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This paper is a generalization of Kubo s stochastic theory of spectroscopic line shapes which ap-
peared in 1962 under the same title. Using a stochastic, Hermitian Hamiltonian to phenomenologi-
cally incorporate absorber-perturber interactions resulting from molecular collisions, we are able to
reproduce Kubo's derivation of the simple Lorentzian line shape: I(co)=e 'I'[(tp cop)—i+I 2] ' in

which the width I is related to the mean-square strength, Qi, of a diagonal stochastic Hamiltouian

by I'=2Qq. Our generalization of this line shape is I(tp)=(1/~)[1+{1—co/Q)[(I'2
—I'~)/21"] II /[(tp —0) +I' ] ', where I ~

and I 2 measure the degree of auisotropy in the off-
diagonal part of the stochastic Hamiltonian. %'ith perfect isotropy their contribution vanishes, but
we are still left with additional corrections to the simple Loreutzian: I =2Q(1+top/E ) +2Q3
and Q=cop+b„where 6=2Q {top/e)(1+cot/e ) '. Our result does reduce to Kubo's in the absence
of off-diagonal stochastic terms. The parameter e measures the non-Markovianness of the stochas-
tic Hamiltonian and yields white noise in the limit a~00. Our results are valid for this limit re-

gime. The frequency shift 6, is a measure of the non-Markovianness.

I. INTRODUCTION

The problem of spectral line-shape broadening has re-
ceived a great deal of attention over the years. Theories
which treat radiative and Doppler broadening are well es-
tablished, but collisional broadening has taken longer to
understand as thoroughly. The latter is an intrinsically
more difficult problem because it is a many-body prob-
lem.

The problem deals with the absorption of light by a
given system, the absorber, which is continuously subject-
ed to a multitude of complex farces. These forces
originate in the interaction of the absorber with a large
number of particles, the perturbers which form the medi-
um in which the absorber is immersed. Therefore, one
has to deal with two distinct but simultaneous interac-
tions. The first one is the well-defined interaction be-
tween the absorber and the radiation field. The difficulty
resides in the second interactian, the one between the per-
turbers and the absorber, which influences significantly
the time evolution of the latter. The general quantum-
mechanical perturbation expansion for the density matrix
of the combined system, absorber' plus radiation, and sub-
sequently the relevant entities for an n-photon process, are
well defined, but the computation of the probabihty of
transition from one state of the system to another in such
a process is rendered extremely difficult by the presence
of the perturber-absorber interactions.

Physically, we expect this interaction to make the sys-
tem undergo transitions between the various states, as well
as disturb the spectrum of energy levels. In other words,
this interaction should not simply commute with the
Hamiltonian of the isolated system, i.e., it ought not to be
diagonal in the basis of the states that span the Hilbert
space of the isolated absorber. Mathematically and physi-
cally, the exact expression of this interaction is of great
complexity, and any statistical method dealing with this

problem has to overcome this complexity by performing,
in one way or another, some kind of an averaging over the
effects of the bath of perturbing particles.

The averaged effect of the bath is to cause relaxation.
One question we address is how this relaxation is pro-
duced. In some theories, it is not produced, but intro-
duced phenomenologically, as in the Bloch equations. '

In these equations, the effect of the bath is incorporated
by the addition of phenomenological relaxation parame-
ters to the quantum Liouville equation for the isolated ab-
sorber plus radiation field. A traditional description of
the absorber in the bath, by a non-Hermitian Hamiltoni-
an, can produce these parameters. This treatment has
predicted a simple Lorentzian form for the spectral line
shape for single-photon processes. However, non-
Lorentzian line shapes are observed also, and therefore the
sources of their features are missing from such a theory.
We shall point out later what these features are, as well as
what we have found their sources to be.

