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Consider an infinite thermodynamic system A, an open subsystem A~, with fixed volume V, of
A, and an open subsystem Ay, with fixed volume V', of Ay. Evidence is presented to support the
following thermodynamic Quctuation rule: At any time, the probability of finding the thermo-

dynamic state of Ay in some range, given the thermodynamic state of Ay, is independent of the
thermodynamic state of 3, even if the volume Vis less than the correlation volume of A. This rule

was confirmed by Monte Carlo simulation of the two-dimensional ferromagnetic Ising model. Both
thermodynamic properties and the local correlation function were examined. Another rule, which

states that, for a given state of A~, the fluctuation probability distribution for the thermodynamic
state of Ay depends on the volumes only as ht =(V') ' —V ' was also tested. It works well at
volumes larger than the correlation volume, but was shown to break down at volumes less than the
correlation volume. In addition, an easily justified rule stating that the average value of a density of
a globally conserved additive quantity of a subsystem equals that of the infinite system was tested
and found to work mell. These rules are part of an effort to extend thermodynamic fluctuation

theory to volumes less than the correlation volume.

I. INTRODUCTION

Thermodynamics has proved most effective in address-
ing a wide range of physical problems. Despite this gen-
erality, however, thermodynamics has not seen much ap-
plication to subsystems of large systems near critical
points. In this paper, we shall present tests of a set of
general thermodynamic rules which attempt to extend
"equilibrium thermodynamics, " as presented by Tisza and
Callen, ' to subsystems of infinite systems near the criti-
cal point. Our primary concern is with what Callen calls
the second postulate of equilibrium thermodynamics,
which deals with systems in contact. According to Lewis,
this statement naturally involves rules of thermodynamic
fluctuations.

The rules of thermodynamic fluctuations of interest
here were set down earlier. Our extension of thermo-
dynamics is based on a structure of "fluctuations inside
fluctuations inside fluctuations. . . ,

" an idea discussed by
Kadanoff, though not in the context of thermodynamics.
Let A be an infinite d-dimensional system in thermo-
dynamic equilibrium and with correlation volume g .
Consider an open subsystem Ar, with fixed volume V, of
A and an open subsystem Av, with fixed volume V', of
Ar. Because of fluctuations, Av and Ar are at some
time in particular thermodynamic states with intensive
parameters different from those of A. The most funda-
mental postulate in the present research is that at any
time the probability of finding the thermodynamic state
of A y in so@re range, given the thermodynamic state of
Ai, is independent of the thermodynamic state of the in-
finite system A. In particular, this should hold even if V
is less than P'. Therefore, the thermodynamic state of a
subsystem at some time has a significance independent of
the infinite system in iohich it is imbedded, even if its
volume is less than the correlation volume of the infinite

system This .Markov rule is powerful since it enables one
to, at least in principle, decompose a problem which near
the critical point involves many scales of length into a set
of problems each involving essentially only one.

A stronger statement of the Markov rule can be made
on the basis of the ensemble of microstates of Ar corre-
sponding to a given thermodynamic state of Ar. Though
the thermodynamic state of A affects the frequency with
which Ar is found in some particular thermodynamic
state, the ensemble of microstates of Ar corresponding to
that thermodynamic state is independent of the state ofA.

In this paper results of direct Monte Carlo tests of the
Markov rule are presented for systems with volumes less
than the correlation volume g . The system simulated is
the two-dimensional Ising model. The Markov rule is ex-
plored through both thermodynamic properties and the
local correlation function; it is found to work very well.
A preliminary report of these Ising-model simulations,
without a test of the Markov rule, was given previously. 6

There has been some discussion about the meaning of
the thermodynamic state in fluctuating systems. The po-
sition in this research is like that of Landau and Lifshitz9
who define states by mechanical parameters, such as ener-

gy, particle number, or magnetization, which can be deter-
mined from microscopic quantities for subsystems at all
volumes If necessary, equations of state derived from the
thermodynamic limit can be used to assign values to other
thermodynamic variables of subsystems.

