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A complete period-doubling sequence in four-dimensional symplectic maps is determined by fol-

lowing a special bifurcation pass in the parameter plane. Stability diagrams for lower periods in the
parameter plane are shown. %ithin numerical accuracy, there exist certain relations between the
scaling exponents of the period-doubling sequence.

I. INTRODUCTION

The method of the Poincari "surface of sections" is
very informative in the study of dynamical systems. In a
Hamiltonian system with n degrees of freedom, the Poin-
cari section defines a 2(n —1)-dimensional symplectic
map. Period doubling in Hamiltonian systems can then
be profitably studied via these Poincare maps.

Extensive studies of period doubhng in one-dimensional
(1D) maps have been made. However, period doubling in
higher dimensions is relatively poorly understood. For
dissipative systems described by volunM-contracting
maps, it has been shown thatthe ,universal behavior
reduces to that of one dimension. However, for conserva-
tive systems with two degrees of freedom such as those
described by two-dimensional (2D) area-preserving maps,
the universal ratios have been found to be distinctly dif-
ferent. ' Not much is known about period doubling in
conservative systems for d &3. The following question
has attracted a great deal of interest in recent years.
Do maps corresponchng to Hamiltonian systems with
three or more degrees of freedom exhibit an infinite se-
quence of period-doubhng bifurcations'? And, if so, do
they introduce new universality classes~

In this paper, we have studied period doubling in four-
dimensional (4D) symplectic maps which model Hamil-
tonian systems with three degrees of freedom. In Sec. II,
a stability analysis of period doubling in four dimensions
is given. A detailed account of how a complete period-
doubling sequence was located is given in Sec. III. The
application of the scaling-matrix method to compute the
scaling factors is described in Sec. IV. Finally, a sum-
mary is given in Sec. V.

and the characteristic equation is

A,
'—t, A,'+t, i,'—t, A, +1=0,

where

t) ——TrL =X i+1/X i+f2+ I/A2,

t2 ——TrL i2
——2+ (A i+ 1/A i )(Ag+ 1/Ap) .

Here

TrL ip ——g (L;;LJJ Ltj Lqt )—

(2a)

k i
——A, i+ 1/A, ),

k, =k,,+1/A,

Then,

tl ——k)+k2,
tp ——2+k]k2 .

The solutions of the above equations are, respectively,

k, ,= —,[t, +(t, —4t, +8)'"],

(3a)

(3b)

(4a)

(4b)

(5)

(6)

'2
' = —,

'
[k2+ (k 2

—4)] .
2

is the other invariant of the matrix besides TrL. To sim-
plify notations, let

II. STABILITY ANALYSIS

A. Eigenvalues of symplectic maps

The eigenvalues of the Jacobian matrix of a linearized
symplectic map I. come in pairs. For a 40 symplectic
map, the eigenvalues are of the form A&, 1/Ai, A2, 1/kz,

B. Stability regions

The stability of a fixed point at which linearization is
performed is determined by the eigenvalues of the Jacobi-
an matrix. From Eqs. (5)—(7), the eigenvalues depend on
three discriminants. Zero discriminants are given when
one of the following conditions is satisfied:
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FIG. 3. Bifurcation point for 20 area-preserving maps.

FIG. 1. Stable region for 40 symplectic maps. The shaded

region is stable. The period-doubling bifurcation line, tangent
bifurcation line, and Krein crunch curve are represented, respec-

tively, by solid, dashed, and dotted curves.

t2= 4 f )+2,
tp=+2t~ —2 .

(8)

These three curves bound a stable region, the shaded re-
gion in Fig. 1. Period-doubling bifurcations occur when
the corresponding points in the plane pass the period-
doubling bifurcations line segment AC. The line BC is
the tangent bifurcation line, and the parabola BC is the
Krein crunch curve. The three vertices will be called the
A, 8, and Cpoint.

III. COMPLETE PERIOD-DOUBLING SEQUENCE

TrL = —1 (10)

is the bifurcation point on the TrL axis, as shown in Fig.
2.

