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Free-energy formulas applicable to the electron-screened ion plasmas are derived in the
hypernetted-chain approximation. The formulas are expressed in terms of the correlation functions
and do not involve cumbersome thermodynamic integrations. Accuracy and thermodynamic con-
sistency of the proposed formulas are examined and ascertained through explicit numerical compar-
ison with the results of other independent calculations taking account of electronic screening in the

interionic potentials.

I. INTRODUCTION

The hypernetted-chain (HNC) approximation,! dev-

eloped in the study of simple liquids,>* has been used
quite extensively in the theoretical analyses of static corre-
lations in those dense plasmas which may be found in stel-
lar interiors. It has been well demonstrated®> that the
HNC scheme offers an accurate way of describing inter-
particle correlations in such plasmas. The reason for the
accuracy of the HNC scheme in the Coulombic system
has been elucidated theoretically through the analyses of
the multiparticle correlation functions.

As has been noted by earlier investigators,*”® the HNC
scheme has a unique feature in that the chemical potential
and hence the Helmholtz free energy can be calculated
directly through integration involving the correlation
functions [see Eq. (3) following]. The calculation of the
free energy in the HNC scheme can thus be performed
with an accuracy comparable to those of the internal ener-
gy and the pressure; the latter quantities involve analo-
gous integrations. In contrast, a general prescription for
the calculation of the free energy in an interacting many-
particle system® is to carry out an integration of the inter-
nal or interaction energy with respect to the inverse tem-
perature or the coupling constant. The numerical errors
in the internal or interaction energy are accumulated in
the process of such an integration, and the resulting
evaluation of the free energy may thus contain a substan-
tial degree of inaccuracy. The aforementioned feature of
the HNC scheme has been used advantageously in the
analysis of delicate thermodynamic properties of dense-
plasma-like matter such as phase separation in multi-ionic
plasmas.® 101!

When the laws of interaction between two particles in
the system are specified, the HNC scheme provides a
closed set of equations; through a solution to those equa-
tions one determines various interparticle correlation
functions. In many practical cases of application one en-
counters a situation in which the “effective” interparticle
potential may be regarded as dependent on the thermo-
dynamic variables such as the number density and tem-
perature. For example, the electrons in a dense matter
may be assumed to provide a dielectric background which
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acts to screen the interaction between the ions;*> the
dielectric screening function may then depend on the
number density and temperature of the electrons.'> The
existing derivation of the HNC free-energy formula*”8
has not, however, anticipated such dependence of the in-
terparticle potential on the thermodynamic variables.

The purpose of the present paper is to provide a
theoretical foundation to the HNC free-energy formulas
applicable to those cases in which the effective interparti-
cle potentials may depend on the density and temperature.
The validity and utility of the resulting formulas are then
examined and confirmed through numerical comparisons
with the existing calculations in the screened, one-
component-plasma (OCP) systems.

In Sec. II, we formulate the problem in physical terms;
in Sec. III we define the screened OCP model for the
two-component electron-ion plasma. The HNC free-
energy formulas are derived in Sec. IV and their accuracy
and consistency are examined in Sec. V. Concluding re-
marks are given in Sec. VI. Some of the calculational de-
tails are described in the Appendix.

II. FORMULATION OF THE PROBLEM

For a classical many-particle system with a single
species of particles, the radial distribution function g(r) is
expressed in the HNC approximation as

g(ry=exp[ —Bd(r)+h(r)—c(r)]. (1)

Here B is the inverse temperature in energy units, ¢(r)
represents the potential of binary interaction, and
h(r)=g(r)—1 refers to the pair-correlation function.
The direct correlation function ¢ (r) is related to A (r) via
the Ornstein-Zernike relation

h(r)=c(r)+n fdr’c( lr—r' DA(r'), (2)

where 7 is the number density of the particles. Assuming
that ¢(r) is independent of the thermodynamic variables,
one proves’ that the excess chemical potential, i.e, the
chemical potential arising from the interaction potential,
is given by
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Bu*=2 [ drh(N[h(N—c(n]=nlg=0), ()
where
slg=0= [dre(r) @

is the long-wavelength (g=0) value of the Fourier
transform to the direct correlation function. For an OCP
with ionic charge Ze, ¢(q =0) in Eq. (3) is replaced*® by
Cr(g =0) with

cr(q)=C(q)+4m(Ze)*B/q* . (5)

This replacement takes account of the presence of the
neutralizing background of negative charges in the OCP.