Other methods have attempted the direct approach by
starting from the quantum Liouville equation with the ex-
plicit presence of the interaction between the absorber and
the perturbers, in order to produce the relaxation. In
many of these theories, approximations like adiabaticity,
or binary form, are needed to build an extremely intricate
mathematical bridge between the potential of interaction
and the spectral line shape. Some have succeeded in
reproducing the form of various experimental line shapes.
However, often, if not always, the final step of the theory,
which is to compute the form of the hne, has to be han-
dled numerically, and the link between a physical feature
of the potential of interaction and the characteristics of
the line shape it ultimately influences is lost in the com-
plicated equations. As for the kind of averaging used, it
usually is the projection operator technique or the tracing
over the bath degrees of freedom. The role of statistical
mechanics is explicitly recognized with the use of a
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canonical distribution for the perturbers.
There is also a stochastic approach, as first developed

by Kubo. " A full discussion of this theory comes later;
it is closely related to our own. As Kubo pointed out, any
effective method for many-body systems uses somewhere
an assumption which is essentially of a stochastic nature.

The idea behind a stochastic approach is to represent
the perturbation by a Hinnitian, time-dependent stochas-
tic Hamiltonian. This interaction potential is not given an
explicit form but is characterized by a set of stochastic
properties, e.g., Gaussian stochastic processes are charac-
terized by their first and second moments. ' Denoting a
Gaussian stochastic Hamiltonian by H(t), the stochastic
properties are H(r) =Ho+H(r)+ V(r), (1.4)

ing, the shift from the natural frequency, and the asym-
metry about the line center.

To illustrate these concepts, we shall study the simplest
possible system which can give physical insight into the
phenomenon of relaxation: a two-state spin system (1) in
a fixed magnetic field, (2) perturbed by a randomly modu-
lated magnetic field, and (3) interacting with a radiation
field. In this introduction we introduce terminology and
list a variety of results. The details of the derivations are
to be found in Secs. II and III, and in the Appendix.

The entire system is described by the following Hamil-
tonian:

(aj(r)) =mj
& &o (r»kl(s) ~ +Qtjklfijkl( I

& —s
I ) .

where
(1.2)

The first moments, the C's, are the constant mean values
of the matrix elements. The second moments, or auto-
correlations, are products of strength constants, the Q's,
and correlation functions, the f's, which are a measure of
the "length in time" of the correlation between two matrix
elements. For stationary processes, these functions de-
pend on the absolute value of the time difference only. "

Physically, the correlation function of any random pro-
cess has to have a finite width. However, this width can
be so small compared to the other natural time scales of
the problem that it can be considered infinitesimally
small, in which case the correlation function is represent-
ed by a Dirac delta function. This is the white noise or
Markovian limit. If this does not hold, one has to simu-
late colored noise, i.e., a non-Markovian process, by using
a correlation with a finite width. We shall use the follow-
ing form:

fJkr( I
~ —s

I
) =(&jkl&2)exp( e;,ki ~

& s—
( ), —(1.3)

in which e is a positive constant, the inverse of which
measures the lifetime of the correlation function. One
reason for choosing this particular function is that it tends
to a Dirac delta function when e tends to infinity.

We have characterized the whole perturbation with a
set of phenomenological parameters, the C's, Q's, and e's.
However, it should be clear that these parameters are fun-
damentally different from the phenomenological parame-
ters added to incorporate ad hoc relaxation as is done in
some theories. For one thing, they do not directly
represent the relaxation of the absorber induced by the
bath. They characterize the interaction only, and are ex-
pected to produce the relaxation on the average. Further-
more, any interaction potential, whatever its form and
complexity might be, has to induce such a set of parame-
ters, the values of which undoubtedly depend on those of
the "natural" parameters, like the constants that fix the
form and strength of the interaction potential, number
density of the medium, etc. Finding out what that depen-
dence is would certainly be interesting, but, from our
point of view, the first and most important task is to link
each parameter we have defined to the features of the
spectral line shape it infiuences. The main features that
can be observed in an ordinary line shape are the broaden-

equi
Hp —— 8 o3

2plc

is the Hamiltonian of the isolated system, the spin in the
fixed magnetic field 8 along the z axis;

H(t) = 8(t) o
2P7lC

(1.6)

is the stochastic interaction between the spin and the fluc-
tuating magnetic field 8(t); and

V(t)=i
21FEC

' 1/2
2irflc2

(ae '"'—a~e'"')(kXe) o
Va)

is the purely magnetic interaction of the spin with a
single-mode radiation field. The density matrix obeys the
quantum I.iouville equation

i R p(t) =[L,+L—(r)+L„(t)]p(t), (1.8)

Lo=—V4 ] (1.9)

L(t):—[H(t), ],
L„(t)—=[V(r), ] .