In 2D area-preserving maps, TrL is the only changeable
invariant of the linearized map L because the other in-
variant detL —= 1. Bifurcation occurs when the eigen-

BIFURCATION KNNT

w—STABLE REGlON

A. Bifurcation point

Let us first review the bifurcation conditions for one-
and two-dimensional maps. In 10 dissipative maps
x;+&——f, (x;), the bifurcation from period-2" to period-
2"+' occurs when the linearized map L„a 1)& 1 matrix, is
—1. That is,

values A, and I/A, reach —1, which requires TrL = —2.
The bifurcation point on the TrL axis is also a point, as
shown in Fig. 3.

Now we turn to 40 symplectic maps. As shown in Fig.
1, a period-doubling bifurcation occurs when one crosses
the line segment AC, where a pair of eigenvalues (say, A,

&

and I/A, i) reach —1. There is an infinite number of pos-
sible bifurcation points: All points on the line segment
could be bifurcation points.

Period doubling produces a pattern that promises the

property of self-similarity, i.e., the pattern generated by
applying the map 2" times contains parts which are simi-
lar to one another and also to the pattern generated by ap-
plying the map 2" ' times. This self-similarity requires
that the eigenvalues of the linearized map L (and its in-
variants, t, and i2) for the nth bifurcation should be the
same as that for all the orders of period-doubling bifurca-
tions. One should then study all orders of period-
doubling bifurcations at the same bifurcation point in the
ti t2-plane. For instance, if one chooses a point on the line
AC as a bifurcation point for the nth period-doubling bi-
furcation, then one should use the same point as the bifur-
cation point for all higher orders of period-doubling bifur-
cations.

Any point on the period-doubling bifurcation line AC
(Fig. 1) could be the bifurcation point. The bifurcation
point corresponds to an eigenvalue configuration
(A, i, 1/A, i,A2, 1/Aq) =(—1,—l,e', e ' ). There are three
special values of 8, 8=0,2ir/3, ir. For the first two 8's the
second pair of eigenvalues interchange when the period
doubles. In this sense they give the "best" self-similarity.
For 8=@, bifurcation occurs when (A, i, 1/A, , ) =( —1, —1)
and (A,2, 1/A, 2) =( —1,—1). It is the same as how the two
independent 2D area-preserving maps behave.

In this paper we choose the C point (8=0, Fig. 1) as
the bifurcation point; that is,

(&i, t2) =(0, —2), (11)

corresponding to the eigenvalues —1,—1,1, 1. These
eigenvalues become + 1, + 1, + 1, + 1 when the period
doubles, see Fig. 4.

B. Two-parameter search

Most of the 1D dissipative maps and 2D area-
preserving maps studied previously belong to one-
parameter family of maps. However, for 40 symplectic
maps, we have to introduce two parameters to locate a
complete period-doubling sequence. The rationale is as
follows.

Consider a 4D symplectic map

FIG. 2. Bifurcation point for ID maps. T: x T x, (12)
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FKjr. 4. Eigenvalue behavior for the 4D symplectic map. The a and b are parameters of the map.

where a is a parameter vector whose dimension d is yet
unknown, and x is a 4-vector. Let xo"' denote a fixed
point of period 2", i.e.,

only if

df.,b dg. ,b

Bz Bx
(18)

(n) T(2") (n)
e (13)

From previous discussions, the nth-order bifurcation
occurs when Eq. (11) is satisfied, where t, and t2 are
functions of a and xo"'.

Now we have six equations [four in Eq. (13) and two in

Eq. (11)] for (4+d) unknowns (four for xo"' and d for a).
It is obvious that one has to choose d =2, i.e., one has to
consider a two-parameter family of 4D symplectic maps
to search for a complete period-doubling sequence.

