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Chaotic motion of a periodically driven particle in an asymmetric potential well
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We study the chaotic motion of a particle in an asymmetric potential well, for which the equation
of motion is x+0.4x+x —px —4x =0.115cos(tot}. For 0&p&0.008, a sphtting into the right
and left attractors occurs due to the symmetry rule. (This rule is fully generalized. ) The left attrac-
tor does not appear for P & 0.008. The to regions of the periods of the dominating right attractor in-

crease when P increases from 0 to 0.006, . . . , 0.008 the increase of the co region of period 3
(~6~12~ ) being anomalously strong. The behavior for 0&P&0.006 can be described with a
cubic map. For 0.008 &P&0.1, a steepening parabola-type return map can be found for the right
attractor consistently with the fact that the calculated motion is similar to the behavior of the one-
dimensional unimodal z =2 maps. The absence of period 3 {~6~12~ ) appears as an abrupt
steepening of the return map.

I. INTRODUCTION

The chaotic motion of a periodically driven classical
particle in an anharmonic potential well (with damping)
has been studied in several recent papers. ' ' Based on
the behavior of this model it has been suggested that
solid-state turbulence occurs in anisotropic solids for
charge-density waves oscillating with respect to the pin-
ning impurity centers, for oscillating ions in superionic
conductors and for oscillating straight dislocation seg-
ments. ' The chaotic motion of a particle in a symmetric
potential well —relevant for the above systems —has been
studied in Refs. 1, 5, and 12. The purpose of the present
paper is to extend these studies by examining the influence
of an added constant driving force (or equivalently the in-
fluence of the asymmetry in the potential well) on the
chaotic motion. Namely, this influence is of some impor-
tance because periodic plus constant driving forces are
often used in actual experiments and/or the potential well
may be directly asymmetric due to the asymmetric envi-
ronment. '6 And, on the other hand, the addition of small
extra driving terms may be expected to cause significant
qualitative changes in chaotic motion. '

the asymmetry constant P are system parameters. The di-
mensionless potential V of the spring force of Eq. (1) is
shown in Fig. 1 for P=O (the symmetric case) and 0.1.
The increase of P raises (lowers) the left (right) barrier of
V [or increases the constant driving force in Eq. (2)].
Only bounded motion between the barriers will be con-
sidered.

The Runge-Kutta-Verner fifth- and sixth-order method
was used in solving Eq. (1). The maximum allowed error
10 within the time step 2m/(60to) was used.

III. RESULTS AND DISCUSSION

Figure 2 shows the calculated amplitude response dia-
grams X(to) for P=O and 0.1 [Xdenotes the values of the
intersections of the attractor(s) with the positive x axis].
The diagrams consist of the main resonance R and the
secondary resonance R' at co= —', . For P=O there are no
secondary resonances at co = —,', 4, . . . because our so1ution
obeys the symmetry (xt + /sr)c=o—x (t).' For decreas-
ing to, R is discontinuous (continuous) for P=O (0.1). R

II. METHODOLOGY

The system to be studied has the dimensionless equa-
tion of motion

x+0 4x+x —px —4x =0.115cos(cot)

that can also be transformed's into the form
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x+0.4x+x —4x = +0.115cos(tot),
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(2)

with a relative error of less than 0.001 in the coefficients
when 0&P&0.1. Equations (1) and (2) are of the general-
ized Duffing type. The damping constant 0.4 and the am-
plitude 0.115 are the same as in Refs. 1, 5, and 12 except
that a slightly larger amplitude 0.1175 is used in Ref. 5.
The angular frequency co of the periodic driving force and
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FIG. 1. Potential 2
xi ——,

' px' —x of the nonlinear spring

force for P=0 (solid line) and P=0.1 (dashed line).
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FIG. 2. Amplitude response diagram for P=O and 0.1 {the
upper and lower one, respectively). X is the value of the inter-
sections of the attractor{s) w'ith the positive r axis. The dashed
lines represent unstable solutions.