In this paper we wish to extend the derivation described
above to those cases in which the potential ¢(r) may de-
pend on the thermodynamic variables; we thereby aim at
finding the formulas corresponding to Eq. (3). In particu-
lar, we consider the cases of a two-component plasma
consisting of N ions with the electric charge Ze and ZN
electrons, contained in a box of volume V; the ions are as-
sumed to obey the classical dynamics and statistics. The
Cczt;lornb coupling constant of the ions may be defined
as®

r'=pB(Ze)*/a , (6)

where a =(3V /4wN)'/? is the ion-sphere radius. We may
likewise set the Fermi-degeneracy parameter of the elec-
trons as’

2/3

v , 7

3mZN

a7

where m is the rest mass of an electron. The usual densi-
ty parameter for the electrons is then given by’
1/3 2/3

Zz-3°re. ()

me? 1

w2

S
4

In the treatment of two-component plasmas we adopt
the adiabatic approximation in the response of the elec-
trons to the ionic field, so that the system under con-
sideration turns into one of an electron-screened ionic
plasma, or a screened OCP.!* The Fourier transformation
of the effective potential ¢,.(r) between ions is then ex-
pressed as

4r(Ze)?

~e( )= s
dela q°e(q,0)

9

where €(q,0) is the static dielectric function of the elec-
trons.> The effective potential thus carries dependence on
the number density n,=ZN/V and temperature of the
electrons through €(q,0). The problem at hand then is the
derivation of the chemical potential formula, analogous to
Eq. (3), when the number density- and temperature-
dependent ¢,(r) is substituted in place of ¢(r) in the HNC
equation (1).

The complexities in the derivation of the HNC free-
energy formula lie in the treatment of density dependence
in the potential; temperature dependence, on the other
hand, introduces no such complications.!* The reason

may be understood by recalling the definition of the
chemical potential: It is the change in the Helmholtz free
energy induced when a particle is added to the system by
keeping the temperature and volume constant. An addi-
tion of an ion brings about an addition of electrons, to
keep the charge neutrality of the system, which in turn in-
troduces a change in the effective potential through the
density dependence of €(q,0).

In this paper we limit ourselves to the consideration of
plasmas with single ionic species only. It is straightfor-
ward, however, to extend the results obtained here to the
cases of multi-ionic plasmas with electronic screening. In
a subsequent paper'® we shall analyze miscibility problems
in hydrogen-iron mixtures which simulate certain features
in the dense solar-interior plasma.

III. THE SCREENED OCP MODEL

;I'she Hamiltonian for the screened OCP is expressed
as®

2V Fo
22
Z 1o 10)
o 2,00 [ dg0 PP (

Here K represents the kinetic energy of the ions,
v(g)=4me?/q? is the Fourier transform of the bare
Coulomb potential, p, is the Fourier component of the
ion-density fluctuations, F, represents the Helmholtz free
energy of the uniform electron background. In Eq. (10)
we have assumed the electron-ion interaction to be weak,
and thereby retained the linear-response contributions
only. The terms F, and K, being simply additive in Eq.
(10), will be omitted hereafter.

The screening function €(g,0) of the uniform electron
system may generally be expressed as®

v(g)Xo(gq,0)
1+ G (q)v(g)Xo(g,0) ’

where X(q,0) and G (q) refer to the static values of the
free-particle polarizability and the local-field correction
for the electrons. As we have remarked earlier, it is im-
portant in the ensuing theory that the density and tem-
perature dependence of the screening function be ap-
propriately taken into consideration. We shall write Eq.
(11) as €(Q,0) or more explicitly €(Q,0; r,,0) when it is
re-expressed as a function of the dimensionless variables:
Q=q/qF, rs, and 6, where qp=(37?n,)'”3 is the Fermi
wave number.
The product of v(g) and X(q,0) takes the form

€(q,0)=1 (11

v(g)Xo(q,0)
4Ar, ® 2
== rz v 26f dy 2y
mQ 0 [cosh(y?—Buy/2)]?
_Q
XJo 2@}} ’ (12)

where A=(4/97)!73, Jo(x) is the usual Kohn function at
6=0,
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1
JQ(JC)— 2 +

and p, is the chemical potential in the corresponding
noninteracting system. In the limit of 6—0, the factor in
the large square brackets of Eq. (12) approaches Jy(Q /2)
since limg_,o(6Buo)=1. If one sets G(q)=0 in Eq. (11),
the Lindhard screening function in the random-phase ap-
proximation®!¢ (RPA) is recovered; the function G(q)
thus measures the extent of strong-coupling effects
beyond the RPA.