C. Henon-like 4D symplectic map

To make the map symplectic, one can choose

f, b(x,z) = 1 —ah (x) b(x +—z),

g, b(x,z) =1—ah (z) b(x —z)—,
(19)

where h (x)=x is nonlinear.
One may generalize the discussion'0 about the factori-

zation into involutions, the dominant symmetry curves of
the 2D Henon map to that of the 4D Henon-like symplec-
tic map. The map (14), or its equivalent (17), can be fac-
torized as a product of two involutions Ii and I2,

To Yl X (14)

where X and Y are 2-vectors,

Now we start to study the period-doubling bifurcation
behavior for a Henon-like 4D symplectic map:

X' = —F+F, b(X},

T =IpI ),
X'=Y
F=X,
X' = —X+F(Y)
F=Y.

(20)

(21)

(22)

X=
X

Z
There are two symmetry surfaces:

2I'=F, b(X) (23)
and F, b is a nonlinear transformation,

f, b(x,z)
X~F, b(X)=

( )g~ b XsZ
Y=X . (24)

~here a and b are parameters.
The map (14), in vector-matrix form, can be written ex-

plicitly,

x' =—y +f, b(x,z),
z' = t +g, b(x,z)—,

T: =X
t =Z.

(17)

If f, b(x,z) is a function of x, and g, b(x,z) a function of
z only, then one comes back to the 20 Henon map.

It is easy to check that the map (17) is symplectic if and

D. Stable regions in parameter plane

To exhibit more a explicit picture of period doubling,
we transform the stability diagrams from the trace plane
(titz plane„Fig. 1} to the parameter plane (ab plane, Fig.
5).

The period-1 stable regions in the parameter plane are
labeled by 1& and 12 in Fig. 5. They have a common
Krein crunch line b =0. The point 'Ai [(a,b}=(3,0)] is
the period-1 image of the 3 point [(t&,t2) = ( —4,6}). (Im-
ages of the A point are labeled by A, in Fig. 5, where N
is the period, and i = 1,2, . . . . Images of the C point are
labeled by C;). The point 'Ci [(a„b)=(—1,2)] is the
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also. Figure 5 shows that the stable regions 2i and 2z are
born when passing the period-doubling bifurcation curve
C3 'A&, the regions 23 and 2& are born when passing

through the period-doubling bifurcation curve C4 'A i, re-

gion 25 through the curve CiC', and region 26 through
the curve C4C".

The correspondence of the stable regions to the period-
doubling bifurcation curves restricts where the successive
bifurcation can occur: if the first-order bifurcation occurs
at a point on the period-doubling bifurcation curve
C3 A i for instance, then the second-order bifurcation

would occur at a point on either curve C& 2A
i or 2C2 iA i.

It is also because we are interested only in the self-similar
period doubling.

Period-4 (or higher) stable regions are much more com-
plicated. The stable regions for successively higher
periods should have a similar pattern as those for lower

periods.

FIG. 5. Stable regions for periods 1 and 2 in the parameter
plane. Stable regions are labeled by ¹,where N is the period
and i =1, 2, . . . . The images of the A and the C points are la-
beled by A& and C&, respectively. The period-doubling bifur-
cation curves, tangent bifurcation curves, and the Krein crunch
curves are, respectively, represented by solid, dashed, and dotted
curves.

period-1 ima e of the C point. But the points
(a,b) =(0,+ 2) are not in the period-1 stable region since
the coordinates of the period-1 orbits tend to infinites
when (a,b)~(0, +v 2).

The period-2 stable regions are labeled by 2;,
i =1, 2, . . . , 6 in Fig. 5. Some of them overlap. As an
example of how we locate the stable regions, the period-
doubling bifurcation curve Ci Ai is determined by gra-
dually varying the parameter from point 2C, while choos-
ing such a periodic orbit that the orbit varies gradually

E. Bifurcation pass

Consider the C point as the bifurcation point. It be-
comes the 8 point (see Fig. 1) when the period doubles.
We may vary the parameters in such a way that t i and t2
vary along the tangent bifurcation curve onto the C point.
(This is a reasonable, though not unique way. ) When we
reach the C point the period doubles again, and so on. A
pass will be finally formed in the parameter plane. We
call this special bifurcation pass the C pass.