and its discontinuity for P=O can be understood with the
Krylov-Bogoliubov thtxiry that gives for the resonance
curve the expression'

co =0 92—3X +(f X —0 1536+0 48X )' (3)

where 0.115 in Eq. (1}has been replaced by f. The curve
has a discontinuity if

X =0.16+[(0.16) —3(1.2) f ]'~

has real solutions, i.e., when f&0.064X3'~2=0. 1109.
The Krylov-Bogoliubov thtxiry predicts quite accurately
the appearance of the discontinuity lying in the range
0.115 &f&0.1175 (our f=0.115 and f=0.1175 of Ref. 5
give discontinuous and continuous curves, respectively).
R ends in a chaotic region (the strong line broadening in
Fig. 2) that cannot be described with the Krylov-
Bogohubov method or other similar methods.

For P=O and for decreasing co the chaotic region is pre-
ceded by a splitting of the one inversion-symmetric attrac-
tor into two mutually inversion-symmetric attractors
(right and left). The splitting is due to the symmetry rule
that forbids inversion-symmetric attractors from having
an even period. ' ' (This rule is fully generalized in the
Appendix. ) Both attractors undergo a period-doubling
cascade ' to chaos where windows saith both even and
odd periods occur. Both chaotic attractors broaden so
that they merge at co =0.5268 to form again one attractor,
the general form of which is inversion symmetric (an inte-
rior crisisz3 z ). After this, due to the symmetry rule, only

windows with odd periods occur and their period dou-
blings are inhibited. The jump occurs when the chaotic
attractor collides with the unstable attractor (Fig. 2, a
boundary crisis ' ).

When P is small and positive (co decreases) a
phenomenon corresponding to the symmetry-breaking
splitting still exists. However, the right attractor ex-
periencing the lower barrier develops at larger co values
than the left attractor experiencing the higher barrier (Fig.
1). Figure 3 shows as an example the two attractors for
P=0.001 and co=0.5281 (the right one is already chaotic
but the left one has just undergone the first period dou-
bling). When P increases the co region of the left attractor
gradually decreases and disappears at P=0.008.

The development of chaos of the dominating right at-
tractor is shorn in Fig. 4. Only the widest windows, hav-
ing the periods 6, 5, and 3 (~6~12~ ), are shown.
The development of the period 2 of the right attractor is
shown in Fig. 5. The c0 regions of the periods in Figs. 4
and 5 grow when P grows from 0 to 0.006. . . 0.008. The
co region of the window of period 3 (~6~12~ ) ex-
pands anomalously around P=0.006 becoming approxi-
mately half the ci region of period 2 [cf. Figs. 4(b) and 5]
and is about 30 times as large as at P=O. At P=0.008
the window of period 3 (~6~12~ ) disappears
beyond the jump line (denoted by J in Fig. 4).

The development of chaos was studied in more detail
for P=O and O. l. The calculated convergence numbers of
the period-doubling sequences are b.co(2)/hei(4)=4. 8 for
P=O and bee(2)/bco(4) =5.4 and bco(4)/bco(8) =5.0 for
P=0. 1 indicating a limiting (geometric) convergence ac-
cording to Feigenbaum's exponent 5=4.669 for one-
dimensional (1D) unimodal (z =2) maps.

The widest calculated windows with their "right-left
(R-L) orders" are given in Table I. Figure 6 shows, as
an example, the construction of the R-L order of period 7
for P=0. 1. (The same R-L orders were also obtained
from the intersections with the positive x axis. )

For P=O the sequence of periods with their R-L orders
in Table I agrees with the universal ( U} sequence of
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FIG. 3. Two attractors {chaotic and period 2) for P=0.001
and co =O.5281. The patterns denoted by SS are the correspond-
ing stroboscopic sections {with to ——0) shifted by 0.1 upwards.
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Metropohs, Stein, and Stein (MSS) for 1D unimodal
(z =2) maps. The two last periods 7 and 5 appear after
the return of the inversion symmetry (the dotted line).
For P=0. 1 the sequence of the periods with their R I. o-r-

ders (Table I) agrees with the MSS U sequencess except at
the dotted line where the window of period 3

( —+6—+12—+ ' ' ) ls missing [cf. Fig. 4(a)].
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FIG. 5. Behavior of period 2 of the right attractor. Eco(2)
denotes the width of period 2.