Throughout this paper, states of systems are specified
only with intensive parameters.

A second rule tested concerns the volume dependence
of thermodynamic fluctuation probability distributions.
It asserts that for a given state of Ai, the probability of
finding the state of Av in some range of states depends
on V and V' only through ht=(V') ' —V '. This
"translational in variance" rule allows thermodynamic
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fluctuation probabilities to be deduced at all volumes

from the large volume limit where the classical theory is

apphcable. In Ref. 6, this rule was shown to work well at
volumes larger than the correlation volume, but here,
where tests at smaller volumes were possible, it is found to
break down at less than the correlation volume because of
boundary effects.

A third rule tested is the statement that the average
value of a density of a globally conserved extensive quan-
tity of a subsystem equals the corresponding density of
the infinite system. This rule is easily justified and is
found to work well. This rule has been stressed in partic-
ular by Dibsi and I.ukics, ' who included it in the funda-
mental postulates in their presentation of the new thlmno-
dynamic fluctuation theory.

Subsystem probability distributions near the critical
point is a problem which was addressed also by Bruce and
co-workers. " These authors feel that such probability
distributions are an important link with the foundations
of the universality hypothesis. A difference with our ap-
proach is that we are attempting to connect these prob-
lems to thermodynamics whereas Bruce et al. , use the
tools of statistical mechanics and renormalization-group
theory. The distributions in this paper can be probed
directly by means of scattering experiments. "

An objective of this research, to connect the properties
of small subsystems to the thermodynamic limit, is the
same as that of finite-scaling theory in critical phenomena
theory. ' A difference is that in finite scaling the subsys-
tem is generally assumed to be nonfluctuating and sur-
rounded by an infinite uniform system. The temperature
of the finite subsystem is assumed to be the same as that
of the infinite reservoir.

Mathematically, the new thermodynamic fluctuation
theory is based on a notion of distance, in the form of a
Riemannian metric, between thermodynamic states. A
thermodynamic metric was formally introduced by Wein-
hold, '1 and applied to thermodynamic fluctuation theory
by myself' ' ' and by Diosi and I.ukacs, 'p and to ther-
modynamics in finite time by Salamon and co-workers. 's

This paper is organized as follows. In So:. H thermo-
dynamic fluctuation theory is summarized. The connec-
tion between "drift" terms in the theory and global con-
servation laws is also discussed. Section HI describes the
Monte Carlo simulation program. Section IV presents the
results of the simulation. The biggest success is the con-
firmation of the Markov assumption. The biggest
remaining problem is that the translational invariance rule
appears not to work at less than correlation volume be-
cause of boundary effects.

II. THERMODYNAMIC FLUCTUATiON THEORY

thermodynamic one. The basis of rule (1}is as follows.
(1) At some time, given a finite subsystem Ar, with

volume V', energy per volume u', and magnetization per
volume rn', all other intensive parameters of Ar shall be
the same as those of an infinite system with the same den-
sities.

There are alternatives to this rule. ' The physical signi-
ficance of rule (1), if any, is unclear; it is not explored in
this paper.

For the second rule, consider an open subsystem A 1 2 of
an open subsystem Ai 1 of a system Ai p. The volumes
Vz, Vl, and Vp of all three systems are fixed in time.
The system Al p is a subsystem of an infinite system A 111

thermodynamic equilibrium. Rule (2} is a Markov as-
sumption about fluctuations.

(2) At some time, the probability of finding Avz in
some range of thermodynamic states, given the thermo-
dynamic state of A&1, is independent of the thermo-
dynamic state of Al p.

At first sight, the Markov assumption seems obvious
since if Al 1 is seParated from any sPin in ArplAri by a
distance greater than the microscopic interaction range
(one lattice site in the Ising model), Al 1 will sample the
state of Ai p/Al 1 only through the intermediate system
Al i. A Markov assumption is certainly justified for the
probability distribution of microscopic states since if the
microscopic state of A 1 1 is given, the microscopic state of
212 is known absolutely, regardless of the state of Al p.
It is by no means evident, however, that it should work
for thermodynamic states where the detailed microscopic
information is averaged out. It is conceivable that the en-
semble of microscopic states of A 1 1 which have a certain
value of ( u i,m 1 ) for a certain state of Ayp varies with the
state of Al p, particularly when the correlation length of
A~p is larger than Vl. If this is the case, the distribution
of thermodynamic states of Al 1 at a given state of A&i
would certainly depend on that of Al p and the Markov
assumption would fail.