The formal solution of (1.8) is

p(t)= T exp ——f ds[L0+L(s)+L, (s)] p(()),
I

(1.12)

in which we have used the time-ordered exponential, de-
fined by'

where the Liouvilhan operators are defined by "commuta-
tor operators, "
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t 'n —i
T exp f M(i)d* —= )+ g f di, f di, f di M„(i, )M(ii) M(i )„

n=l

g

p( t) =U(t, 0) T exp ——f ds L„(s) [t[)(0), (1.13)

where

L„(&)—= U (&,0)L„(&)U(&,0)

U(ie) Texp —=—f de[Le+L(e)] (1.15a)

U)(i, i) = T exp —f de[L o+L (e)[ (1.15b)

Then we expand (1.13) in terms of L„(t), and extract the
probability of transition in the single-photon process. We
must average this probability in order to take into account
the average effect of the stochastic Hamiltonian. In the
Appendix we present the calculation involved in this
method and show that it runs into difficulty which can be
best pictured by the following two inequalities:

(1.16)

or

I

Texp to; t
i=1

where the co(t)'s and O(t)'s are randomly modulated func-
tions and operators, respectively, and the brackets stand
for the stochastic averaging. Using this traditional
method one is faced with the averaging of a product of
exponentials of the form above. The individual factors in
the products on the right-hand side of (1.16) and (1.17)
can be computed with the cumulant method, ' ' but no
such method exists to compute the average of the prod-
ucts on the left-hand side. The cumulant method for this
type of problem was developed by Kubo to handle the sto-
chastic averaging of a single exponential of the form

t2
exp f dt co(r) (1.18)

The order of the factors in the integrand is crucial be-
cause, in general, ~(t~) and ~(tk) do not commute for
tl Qrk.

%'e are concerned eath a single-photon process, and the
corresponding spectral line shape. What signs to be the
natural approach is to use the well-defined quantum for-
malism, i.e., the interaction picture with respect to V(t)
by rewriting (1.12) as follows:

where co(t) is a stochastic function. '6 Fox generalized the
method to handle the following form:

Texp, t0 t (1.19)

where O(t) is a stochastic operator. '

In the Appendix, we show that this mathematical diffi-
culty with the natural approach to the problem goes away
in the particular instance where the fluctuating magnetic
field B{t)is along the same direction as the fixed magnet-
ic field B, i.e., along the z axis. [In more general terms,
this is the case whenever the stochastic Hamiltonian H(t)
commutes with the isolated system Hamiltonian Ho, and
therefore is diagonal in the basis of the eigenstates of
Ho. ] In this special case, one is left with the stochastic
averaging of a single exponential of the form (1.18). We
then find that the formal expression for the line shape
agrees with the one Kubo used in his stochastic approach
to spectral line broadening based on the oscillator
model, 9'0 and which predicts a simple Lorentzian line
shape, centered at the natural frequency, in the weakly
non-Markovian case. We should then expect that shifts
and asymmetries of line shapes are effects of off-diagonal
terms of the stochastic perturbation. Our approach will
prove this is so.