There are a huge number of C passes. Since the stable
regions for higher periods are very complex, not every C
pass will give rise to a complete period-doubling sequence
in general. A successful C pass, which does give rise to a
complete period-doubling sequence, will be described in
the next subsection.

F. A complete period-doubling sequence

As seen from Fig. 5 the period-1 image of the C point,
'Ci, is isolated from the stable region. Hence, the first
period-doubling bifurcation could not occur at the point

TABLE I. Convergence of the critical values of the parameters a and b for the four-dimensional
Henon-hke symplectic map (17}with the nonlinear term h (x}=x~.

Period 2"

2
3

5
6
7

9
10
11
12
13
14
15
16

3.154929 859 908 943
3.310 106308 833480
3.302 711 501 079 377
3.303 272 425 207033
3.303252 894478 887
3.303 256 133362 466
3.303 256 140697 924
3.303 256 165 659491
3.303 256 166921683
3.303 256 167 172 515
3.303 256 167 194240
3.303 256 167 197 198
3.303 256 167 197506
3.303256167 197543
3.303 256 167 197548

0.286068 854 598 499 3
0.244 813629 780 800 7
0.249 186673 247 677 3
0.249 158055 154 258 2
0.249 185 866 1308136
0.249 187022 559 878 9
0.249 187290 167 154 2
0.249 187 311907 233 6
0.249 187 315 307 924 1

0.249 187 315 307 924 1

0.249 187 315346 598 6
0.249 187 315 350 860 1

0.249 187 315 351 360 3
0.249 187 315351 416 8
0.249 187 315 351 423 4
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TABLE II. Convergence of the orbital elements in the period-doubling sequence for the four-
dimensional Henon-like symplectic map (17) vrith the nonlinear term h (x)=x .

Period 2"

ZQ

3

5
6
7
8
9

10
11
12
13
14
15
16

—0.013348468196
0.045 304 934297
0.034 817 130742
0.037 620 505 763
0.036954 792 969
0.037124448 841
0.037082 664 342
0.037093 115639
0.037 090 520432
0.037091 166996
0.037091006 159
0.037091 046 197
0.037091 036233
0.037091 038 713
0.037091 038 096

0.109592 718271
0.077 726 692 247
0.084 811 195923
0.083 700 731 234
0.083 984 618 545
0.083 918315010
0.083 935 119540
0.083 930986927
0.083 932020 270
0.083 931 763 716
0.083 931 827 633
0.083 931 811734
0.083 931 815 692
0.083 931 814707
0.083 931 814952

(a,b) =(3.154,0.2864) . (25)

Then, doubling the period and following the period-8 im-
age of the tangent bifurcations line BC, we reach the
period-8 image of the C point,

(a,b) =(3.310,0.2448),

and so on.

(26)

'Ci. However, since we are interested only in the asymp-
totic behavior of period-doubling, asymptotic self-similar
period doubling can start at any period.

In order to follow the C pass described in the last sub-
section we first locate the period-4 image of the C point at

Continuing to search for higher orders of bifurcation in
the same way, we have succeeded in finding a. period-
doubling bifurcation sequence up to period 2' . We be-
lieve that bifurcations can be found even for periods
higher than 2' . In this sense, the period-doubling se-
quence we found in the 4D map is an infinite one. The
bifurcation values of parameters are listed in Table I. The
bifurcation values of orbital elements are listed in Table
II.

The stability in the neighborhood of the C pass fol-
lowed is shown in Fig. 6 for periods 16, 32, and 64. There
are two period-32 stable regions marked as circled 32's be-
tween which we have Krein crunch. The period-16 stable
region is connected to the upper period-32 region only at
one point, the point marked as 4 (the period-16 image of
the C point). This is typical for all higher periods: The
stable regions for successive periods in the neighborhood
of the C pass are connected only at one point, the C point.

0.24S1—

IV. SCALING FACTORS

0.24N—

0.2483
3.3025 3.3040

Consider a period-doubling bifurcation sequence for
one (a, say) of the parameters and let Ia„j= Iao, ai,
az, . . . j, where a„ is the critical value of parameter a at
which the (n+1)t hperiod-doubling bifurcation from
period 2" to 2"+ occurs.