One may make two more arguments about the Markov
rule at less than the correlation volume. The first is that
it is implausible since, near the critical point, spins are
correlated over a long distance and the ensemble for a
subsystem cannot be independent of the outside. This is
the reason that the canonical distribution fails at less than
the correlation volume. This argument is unsound since it
ignores the constraint that we look at the state of A&2
only for a given state of Ari. A better argument is that
the Markov rule is plausible since long-range correlations
are associated with long relaxation times and local equili-
brium can be reached faster. This qualitative argument is,
however, not entirely satisfactory since it brings dynamics
into a statement about equilibrium fluctuations. The
theoretical basis for the Markov rule is unclear, and the
rule requires careful testing.

In this section, rules of thermodynamic fluctuation
theory are reviewed. Tile fll'st 1llle, which ls fairly staii-
dard, defines the thermodynamic state of a finite subsys-
tern at some time. For a raagnetic system, such as the
two-dimensional (2D) Ising model, ' regardless of the sub-
system volume, the energy per volume and the magnetiza-
tion per volume have a mechanical meaning as well as a

Denote by

Q2 Q)
P y y dQ2

2 1

A. Classical theory

(2.1)
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the probability of fmding the state of A i z between az and

az+daz given that the state of Ai i is ai. Here, "a"
represents ( Q, nl )=(a,a ). This probablhty deilsity is
given in the classical theory ' ' as

Q2 a]
P V V daz ——Ciexp[Si(az, ai )]daz,

2 1

(2.2)

where Si (a z,a i ) is the entropy of A vi when A vz is in the
state az, and Ct is a normalization constant. The entropy
is in units of Boltzmann's constant. An essential assump-
tion for expressing S~(az,ai) in terms of thermodynamic
quantities is that A i z and its reservoir A &i/A&z are each
homogeneous thermodynamic systems with the only
discontinuity occurring at the interface between them.

Expanding Si(az, ai) to second order about its max-
imum value at az ——ai yields

P

a2 a)
P y V

=
2 ~ lg(a)]'"

only through Ai;
In the Gaussian approximation to the classical theory,

Eq. (2.3), the probability dellslty depends oil V) aild Vz
only as htz. Rule (3) in the new theory states that this
translational invariance holds in all volume regimes.

(3) The probability distribution in (2.5) depends on
volume only as

ht =V —V
—1 —1

This rule allows the fluctuation probability distribution in
any volume regime to be related to the distribution for
large volumes, where it is given by the classical theory. In
Ref. 6, rule (3) was found to work well at volumes larger
than the correlation volume. In the research reported in
this paper, where it was possible to investigate smaller
volumes, it was found that rule (3) breaks down at
volumes less than the correlation volume because of
boundary effects.

It is essential to require internal consistency in the form
of the Chapman-Kolmogorov equation. This is rule (4) in
the theory,

&(exp — g„„(a&}ha& haz
2btz ""

where ha z =a z
—a i, h~z = Vz —Vl

a a a —1 —1

(2.3)
ag ag ] ag ) ag

P y y P y y da( i P——
a; a; 2

V; V;

(2.6)

Ba"Ba" a=u,
{2.4)

B. New thermodynamic Auctuation theory

The new thermodynamic fiuctuation theory 6'0 is
based on the idea of a sequence of open concentric subsys-
teills A pf C AVE) CA ppg i C C Aqi CAqoCA of the
infinite system A. Take the limit m~00 and let the
difference in volume between each adjacent system in the
hierarchy go to zero. The limit to zero volume difference
is a formal one necessary for the path-integral theory in
this section. In reality, the volume difference must always
be large enough to allow fluctuations in thermodynamic
parameters to be regarded as continuous to a good ap-
proximation.