IV. ONF DIMENSIONAL ANALYSIS

One-dimensional analysis is used for the present
problem [Eqs. (1) and (2)]. The stroboscopic map —based
on the Poincare sections at r„=n X2n Ice+ to,
n =0, 1,2, . . .—is two-dimensional (and invertible),
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x (1„+,) =F,,(x(t„),x(r„))

x(t„+~) =6,,( (xt„), (xt„))

and depends on the initial time to. The corresponding re-
turn map is obtained from Eq. (5) by relating the x coor-
dinates,

x(t„+,)=fg,(x(r„)) .

Since the attractors have approximately one loop ro d
tht e origin in the time 2m jco it is also possible to form a re-
turn map by relating the successive intersections of the
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FIG. 4. Chaotic behavior of the right attractor. m„denotes
the onset of chaos {placed at the right edge). m„(P=O)=0.5282
and co„{P=0.1)=0.5713. J denotes the jump {cf.Fig. 2). The
dashed line in (b) represents m„of the left attractor. The dotted
lines represent in (a) the place where the window of period 3
(~6~12~ . - ) should exist and in (b) the point of the return
of the inversion symmetry.
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FIG. 6. Construction of the right-left (R-I.}structure for the
window of period 7 {P=0.1, co=0.5697). The return map is
based on the stroboscopic section (cf. Fig. 3).
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TABLE I. %idest windows and their R-L orders. The
periods up to 7 and 10 for P=O and 0.1, respectively, are con-
sidered. The vertical arrows denote period doublings. The dot-
ted lines denote the return of the inversion symmetry for P=O
and the place where period 3 ( ~6}should exist for I}=0.1.
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The maps of Eqs. (6) and (7) have rather one-dimensional
patterns (see, e.g., Fig. 6) though they have a small
Cantor-set-type width and though a close second branch
develops in the chaotic region. Both the map of Eq. (6)
with to Oand——that of Eq. (7) are used in this paper.

For P=O the return map [Eq. (6), to ——0] resembles,
after the return of the inversion symmetry, a cubic map
with a minimum followed by a maximum for increasing x
(cf. Ref. 5}. A cubic map of this type ( x3+bx) —was
suggested by Holmes. 2 Ho~ever, a constant must be add-
ed to account for the asymmetry. The map

f(x}=—3xi+bx+c, (8)

studied by Kapral and Fraser, will be adopted here. We
review shortly the basic properties of the map [Eq. (8)] as
given in Ref. 32 and complete its theory for our purposes.
In Eq. (8) the increase of b ( & 0) and c ( & 0) corresponds
to the decrease of co and the increase of P in our system,
respectively.

Figure 7(a) shows the map in the symmetric case
(c =0}. For increasing b, f'(0)=b increases to one at
b=1, and the fixed point of period 1 at x =0 splits
symmetrically into two stable fixed points N and P,

FIG. 7. Cubic map f(x)= 3x'+bx+—c. (a) Coexisting su-

perstable periods 2, b =2.12132, c =0. (b) Coexisting superst-
able periods 1 and 2, b =1.85063, c =0.105997.

grows to 5'~ =2.236 the second period doubling 2~4
occurs. Both attractors continue period doublings to
chaos according to Feigenbaum's universality theory for
1D unimodal (z =2) maps2s'i6 and the chaotic region is
interrupted by periodic windows according to the MSS U
sequence. This behavior is the same as in our system.
At b =3X3'/ /2=2. 598 the iterates from the minimum
and the maximum of the cubic map reach the origin and
one might be tempted to associate this with the return of
the inversion symmetry (and one attractor) in our system.
However, for b & 3)&3'~ /2 there are still two attractors
the basins of which are interlaced in a complex way, and
the cubic map ceases to describe our system.