One then tests whether or not the sequence la„j con-
verges geometrically vnth a rate

5= lim 5„,

8n (an —1 a —2)~(an a —1) .

FIG. 6. Stability in the neighborhood of the C pass. Circled
numbers indicate periods. Note that there are two period-32
stable regions indicated by circled 32's. The dots denote period-
doubhng bifurcation points, and the number beside them indi-
cates the order of bifurcation.

If it does, then one says the sequence has a scaling
behavior.

For one of the two parameters in 4D symplectic maps,
5„as determined by Eq. (27) converges very slowly to a
value between 8 and 9. It nevertheless encourages us to
look for a "better" scaling if any.
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+n —1 Cn +n (28)

and then test whether or not C„converges to a constant
matrix C. If it does, then one can say that the two scalar
sequences together have scaling behavior.

8. Scaling matrix of parameters

Using this scaling-matrix method, we consider the two
parameters a and b in the 4D maps as components of a
vector, and then construct a parameter-difference vector
sequence

( v„ I = I (da„,bb„)I, (29)

where ba„=a„—a„ i, b,b„=b„b„ i. I—t is suggested
that

A. Scaling-matrix method

Guckenheimer, Hu, and Rudnick" developed a general
method of testing for scaling. To introduce this method,
consider two scalar sequences I u„j and tv„ I, whose scal-
ings are to be tested. Instead of testing for scaling of the
t~o sequences separately, they suggest to test a vector se-

quence t v„ I
= I(u„,v„)I. They then define a scaling ma-

trix C„by

5i„~5&——8.7210972 as n~00

and the limit of the other eigenvalue is

5q„~5&——15.0786 as n~00 . (34b)

The existence of two convergence rates for the parameter
implies that, in the renormalization-group scheme, the
fixed-point function has two relevant unstable directions
under the period-doubling operator with the eigenvalues

5i and 52. From Eq. (30), one can easily obtain

v„=(Tr5„)v„+ i
—(det5„)v„+2

C. Invariants of the scabng matrix

Independent invariants of the 2X2 matrix 5 are its
determinant and trace (or its two eigenvalues). The diago-
nalized matrix of the nth scaling matrix 5„ is of the forin

5i„0 5, 0

(} 5
~

() 5 as 1l~oo (33)
2n 2

where 5i„and 52„are the eigenvalues of the nth scaling
matrix. It is found that the limit of one eigenvalue is just
the parameter convergence rate for 2D area-preserving
maps (see Table III},

vn —i=5nvn ~ (30)
(5ln +52' )vn+1 (5ln52n )vn+2 ~ (35)

where 5„ is a 2 X2 matrix, or exphcitly,

—i 5l 1 512

~bn
(31)

A numerical calculation using the data of the critical
values of the parameters in Table I shows that the scaling
matrix converges very fast,

5u —10.49 7.126

5gi 522 12.37 4. 128
I J

(32)

The good convergence indicates the existence of scaling
for the vector sequence.

That is, the element of the vector sequence depends not
only on the previous element, but also on the one before
that.

The values of 5, and 5z in Eqs. (34a) and (34b) satisfy
52 ——2aiPi/5i within the numerical accuracy, where

a& ———4.018076 and Pi ——16.3638 are the orbital scaling
factors in 2D area-preserving maps. We have no clue as
to why there exists such relations.

D. Taro relevant directions

The two parameter convergence rates in Eqs. (34a) and
(34b} are those along the two relevant directions (the
Feigenbaum critical lines) in the parameter plane. Let
these two lines be in the form, for n large,

TABLE III. Period-doubhng bifurcation rates 5~ and 52, and orbital scaling factors a~ and a2, P~, and P2 along and across the dom-
inant symmetry surface, respectively, for the four-dimensional Henon-like symplectic map (17) with the nonlinear term h (x)=x .