The key assumption in the new thermodynamic fiuctua-
tion theory is the Markov assumption, rule (2} stated
above. Ii states that the probability density

I'
V; V;

(2.5)

for thermodynamic states of Ai; depends on the outside

s =s (a) is the entropy per volume in the thermodynamic
limit, and g (a i )

—=detg(a ) ). Repeated indices are
summed over.

The assumption that the universe can be broken into
two homogeneous systems Aiz and Ai i/Aiz is inade-
quate if Vz is less than the correlation volume of Ai ~

since in this case Ai z sees itself at any time most likely
surrounded by a "droplet" of Ai i whose state deviates
widely from that of Ai i. s This failure of the classical
theory makes it ineffective for fluctuation phenomena
near the critical point.

Given the probability distribution in Eq. (2.5) for small
bt; and all y~ i, the "short-time propagator, " the ther-
modynamic probability distribution can be worked out at
all volumes by repeate'd apphcations of the Chapman-
Kolmogorov equation.

The fifth rule concerns the average energy and magneti-
zation densities of a subsystem of an infinite system.

(5} For a subsystem Ai0 of an infmite system A with
energy and magnetization densities a =(u, rn), the ensem-
ble average

&ao)=a . (2.7)

Rule {5)is easy to justify physically and is consistent with
the simulation results reported here. Let A have periodic
boundary conditions. (In the limit as A becomes an infi-
nite system, the nature of the boundary conditions is ir-
relevant, so long as A is not at the critical point. ) Imagine
A to be composed of a set of N identical open systems
Aqo, Ayo, . . . , A~z. Let X denote either the constant ex-
tensive energy or magnetization of A and Xo the corre-
sponding quantity of Avo. Define ao ——Xo/Vo. It fol-
lows from the additivity of extensive quantities that at
any time

Na=+-' g ao . (2.8)

By spatial translational invariance, imposed by the period-
ic boundary conditions for A, {ao) is independent of i
On taking the ensemble average in Eq. {2.8), it then fol-
lows that (ao) =a.

It is essential in this argument that A be an infinite sys-
tem, to which periodic boundary conditions can be ap-
plied vvithout changing anything, and that X be a globally
conserved, additive quantity. Rule (5) does not hold if A
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is finite, as was demonstrated by the simulation. Also, for
thermodynamic variables which are not densities of glo-
bally conserved additive quantities, such as temperature,
rule (5) need hold only for large Vp where fluctuations are
Gaussian.

Rules (1)—(5) determine the new thermodynamic fluc-
tuation theory. In path-integral notation, with a two-
parameter system,

I'
0 ——g (af)

f '
1l2

fg
X J $ a[a(t)]exp —f W(a, a)dt

(2.9)

where

density coordinates; on transforming coordinates, it
should be transformed as a first rank contravariant tensor.
The justification of Eq. (2.12) does not take into account
boundary conditions of the manifold of thermodynamic
states. Boundary conditions present an interesting prob-
lem, but one which will be deferred to the future.

In the form of the theory discussed in Refs. 4 and S,
rather than forcing rule (5) with drift, the guiding princi-
ple was that all coordinates be equivalent and that state-
ments particular to specific coordinates should not be
made. The covariant drift f" was set to zero. It was
shown that the curvature R (a) can be interpreted as the
correlation volume of an infinite system; this has been
confirmed for several cases. This theory also gives fluc-
tuation probability distributions superior to those of the
conventional theory. '

(2.10)D [a (t)]= lim

(2.11)

ff g'"(a;)da;
Nl ~ ao 'fTT i 0

W(a, a )= ,
' g«„—(a —« f«)(a "—f")+—,' f«.«+,'—~(a),

III. DESCRIPTION OF THE SIMULATION PROGRAM

To test the rules discussed above, Monte Carlo simula-
tions were carried out on the zero-field 2D ferromagnetic
Ising model, with Hamiltonian

(3.1)