The excess Helmholtz free energy in the screened OCP
is related with the Hamiltonian (10) in accordance with
the basic formula of statistical mechanics,

BF, = —In(Tre ~AH) (14)

where Tr means taking the trace with respect to the ionic
coordinates. The excess internal energy U, is then calcu-
lated from Eq. (14) as

where ¥V and N are kept constant in the differentiation.
Substitution of Eq. (14) into Eq. (15) yields

Use 22
T=—é—‘;q($o)v(q)[5(q)-—l]
Z? 1
+Wqéo)v(q) 0.0 1(S(q)
2 1
_Wq(;em() «0,0 S(q), (16)

where S(q) refers to the static structure factor of the
screened OCP system. We note here that the excess inter-
nal energy of the screened OCP is not simply given by the
statistical average of H; it contains an additional term
[the third term on the right-hand side of Eq. (16)] which
stems from the temperature dependence of €(q,0). One

can likewise obtain the expression for the excess pressure
‘——( BF.) , (15) P through partial differentiation of Eq. (14) with respect
to ¥,
I
P, 72 1
— = v(q)[S(q)——l]+— v(q) | ——=—=——1|S(q)
n 6V 6V qéo) €(Q,0) 1
ZZ
i v(q) vig) |6 S .
6V 4o, @00 | S5 qéo) 39 5007 |, 5@ an

IV. HNC FREE-ENERGY FORMULAS

We now wish to derive a free-energy formula in the
HNC approximation which is applicable to the system as
described by the Hamiltonian (10). For this purpose we
find it instructive to rewrite Eq. (10) (with omission of F,
and K) in the real-space form

1 N (0) N2~ _
H=5 3 ¢.(|ti—1; )+ ¢ —-=d.(g=0),  (18)
I, 2 2V
i
where
ZZ
$%=5 2 vl - (19)
V o 4 €(q,0)

For the calculation of the free energy, the HNC formula
(3) is not directly applicable to the screened OCP system
because of the density- and temperature-dependent inter-
particle potential and the structure-independent terms in
the Hamiltonian (18).

The derivation of the free-energy formula may be facili-
tated by introduction of a fictitious screening function
€(Q =q/gr,0; 7,,8) and through companson between two
reference systems which are constructed in relation to the
fictitious screening function. The screening function
€(0,0; 7,,0) is defined to take on the same value as €(Q,0;

rs,0) at the given combination of the density and tem-
perature under consideration, but the state (i.e., the densi-
ty and temperature) dependence in the latter function is
not to be taken into account; in €(Q,0; 7,0), we regard
qgr, s, and 6 as constants. The reference system (I) then
corresponds to the screened ion plasma with €(Q,0; 7s,0),
whose Hamiltonian is given by

N iy
Hi=+ S ln—n )+ 34"-205a=00. @)
L

Here ¢ ;‘TJIS the inverse Fourier transform of
b9 =Z%(q)/e(Q,0; 7,,0) 21)
and
¢§°’=Z—V2 v(g) ——:—1_—_—1}. (22)
q (%0) €(Q,0; 75,0)

The reference system (II) is defined as that which is
described by the Hamiltonian

Hy=75 3¢ |ri—1;|) . (23)

ij

i#j
This Hamiltonian is thus obtained by setting the last two
structure-independent terms of Eq. (20) equal to zero. We
may call this system “normal” in the sense that the inter-
particle potential is short ranged and independent of the
thermodynamic variables and that the structure-
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independent terms are not retained in the Hamiltonian.