Period 2"

al

5
6
7
8
9

10
11
12
13
14
15
16

9.3949690
8.847 625 6
8.723 543 0
8.722 287 7
8.721 1000
8.721 1097
8.721 096 6
8.721 097 2
8.721 097 2
8.721 0972
8.721 097 2
8.721 097 2

—17.738 353
—16.842 358
—15.303 906
—15.049 664
—15.092 972
—15.075 200
—15.079 738
—15.078 419
—15.078 773
—15.078 672
—15.078 641
—15.078 659

—4.727 903 416
—4.030998 823
—4.017347 408
—4.018263 781
—4.018066 838
—4.018079 299
—4.018076 571
—4.018076 740
—4.018076 703
—4.018076 705
—4.018076 704
—4.018076 704

—19.326037
16.965 790
15.955 490
16.183 370
16.135221
16.148 114
16.143 809
16.145 397
16.144 747
16.145 025
16.144 902
16.144957

6.206 889
13.169810
15.579 237
15.876 244
16.214081
16.261 098
16.314274
16.335 769
16.349 052
16.355 799
16.359 544
16.361 541

6.206 889 8
13.1698109

—8.743 703 7
—7.693 843 1

—7.539 500 3
—7.545 727
—7.538 013 1

—7.539 838 0
—7.539 211 2
—7.539 3900
—7.539 336 8
—7.539 352 0
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a„=rb„+c, (36)
=0.3'

Aan =rhb„.
From (31) we know that, for n large,

«n =5»~an+i+5iz~b. + i

b, b„=5z,«„+,522kb„+, .

By Eq. (37) they can be written as

b,a„=(5„+5,2/r)ha„+ i,
b, b„=(52ir+5z2)hb„+, .

The quotient of these two equations gives

(37)

(38a)

(38b)

(39a)

(39b)

F. Scaling factors along the dominant symmetry surface

(46)

Using the data in Table II, we find that u„converges
quite well as n tends to infinity.

Using the scaling-matrix method, we define a 2X2
scaling matrix a„on the dominant symmetry plane for a
period-2" orbit

(n —1) (n —1) (n) (n)
Xp —X2„2 Xp —X2„

(n —1) (n —1)
~P ~2n —2

5zir +(5&2—5»)r —5iz=0.2

Its solutions are

r1,2 I 51l 522+[(5u —5ii} 1 +45i25zl j
1 2 2

(40)

(41)

&12

O'21 &22

—3.840 7.940
0.4476 15.96

(47)

Using the data for 5,J's given in Eq. (32), we have

0.3711
(42)

One eigenvalue (ai, say) of the scaling matrix a is found
to be the same as the orbital scaling factor along the sym-
metry line in 2D area-preserving maps, and the other
eigenvalue is its square,

Substituting these values into Eqs. (39a) and (39b) gives

Cii+Ciz 8.721 for r =ri,
r 15.07 for r =r2 ',

a/5 „ai+—— (43a)

C~i+Cz2 8.721 for r =r, ,
(43b)—15.07 for r =r2 .

l

That is, along the lines described by Eq. (36) with the
value of r given by Eq. (42), the eigenvalues of the
renormalization-group operator are 5i and 52 respectively.

d, b„/b, b„~ i
——

V

X
—1'+ —,

' F(X)

converts the dominant symmetry surface (23) to a plane
V =0.

In the following, we will still use for convenience the
notation (X,F)=(x,z,y, t), instead of ( U, V), to express the
new coordinates. In this notation the dominant symmetry
plane is

E. Coordinate transformation in search of the orbital scaling

To study the orbital scaling, let us recall that there are
two scaling factors in 2D area-preserving maps, i.e., one
along and one across the dominant symmetry line. A
reasonable generalization to 4D maps is then that there
are two sets of scaling factors: One set along, and the oth-
er across the dominant symmetry surface.

In general, the dominant symmetry surface of a 4D
symplectic map has a curvature different from zero. It is
obvious that it vali be more convenient to study the orbi-
tal scaling if the dominant symmetry surface is a plane.
A coordinate transformation for the 4D Henon-like map

o,'1 ———4.018076 704,

a2=16.1449=a2, .