(2.12)

tfK"(a)+—0(t&~'), (2.13)

where baf«=af« —a". The covariant drift vector f« is de-
fine by2p

f"=K" (v gg—"—") .1 1

2 vg ga"

As can be shown

(2.14)

(baf"), —= (baf"), =K«(a),f Qgf f f (2.15)

If in density coordinates we take K"=0, which is neces-
sary for rule (5), we get the expression for covariant drift
given in Eq. (2.12). The fact that we should take density
coordinates to be special in the theory is a point which has
been efnphasizcd by 01os1 and t.ukacs. '

The expression for f"has the form in Eq. (2.12) only in

The dot indicates derivative with respect to the "time"
t —1/V tf —1/Vf and r=tf /m. E. (a) is the Riemanni-
an curvature scalar of the manifold of thermodynamic
states with metric g„„,and the semicolon denotes the co-
variant derivative. Equation (2.9) has been set forth by
several authors' as the most general solution to the
Fokker-Planck equation and has been applied to irreversi-
ble thermodynamics.

The covariant drift in Eq. (2.12) is picked to guarantee
that rule (S) holds. To see this, defme the nonvector
quantity

Qf g
(,baf«) = J baf«P 0 daff

and with critical temperature T, =2.269 185 31.. . . The
sum (i,j ) is over nearest neighbors, and cr; = —1 or + 1.
This model will be system A. A square subsystem of A
was simulated with a lattice Ai ir, with number of spins
Vp=NpXNp. During the simulation, the spins of Hip
were considered one at a time and flipped with the
Metropolis probability

1 if bE&0
P(AF. ,&)=

exp( —bE/T) if bE ~ 0, (3.2)

where &8' is the energy change which would result if the
spin were flipped and T is the temperature of A. Periodic
boundary conditions were used for Aqp, if Np is much
larger than the correlation length g(a) of A, Avp behaves
as a subsystem of A. 24

The Metropolis algorithm was implemented using mul-
tispin coding. Random numbers were generated with
Tautsworth's algorithm (R250) which is fast and has an
essentially infinite cycle time. 6'z The simulation pro-
gram was run on Apple Macintosh microcomputers; the
most frequently executed parts were written in Motorola
68000 microprocessor assembly language and the rest in
MacFORTH.

Metropolis Monte Carlo does not simulate dynamics
correctly, a global temperature used to determine local
spin-flip probabilities is an indication of this, but it does
simulate the canonical distribution. This is sufficien
here.

The program allowed three basic analysis modes. The
first analyzed only the state ap of Avp. Since in this
mode the greatest obstacle to good accuracy was slow re-
laxation times, particularly close to the critical point, time
was spent on analysis only after every tenth complete
sweep of Ai p. At a teinperature T=2.35, the program
could update an average of 14000 spins per second. An
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FIG. 1. Standard deviation of the magnetization density of
Ago times No as a function of No for four temperatures. As
Xo gets larger, these curves should reach constant limiting
values related to the magnetic susceptibility through classical
thermodynamic Auctuation theory. The expected limiting
values were computed with series results (Ref. 28) and are
shown by the arrows in the right margin. The results in this fig-
ure helped in the selection of a large enough N p in subsequent
runs; values used at each temperature are shown by vertical ar-
i'Ows.

m =V 'ger; and u = —V '$a;crj. ,
Ay Ay

(3.3)

where the later sum is over nearest neighbors. Each spin
is linked to its nearest neighbors by four bonds. To each
spin was assigned the energy in its left and upper bond;
this rule determined which bonds crossing the boundary
of A v were counted in doing the energy sum.

overnight run could easily swmp and analyze a 40X40
lattice 300000 times. Typically, the first 1000 sweeps in
each run were discarded to allow the system to equilibrate.

Figure 1 (Ref. 2S) shows ((Limp) )'+ as a function of
Np for four temperatures. For large Np, the curves in
Fig. 1 should reach constant values. The increased scatter
for large Np results from the hmited number of times
large lattices could be swept in a reasonable period of
time. The deviation from constant values at small
volumes results from Np approaching the correlation
length g(a) and is an indication that Ai p is too small to
mimic well a subsystem of A. For T=2.31, the curve
was slow to reach a limiting value for large N p because T
was close to the critical temperature. No smaller tem-
perature was examined.