In the asymmetric case (c & 0), P starts to develop ear-
her (at lower b} than N similarly to our system [see Fig.
7(b)]. The region of the window of period n in the bc-
plane is determined by the equations

xx,t =+[(b —1)/3]'" f'"'(x) =x

f(nV(x)
(10)

both having period 1. This corresponds to the symmetry-
breaking sphtting in our system. Both fixed points have
their own basins, the repelling origin acting as the separa-
trix. When b increises to b=2, f'(xN)=f'(xt)= —1,
and both fixed points bifurcate into two periodic points,
i.e., the period is doubled 1~2 [see Fig. 7(a)]. When b

where f'"'(x)=f'" "(f(x)), + 1 corresponds to a
tangent bifurcation (creation of n stable-unstable pairs of
periodic points) and —1 corresponds to a period doubling
(n~2n). A superstable curve of period n is obtained re-
placing + 1 by 0 in Eqs. (10}. Equations (10) can be solved
for the periods 1 and 2 at xz. The solutions are in the bc-
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region used for comparison as follows: tangent bifurca-
tion for 1,

c= ', (b-—1) /

superstable 1 (sl),

c= ', b' —'X(b ——', ),
period doubling 1~2,

0.5
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FIG. 8. Behavior of the periods 2 and 3 of the cubic map
f(x)= 3x +—bx+c. b2 q denoting the value of the period
doubling 2~4 is placed at the origin. Notice the scale change
at the origin.

period doubling 2~4,
c = —,', [12+10b+2(9b +12b —4)'/ ]'/

X [6+b —(9b'+12b —4)'"] .

The broadening of the b region of period 2 for increas-
ing asymmetry [b decreases in Eqs. (13)—(15)] can be un-
derstood as follows. The slopes of the superstable 2 curve
and the period doubling 1~2 boundary are determined by
the derivatives from Eqs. (14) and (13),

b
—f /P l

b f /z+ I
(b + 4

)
—j /2 (16)

c) 2 ———,'b(b+1)— (17)

For b =2 (at which value the period-doubling 1~2 boun-

dary intersects the b axis}, c,'2 ———,
' X(3/10)'~ ——,

' X2'/
= —0.393 and c

& 2
————', X 3'/2= —0.385, i.e.,

the slopes are almost the same. For b~0, csq~ —oo and
c& 2~ —0, which has a growing effect on the distance
between the superstable 2 curve and the period-doubling
1~2 boundary. It can be derived in the same way from
Eq. (15) that c' — when b , (2'+ 1)=—0.276—
which in turn indicates growing between the period-
doubling 2~4 boundary and the superstable 2 curve. A
similar growing tendency for increasing asymmetry (in-
creasing c) is also refiected in higher periods. This grow-
ing is displayed for the periods 2 and 3 in the
(b b2 4,c) pl—ane in Fig. 8. The behavior of these
periods is similar to that of the corresponding periods of
our system for 0&P RO.006 [Figs. 4(b) and 5]. However,
the growing of the b region of period 3 is quantitatively
about one decade weaker than that of the r0 region of
period 3 of our system. Since the period-doubling 1~2
boundary [Eq. (13)]has the maximum at b =0, c =—', the
map ceases to describe the right attractor of our system
for c& —', (Fig. 8).