We first observe that the excess Helmholtz free-energy
F. in the original screened OCP should amount to that in
reference system I, F; at the given combination of g, rq,
and 6,

F.=F. (24)

The excess free energy Fj is in turn related with that in
reference system II, Fy via

2 ~
FI—FII+'—'¢I —7¢1(‘1 =0). (25)

In contrast with Eq. (24), this relation now holds true
even if we change the density and temperature. Thus dif-
ferentiating both hands of Eq. (25) with respect to N, we
obtain the relation between the excess chemical potentials,
ppand py, as

Li=pu+ ¢1 —_ax(q =0) . (26)

For the correlation functions, we need not distinguish be-
tween the original screened OCP and the reference sys-
tems because the Hamiltonians have the same structure
dependence at the given specification of gg, 75, and 6.

We have thus established the inter-relationship among
the three systems. On the basis of this inter-relationship
we now derive the desired HNC free-energy formula for
the screened OCP system in the following way.

We first evaluate the excess chemical potential for
reference system II in the HNC approximation. Since this
system is normal, the usual HNC formula (3) for the ex-
cess chemical potential applies, and we find

Bun="7 [ drh([h(n—c(N]-ntlg=0). @7

Substitution of Eq. (27) in (26) then yields u;.
The excess Helmholtz free-energy Fj is calculated in
accord with the standard thermodynamic procedure
ui L (28)
N =Hi— n >
where the excess pressure P; of the reference system I is
calculated in the same way as in the screened OCP,

P Z?
— = v(g)[S(q)—1]
n 6V %o
z? 1
+Z= v(q) —1(S(q)
&7 2,9 | <00 9
z? 1
= = S(g) . 29
+6Vq£m v(g )QaQ <00 |5? (29)

The last term of Eq. (29) accounts for the volume deriva-
tive of €(Q,0) arising from the length scaling of g due to
the fact that gz in the definition of Q is fixed at the value
gr.

Finally, the equality of F,. and Fj at the given g, r;,
and 0 yields the desired HNC formula

Fi
BTV———fdrh(r)[h(r)~c(r)] —nc(g =0)
5 P
_nB¢e<q=0)+7¢‘°’———Bn' : (30)

The excess chemical potential u,. of the screened OCP is
also derived from Eq. (30) combined with Eq. (17) as

Bu ‘"’—fdrh(r)[h(r)—c(r)] —né(g=0)—nps,(q = 0)+B ©)_ (
’ 6Vqéo>ﬁv ? "3 0o e
Bu(q) |6 S( )— 1
3V ém (Q 0) 6VQE0)BU q)Q 90 | €(Q,0) @ 3D

The third and fourth terms on the right-hand side of Eq.
(31) are the structure-independent contributions; the last
three terms stem from the density and temperature depen-
dence of the potential. If one neglects the polarization ef-
fect of the electrons by setting €(g,0)=1 in Eq. (31), the
formula in the OCP is recovered.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we apply the formulas derived in the pre-
vious section to the evaluation of the thermodynamic
functions for the screened OCP in the HNC approxima-
tion. For simplicity we assume hydrogenic plasmas with
Z=1 throughout this section. The HNC equations for
the screened OCP may be solved quite accurately with the
numerical technique described in Ref. 17.

To carry out the calculations, we need to specify the

screening function €(g,0). As a first example, we shall
consider the ionic OCP screened by the completely degen-
erate electron liquid, a system relevant to the interior of
the heavy planets such as Jupiter. For e(q,0), we adopt
the analytic formula due to Ichimaru and Utsumi®>!® (IU)
as well as the Lindhard screening function.'®

As a second example, we investigate the finite-
temperature effects of the electrons on the thermodynam-
ic properties of the plasma, using the RPA expression for
€(q,0). Those effects may be significant in the description
of such plasmas as encountered in the inertial confine-
ment fusion experiments and in the interior of the main-
sequence stars. The local-field effects in the electrons, on
the other hand, are not considered in this case.

The derivatives of €(g,0) appearing in Eqgs. (16), (17),
(30), and (31) can be explicitly calculated in terms of the
screening functions described above; the results are sum-
marized in the Appendix.
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TABLE 1. Excess internal energy, —BU,. /N, calculated with
the Lindhard and Ichimaru and Utsumi screening functions at
ry=1. VAR refers to those obtained through the OCP varia-
tional method (Ref. 19); HNC, through the present HNC
method.