The second analysis mode analyzed the state of a square
subsystem Ai i of Aip after every twentieth sweep of
Avp. Figure 2 shows the standard deviation of the mag-
netization density mi for Vi ——10X10, as a function of
Np. If Np&&g(a), the fluctuation moments of Ai i

should not depend on the size of Ai p. This appears to be
the case in Fig. 2. Limiting values are reached the fastest
for states furthest from the critical point, where the corre-
lation length is the smallest.

For any square subsystem Ai of Ar ir, the magnetiza-
tion per volume m and the energy per volume u were
computed from

FIG. 2. Standard deviation of the magnetization density m
&

as a function of No for a 10X10sublattice Ay~ of Ayo. As No
gets large, these numbers should reach limits. Exact values for
comparison are not known. These results were an aid in select-

ing a large enough Xo in subsequent runs. Values used are
shown in the figure.

Figures 1 and 2 were used to judge how large to take
Np in subsequent runs. From the figures, it is clear that
the fluctuation moments of a sublattice Ai &

reach their
limits faster than those of Ai p. Since the analysis of inte-
rior lattices of Aqp was of interest in this paper, a small
Vp was picked. The vertical arrows in the figures show
the vallles ilsed 111 nlost of the runs.

In the third analysis mode, the state ai of Ai &
was

analyzed after every sweep of A yp. If a i fell into a "win-
dow" centered at ai„——(ui, mi ) and with width Q, de-
fined by

a' —Q((ha' ) )' 2&a' &a' +Q((ha' )2)' (3.4)

the state a2 of a square subsystem Ai 2 at the center of
Ayi was also analyzed. Figure 3(a) shows a schematic of
the systems Ai p, Ai i, and Ai z. The volumes of all three
systems could be varied independently. For given T, a ~,

Av
2

Av
1

Av

Av'
0 (b) Av ~

0

FIG. 3. Schematic sketch of the geometries used for analysis
mode 3. The position of A~~ within A~o was not important be-
cause periodic boundary conditions were used for A ~o. (a) Con-
figuration for analyzing thermodynamic properties. (b) Config-
uration for analyzing the local correlation function. Only odd
values of N~ were used. The central spin of Ayl, which is la-
beled with a black square, is Oo. Spins were numbered from 0 to
( N& —1)/2. By symmetry, all four rows of A && should have the
same correlation function and, so they were analyzed together.
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G (r) = (ooo „)—(oo), (3.5)

where, in this paper, all of the spins were taken to lie
along the same row or column. To analyze the local
correlation function, the configuration shown in Fig. 3(b)
was used. A bin was assigned to each value of r and
values of o„oo were accumulated in the appropriate bin as
a

&
fell into the window.

IV. RESULTS

In this section, the simulation results are presented.
For convenience, we shall call an analysis of the interior
of A i „provided that a i falls in the window, a
"snapshot" and the collection of snapshots taken in the
course of a run for a given window an "album. "

Vi, and Vz, as 0 is made smaller, the fluctuation mo-
ments of aq should reach a limit. As will be shown in
Sec. IV, a hmit is indeed attained.

Analysis of Ai i after every sweep of Avo added con-
siderably to the running time because addressing specific
individual spins is difficult to do efficiently in the multi-

spin axIing algorithm. At T=2.5, mth Vo ——40&40,
V& ——20& 20, and 0=0.04, 6600 spins per second could be
updated in the third analysis mode.

An alternate way of running mode 3 was to analyze the
correlation function Ai i when a, falls into the window.
The correlation function G (r) is defined by

TABLE I. %'indow centers and volumes used for the sets of
albums studied in this paper. In each set of albums, T, Vq, and
Q were varied. The energy density at the critical point is
—1.41421356. . . .