(48a)

(48b}

(n —1)
$2n-3

(n —1)
f2 :3

(n)
$2n —2

=p» (n)
2n 2

(49)

A numerical calculation shows that p„converges quite
well to

pi i pi2p-p= p„p„=
13.94 —6.082

—8.537 —5. 120

(50)

One eigenvalue of the scaling matrix p is the same as the
orbital scaling factor across the symmetry line in 2D
area-preserving maps, and the other is, within numerical
accuracy, half of 52 (see Table III).

Pi ——16.36, (51a}

52
Pp= —7.5393=—. (51b)

2
%e have also tested other Henon-like symplectic maps

(17}with

u'
h(u)= ' .

sinu
(52)

G. Orbital scaling factors across the dominant

symmetry surface

Similar to what has been done for the orbital scaling
factor along the symmetry surface, we define an orbital
scaling matrix p„on the plane perpendicular to the sym-
metry surface for the orbit of period 2",
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and obtained the same 5's, a' s, and P's as that for the
quadratic function. Therefore, universality seems to be
well obeyed.

We have succeeded in finding a complete period-
doubling sequence in 40 symplectic maps. There exist
two universal bifurcation rates 5& and 52, which imply
that the fixed-point function has two relevant eigenvalues
under the renormalization transformation. Within nu-

merical precision, we also found 52 ——2aiP, /5, , az ——ai,
and P2

———,'52. The relation ai ——at is similar to the two-

dimensional cases where a rescaling emerges due to the
curvature of the symmetry line. However, we have no
clue as to why 52 ——Za&Pi/5& and P2 ——25'. Since there
exist such relations among the exponents, there looms the
possibility that the four-dimensional symplectic map we
studied here is a degenerate case of two-dimensional
1TlaPs.

It would be very desirable to understand the universali-

ty of period-doubling in four-dimensional symplectic
maps by studying functional renormalization-group equa-
tions. This study would shed more light on such new
features as the existence of a new unstable direction, the
commonahty of exponents between two and four dimen-
sions, and the relations among the exponents.

ACKNOWLEDGMENTS

Two of us (J.M.M. and LS.) would like to thank R.S.
Mackay, R. Helleman, and K. Kaneko for their com-
ments and useful discussions. One of us (J.M.) is grateful
to Center for Nonlinear Studies (CNLS) at Los Alamos
and Center for Studies of Nonlinear Dynamics (CSND) at
La Jolla for their hospitality. This work was supported in

part by the U.S. Department of Energy under Contract
No. DE-AC02-84ER40182 and the University of Houston
Advanced Research Program. The center for Studies of
Nonlinear Dynamics is affiliated with the University of
California, San Diego.

'Permanent address: Bartol Research Foundation, University of
Delaware„Newark, l3E 19711.

'J. M, Greene, R. S. Mackay, F. Vivaldi, and M. J. Feigenbaum,
Physica 3D, 468 (1981).

T. C. Bountis, Physica 3D, 577 (1981).
3T. Bountis and R. H. G. Helleman, J. Math. Phys. 22, 1867

(1981).
4P. Collet, J.-P. Eckmann, and H. Koch, Phyisca 3D, 457

(1981).
'

5R. Broucke, American Institute of Aeronautics 8r. Astronautics
J. 7, 6 {1969).

R. S. MacKay, Ph.D. dissertation, Princeton University, 1982.
7I. Satija and B.Hu (unpublished).
T. Janssen and J. A. Tjon, J. Phys. A 16, 673 (1983); 16, 697

(1983).
9J. M. Mao, I. Satija, and B. Hu, Phys. Rev. A 32, 1927 (1985).
~OR. DeVogelaere, Technical Report 62-2, Department of

Mathematics, University of California, Berkeley, 1962 (un-

published); Theory of ¹nlinear Oscillations, edited by S.
Lefschetz (1958), Vol. IV, p. 53.
J. Guckenheimer, B.Hu, and J. Rudnick (unpublished).