Lindhard Ichimaru and Utsumi
r VAR HNC VAR HNC
6 5.101 5.108 5.155 5.173
10 8.745 8.726 8.830 8.813
20 17.95 17.89 18.08 18.02
40 36.51 36.40 36.71 36.61
60 55.17 55.00 55.41 55.27
80 73.86 73.65 74.15 73.98
100 92.57 92.34 92.90 92.70
130 120.65 120.36 121.05 120.83
160 148.75 148.43 149.21 148.97

A. The degenerate electron liquid

Since the electrons are assumed to be in the ground
state, we set =0 in €(Q,0). The plasma state is described
in terms of T and r,; the derivatives of €(Q,0) with
respect to 6 vanish in Egs. (16), (17), and (31).

In Tables I and II we list the excess contributions to the
thermodynamic functions at r,=1, obtained with the
Lindhard and IU screening functions. For comparison,
we also list the corresponding OCP variational results'’ in
those tables. Considering the substantial difference be-
tween the variational method and the present HNC com-
putations, we find the close agreement between those two
sets of calculations to be remarkable.

The excess Helmholtz free energy is usually evaluated
by integrating the excess internal energy with respect to
the temperature [see Eq. (15)] as

BFy BFy.

r 4r BU,
v DTy TN

(Fo,rs)= ILh©r N

(L,r,),

(32)

TABLE II. Excess Helmholtz free energy, —BF./N. Desig-
nation is the same as in Table I.

Lindhard Ichimaru and Utsumi
r VAR HNC VAR HNC

6 4.726 4.772 4.825 4.868

10 8.182 8.225 8.317 8.360
20 17.06 17.08 17.27 17.29
40 35.19 35.15 35.51 3548
60 53.52 53.42 53.93 53.84
80 71.95 71.79 72.44 72.30
100 90.44 90.23 91.00 90.82
130 118.25 117.96 118.90 118.65
160 146.12 145.75 146.86 146.55

where it is assumed that the value of BF, /N has already
been known at the initial point (I'y,7,) of the integration.
Inversely, we can apply the thermodynamic relation (32)
to examine the self-consistency of the present scheme:
The left-hand side of Eq. (32) is calculated directly from
the HNC free-energy formula (30), while the right-hand
side of Eq. (32) is calculated by performing the integration
numerically; comparison between the two values thus in-
dicates the degree of consistency achieved. The numerical
results in Tables I and II show that the thermodynamic
consistency is satisfied with a high degree of confidence in
the present scheme. If one takes, for example, I'y=6 and
I'=160 in Eq. (32), then the two values agree with each
other within the accuracy of 0.05%.

B. The finite-temperature electron gas

In Fig. 1 we show the screening corrections to the ex-
cess Helmholtz free energy for three values of 6, calculat-
ed with the RPA screening function of the electrons at fi-
nite temperatures. The screening corrections are defined
as the differences between the screened OCP values and
the corresponding OCP values, i.e., AF=F,,—Focp. As
one would expect, the electron-screening effects play an
important part in determining the correlational properties
of the plasma in the partially degenerate regime (6 > 1) of
the electrons; even at 6=1, the screening corrections are
of the same order of magnitude as the original OCP
values.

In this connection we may raise a question as to the va-
lidity and accuracy of the adiabatic approximation for the
electron system in the partially degenerate regime (6> 1).
To cope with this question, we compare in Table III the
“total” excess Helmholtz free energies with the nonadia-
batic calculations by Ichimaru, Mitake, Tanaka, and
Yan? (IMTY), and with the RPA calculations.>?® In the
present scheme the total excess free energy of the plasma

] T T T ‘ L ll
100 .
. L]
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FIG. 1. Relative magnitude of the screening corrections to
the excess Helmholtz free energy obtained with the finite-
temperature RPA screening function. The points with closed
circles represent those for 6=0.1; closed triangles, for 6=1.0;
and closed squares, for 6=10.0.
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TABLE III. Total excess Helmholtz free energy in various
schemes. HNC refers to those obtained through the present
HNC method with the finite-temperature random-phase ap-
proximation (RPA) screening function; IMTY, by Ichimaru, Mi-
take, Tanaka, and Yan (Ref. 20); RPA, based upon the RPA
scheme.

