) give us fhe mean first-passage time and its variance for this model.
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