For p&0.008—after the disappearance of the left
attractor —the return map of the remaining right attractor
[Eq. (6) with re=0 or Eq. (7)] has for decreasing co a
steepening unimodal form. The development of the map
for P=0. 1 is shown in Fig. 9 (see also Fig. 6). The
steepening is consistent vrith our observations that the
period doubling to chaos con verges according to
Feigenbaum's 5 and that the appearance of the periodic
windows follows the MSS U sequence. ' ' However,
the widest window of period 3 (~6~12~. . . ) is miss-

ing [Fig. 4(a) and Table I]. This is not a pecularity of our
system but a corresponding deviation occurs also in other
oscillators. For example, in the reverse bifurcation se-
quence of the impact oscillator the window of period
3X2 is the widest of the windows in the 2 -band but the
window of period 3 X2 is missing from the 22-band. 3~ A
similar disappearance of the window of period 3X2
occurs in the Henon map. '5 The developing second
branch of the return map plays a significant role in the re-
gion at r0 =0.5682 where the window of period 3
(~6~12~ } is missing. The second branch follows
closely the already existing branch for co&0.5682 (see
Figs. 9 and 6). However, at co =0.5682 the second branch
develops abruptly a minimum distinctly below the existing
minimum and the return map shrinks at the same time
into the three segments shown in Fig. 9 (segment 2 being
the new minimum). This abrupt change is consistent with
the absence of the window of period 3 (~6~12~ )

and the three segments correspond to a chaotic three-band
attractor following this window.

V. CONCLUSIONS
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PIG. 9. Development of the return map for P=O. I. The
three patterns are calculated —starting from the left—at
co=0.5698, 0.5682 (parts 1, 2, and 3), and 0.56635. The pat-
terns are based on Eq. (63I with to ——0.

For 0&p(0.008 and decreasing ro a splitting into the
right and left attractors occurs due to (or reminiscent of)
the symmetry rule. (This rule is fully generalized in the
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APPENDIX: GENERALIZATION
OF THE SYMMETRY RULE

Consider the equations of motion

X(t)=F(x(t),t) . (Al)

Appendix). For increasing P the to region of the left at-
tractor decreases until this attractor disappears at
P=0.008. The to regions of the periods of the dominating
right attractor increase for increasing P from 0 to
0.006, . . . , 0.008. The above behavior for 0&P(0.006
can be described with a cubic map —3x3+bx +c. How-
ever, the b region of the period 3 of this map grows much
more weakly than the to region of the period 3
(~6—+12~ . ) of our system. The latter growth ought
to be seen in experiments.

For 0.008~P&0. 1 a steepentng parabola-type return
map can be found for the remaining right attractor con-
sistently with the fact that the calculated chaotic motion
is siinilar to the behavior of the 1D unimodal (z=2)
maps. However, the absence of period 3
(~6~12~ } appears as an abrupt steepening in the
return map.

X=(xi,xi, . . . ,x~)" and F are X)&1 coluinn matrices
and x denotes xi,xz, . . . ,xz. Let F have the symmetry

F(x,t+r) =F(x,t),
F(x,t +r/2) = F—( x,—t) (A2b)

X(t)= F( —x(t)—,t +T/2) .

Equations (A 1), (A2b), and (A4) give

(A4)

F(x(t),t)=F(x(t), t+T/2+r/2} . (A5)
It follows from Eqs. (A2a) and (A5) that T =(2n —1)~
(with n =1,2, 3, . . . ). This gives the generalized symme-
try rule: The period of an inversion-symmetric periodic
attractor must be odd. [The case that the rule does not
follow from Eq. (A5) is exceptional because Eq. (A5)
would then set extra time-dependent conditions between
x;(t).]

(r is the driving period). If x(t) satisfies Eq. (Al), then so
does x(t)= x—(t+r/2). Thus the phase portraits of x(t}
and x(t} are inversions of each other and coincide in the
inversion-symmetric case.

Consider an inversion-symmetric periodic attractor of
period T having the property

x(t +T/2) = x(t—) . (A3)
[For systems based on Newton's equations of motion, Eq.
(A3) follows from the inversion symmetry of the phase
portrait. ] The substitution t+T/2~t in Eq. (Al) and
the time derivative of Eq. (A3} give
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