Energy
center Q ~

—1.1074
—1.2000
—1.2000
—1.2000
—1.2660
—1.2660
—1.2660
—1.2660

Magnetization
center ml

0.50
0.25
0.00
0.00
0.00
0.00
0.00
0.00

Volume

VI

20X20
14X14
30X30
20X20
25X25
7X7

13X 13
19X19

0.8

A. Test of the Markov rule with thermodynamic properties

Let us present first an analysis of thermodynamic prop-
erties with mode 3, as shown in Fig. 3(a). Let us examine
the approach to limits, as Q~O, of fluctuation moments
of A q2 for albums with windows centered at a i
=(—1.1074,0.5) and with Vt ——20X20. Call the set of
such albums "albums A." Information about the sets of
albums examined in this paper is presented in Table I.
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FIG. 4. Standard deviation of m2 as a function of 0 for al-
bums A for three values of N2 and three values of T. The long-
est run for albums A was the one with T=2.31 and 0=0.037
which swept a 56X56 2~0 290000 times and included 0.025%
of the sweeps in the window. Vhndows with A=8 resulted in a
snapshot after more than 99.5% of the sweeps. For compar-
ison, the points in this figure with 0=8 were actually computed
with mode 2, which includes all sweeps in the analysis of AI q.

For small Q the curves reach limiting values independent of T,
in accord with the Markov rule. The temperatures used in the
figure, T=2.5, 2.35, and 2.31 have correlation lengths of 6.0,
16.3, and 31.9 lattice sites, respectively, so volumes less than the
correlation volume of A were tested.

10 20 30

N2

FIG. 5. Standard deviation of m2 as a function of X2 for
four sets of albums (see Table I) and three T's in the limit of
small Q. Corresponding points are seen to fall on top of one
another, confirming the Markov rule even at volumes less than
the correlation volume. The solid points are values obtained at
the three T's with the window wide open and all points accepted
for analysis. The temperatures used in the figure, T=2.5, 2.35,
and 2.31, have correlation lengths of 6.0, 16.3, and 31.9 lattice
sites, respectively.
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T=2.35 T=2.31

The temperature T, the volumes V2, and the window
width Q were varied in albums A. For any given window,
all values of V2 were dealt with in a single run.

Figure 4 shows ((b,rnid} )'~ as a function of Q for
three values of T and three values of V2. The tempera-
tures T were picked to give a good spread of correlation
lengths for the infinite system A; T=2.5, 2.35, and 2.31
have correlation lengths of 6.0, 16.3, and 31.9 lattice sites,
respectively. As Q gets smaller, each of the nine curves
in Fig. 4 appears to reach a limiting value. For given a i,
Vi, and V2, the same limit appears to be approached, no
matter what the value of T. This is consistent with the
Markov rule.

For a comprehensive test of the Markov hypothesis,
several values of a& and Vi were tried in the limit of
small Q and the three values of T given above. The
smallest values of Q studied were typically around 0.03.
Results are shown in Fig. 5. Each point shown is an aver-

age over six albums with Q&0.07. Typically, the stan-
dard deviations of these averages enclosed corresponding
points with different T's. These data support the Markov
hypothesis.

First and second fiuctuation moments in the energy u2
also satisfied the Markov rule for small Q. Results are
not shown here since the energy data do not vary as wide-
ly as the magnetization data and hence are not as interest-
ing.

B. Test of the Markov rule with local correlation functions

The Markov rule was also tested using the local correla-
tion function, with the configuration shown in Fig. 3(bl.
Figure 6 shows the approach to a limit for decreasing Q
of the local correlation function for albums E. In each
case, within acceptable uncertainties, the limits seem to be
the same.