—BF*/N
6 r HNC IMTY RPA
0.1 0.1 0.0652 0.0648 0.0658
0.3 0.235 0.234 0.245
0.5 0.432 0.429 0.461
1.0 0.984 0.982 1.117
1.0 0.1 0.0574 0.0569 0.0576
0.3 0.246 0.243 0.253
0.5 0.483 0.478 0.509
1.0 1.199 1.182 1.321
10.0 0.1 0.0511 0.0506 0.0515
0.3 0.250 0.245 0.259
0.5 0.519 0.508 0.543
1.0 1.387 1.305 1.486

is given by adding the excess contribution F;* of the uni-
form electron gas to F., Eq. (30). Recently, fitting for-
mulas for the RPA (exchange and ring) contributions to
F** have been obtained by Perrot and Dharma-wardana,?!
and analytic formulas parametrizing the free energies in
the Singwi-Tosi-Land-Sj6lander approximation have been
derived by Tanaka, Mitake, and Ichimaru.?> To be con-
sistent with the use of the RPA screening function here,
we adopt Perrot and Dharma-wardana’s formulas for F;*.
It is remarkable that magnitudes of F;* are almost as
large as those of Fg in the parameter region of Table IIL
From Table III, we see the present results are in better
agreement with those of IMTY than with the RPA re-
sults. We may thus conclude that the adiabatic approxi-
mation for the electrons works fairly well even in the
range of 6> 1, for the calculations of the thermodynamic
quantities; the slight discrepancies observed may in part
be ascribed to the local-field effects of the electrons in-
cluded in the IMTY’s scheme.

One can examine the consistency between the thermo-
dynamic functions in this partially degenerate electron
case in the same way as in the completely degenerate elec-
tron case; the pertinent thermodynamic relation is now

BF BF,

sc ¢ d§ BUs
N (rsye)"‘T(rs)GO):— L

% 6 N

(ry,0) ,

(33)

TABLE 1V. Excess thermodynamic functions calculated with
the finite-temperature RPA screening function for r,=1.

6 —BU,./N —BF/N
1.0 0.3880 0.3091
20 0.1687 0.1255
3.0 0.1000 0.07214
4.0 0.06808 0.04823
5.0 0.05017 0.03514
6.0 0.03893 0.02706
7.0 0.03135 0.02166
8.0 0.02594 0.01784
9.0 0.02193 0.01503
10.0 0.01885 0.01289

where the pair of r; and 0 is chosen as independent vari-
able for convenience of the numerical computations, in-
stead of the pair of I" and r; in Eq. (32). As an example,
we have tabulated U and F in Table IV, as a function
of 6 at a fixed value of r,=1. These numerical results
again ensure the thermodynamic consistency in the
present scheme.

V1. CONCLUDING REMARKS

We have derived the free-energy formulas for the
electron-screened OCP in the HNC approximation. The
formulas, expressed in terms of the correlation functions,
enable one to avoid the more cumbersome and less accu-
rate calculations involving the thermodynamic integra-
tions. Accuracy and thermodynamic consistency of the
proposed formulas have been examined and ascertained
through explicit comparison with the results of other in-
dependent calculations which take account of the screen-
ing of interionic potentials by electrons at zero tempera-
ture with local-field corrections or at a finite temperature
without local-field corrections.

Although we have presented the theory in terms of the
screened OCP for simplicity, the scheme developed here is
equally applicable to the plasmas with multi-ionic species.
The simplicity and accuracy achieved in the present
scheme may be valuable in the analyses of the phase prop-
erties in such multicomponent plasmas; a reliable treat-
ment of such a problem would call for extremely accurate
evaluations of the free energies. In a subsequent paper,'’
we shall consider one of such problems.
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APPENDIX: DERIVATIVES OF €(q,0)

According to the expression (11) for €(q,0), the derivatives of €(g,0) appearing in Egs. (16), (17), (29), and (31) are cal-

culated explicitly as
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[" or, €(Q,0) |, &gq,0) |€lg,0) Ie(q,O) ‘ " ar, ¢ L
g0 1 __1 S N
30 €Q,0) |, &lq,0) €(g,0) m[&q,0)1%Q?
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where the function €lq,0) is defined as
€(q,0)=1—v(g)Xo(¢,0)[1—-G(q)] . (A4)
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