It is apparent in Fig. 6 that the correlation between the
central spin of Ai i and the edge spin diminishes as Q gets
smaller. To test this for generality, we made runs with
the same window centers as albums E, but with varying
volume V~. Results are shown in Fig. 7. In each case the
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T=2.5 T=2.35 T"-2.31
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FIG. 6. Local correlation function of albums E as a function
of the window width 0 for three temperatures T. All of the
graphs have the same scales as the one in the lower left. For
each T, though the initial correlation function is quite different,
the same limiting correlation function seems to be reached.
Long computation times were necessary to make this figure, the
longest run in this research was the one with T=2.5 and
A=0.05 which swept a 48)&48 lattice 2~0 720000 times in the
space of about 60 h. The window with 0=10 admitted almost
all of the sweeps for analysis.
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r

FIG. 7. Local correlation function of albums E—H as a
function of Nl for three temperatures T and 0=0.05. All of
the graphs have the same scales as the one in the lower left. A11
the albums have the same window centers. For each X&, the
correlation with the central spin dixninishes as the edge is ap-
proached. Note that these data support the Markov rule.



4323

correlation of the central spin with the edges diminishes
close to the edges. There is a small anticorrelation visible
between center and edge spins. It is unclear whether this
anticorrelation is real or a product of not having 0 small
enough. Note that the data in Fig. 7 also support the
Markov hypothesis.

C. Failure of translation invariance at less than
the correlation volume

-1.15

-1.20 —+—+—+—+—+

2S

T=2.50
Q T=2.35

T=2.31

+ + T

Rule (3) predicts that subsystem fluctuations depend on
volumes only through ht& Vz——' —Vt '. lt was found to
work well at volumes larger than the correlation volume. 6

Figure 8 shows (u2) as a function of Nz for small 0
for albums D. Clearly, (u2) depends on Nz and deviates
from u~~ ———1.200. By rule (5), for large Vt, (uz) must
coincide with u t~ for all V2. Translational invariance
predicts then that this must hold at all volumes. For
comparison, Fig. 8 also shows subsystem average energies
with a wide open window for the temperature T=2.405
which has an average energy —1.200 for system A. The
a~erage energy does not depend on Nt, consistent with
rule (5). These data force us to conclude that translational
invariance does not hold in all volume regimes.

From the deviation of (u2) from u» in Fig. 8, it is
clear that (u2) must depend on where the system Aqq is
placed inside A zt. We associate the breakdown in rule (3)
to a failure of spatial translational invariance due to the
bolltldarles of A vt.

Figure 8 demonstrates again the Markov rule since the
points for albums D with different T's fall on top of one
another„within scatter, for different values of T.

V. CONCLUSION

This research has implications for the foundations of
the new thermodynamic fluctuation theory. Let us sum-
marize the present status of the theory for various volume
regimes.

Volumes larger than the correlation volume are charac-
terized by the translational invariance rule, which states
essentially that fluctuations at any volume level can be
scaled to look like those in the large volume limit where
the classical theory holds. At volumes larger than the
correlation volume, the new theory appears to be a defi-
nite improvement over the classical theory, both formally,
in the sense that it gives a proper covariant treatment of
fluctuations, and in applications to model systems. "' '

At volumes less than the correlation volume, transla-
tional invariance fails because of boundary effects which

20

FIG. 8. Average values of u2 as a function of X2 for albums
D for small values of Q. Each point shown is an average over
six points with A=0.07. A rough error bar in each average is
shown. (u2) deviates from the window central energy u~~,
demonstrating the failure of translational invariance at volumes
near the correlation volume. The + points were taken for u~,
with T=2.405 and coincide with the window center. Note that
the Markov rule is supported.

the present form of the new thermodynamic fluctuation
theory does not yet take into account. In contrast to the
classical theory, however, the new theory offers a struc-
ture for addressing the small volume regime in the form
of fluctuations inside fluctuations inside fluctuations. . . .
It also predicts the volume at which the transition from
the large volume regime to the small volume regime
should take place. This is the Gaussian curvature of the
Riemannian manifold of thermodynamic states, which,
for systems with attractive or ferromagnetic interactions,
appears to yield the correlation volume. '

In either regime, the dominant principle for thermo-
dynamic understanding is the Markov rule, which is sup-
ported at all volumes by the computations reported in this
paper. The Markov rule makes possible an extension of
the present structure to small volumes; however, boundary
effects must be taken into account.
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