We are faced with the question of how to handle the
stochastic averaging in the presence of a non-diagonal sto-
chastic perturbation. Firstly, it should be understood that
it is the density-matrix formalism which ought to be used
in this problem. The basic reason is that if the
Schrodinger equation is used, the averaged values of the
time-dependent coefficients of the expansion for the state
of the system in terms of the eigenstates would be studied.
The qiumtum-mechanical expectation values of arbitrary
operators would then involve bilinear combinations of
these averaged values. This would lead to incorrect and
unphysical results, including the decay of total probabili-
ty, because products of averages do not equal averages of
products. The density-matrix description directly in-
volves the average values of bilinear products of the ex-
pansion coefficients, and, thereby, avoids this mistake.
Secondly, there are two interaction pictures available in
this problem. In our approach, we shall use them both in
the following order: (a) Use the interaction representation
with respect to H(t), (b) Perform the stochastic averaging
on the density matrix, (c) Use the interaction representa-
tion with respect to V(t), (d) Expand the averaged density
matrix in terms of V{r), (e) Extract the averaged probabil-
ity of transition in a single photon process. This pro-
cedure permits one to take into account the effect of the
stochastic perturbation to all orders. The stochastic
averaging is handled by the curiiulant method applied to a
single time-ordered exponential, the argument of which is
a superoperator. No diagonal assumption for the stochas-
tic Hamiltonian is required to perform this averaging.
The details are found in Sec. II and we list below several
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salient features in the analysis.
In mathematical language, the five steps of our process

are depicted as follows.
(a) Rewrite (1.12) as

where R (t) is the relaxation tetradic.
(c) Rewrite {1.23) as

(p(t) ) = 6(t,O) T exp ——f ds L„(s) p(0), (1.24)

p( t) = U (t,O) T exp ——f ds Lr(s) p(0), (1.20)

Lr(t): Ut(—t,O)L(t) U(t, O) (1.21)
L„(r)=Gt(r, O)L„(t)G(t,O) (1.25)

f
U ( t,s) —= T exp ——f d r[LO+ L„(r)) (1.22a)

t
G{ts)= T exp ——f d~[LO+R(~)] (1.26a)

U (t,s)= T exp —f dr[LO+L„(r)] (1.22b) G (t,s)= T exp —f dr[Lo+R(~)] (1.26b)

(b) Average (1.20) to obtain

(p( )s) = T xsp ——' f'd [L s+)(s( )+Ls.( )] ps(0),

(d) Expand. (1.24),

(1.27)

where

(p' '(r)) =G(t,O)p(0),
ll

j e-1
(p {r))= — dsi ds2 ' ' ds„G(r,si)L„(si)G(si,s2) . L„(s„)G(s„,O)p(0) .

(1.28)

(1.29)

The density matrix (p'"'(t) ) is of order n ln L„(t),and we
shall refer to it as the "partial" averaged density matrix of
order n. G is the super Green's function which goverus
the time behavior of the system in the absence of the radi-
ation. Therefore, the series (1.27) is the generalization in
form of the usual expansion of the density matrix of a
nonperturbed system interacting with a radiation field,
where the super Green's function would simply be

Ho —
2 flQPO(T3 s

3

H(t)= g +r(t)o;,

(1.33)

(1.34)

Having outlined the program applicable to all the prob-
lems of this nature, let us define the constants and
phenomenological parameters relevant for the special case
treated here. First, we rewrite (1.5)—(1.7) as follows:

l
G(t,s) =exp ——(t s)LO— (1.30)

V(t)=iky(ae ' ' ate' ')o2, —

where

(1.35)

and indeed the general expression for G, (1.26a), does
reduce to (130) in tlie absence of the relaxation tetradic
R.

(e) The relevant partial averaged density matrix for a
»ngle-photon process is the one of second order. If the
initial and final states of the combined system, spin plus
radiation, for the single-photon process are

~
i ) and

~ f),
respectively, then the averaged probability of transition at
time t is

(1.31)

with

(1.32)

e
PtlC

(1.36)

P;(r) = (1.37)

PtlC

1/2

(1.38)
I s

a and a are the annihilation and creation operators,
respectively, of a photon of frequency co. The wave vector
k and the polarization vector e are along the third and
first directions, respectively, oi, oz, and o3 are the Pauli
matrices. c00 is the natural frequency, and P;(t) is a ran-
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domly modulated function relative to the ith component

of the stochastic magnetic field B(t). The off-diagonal
terms of the perturbation come from the transverse com-

ponents of the latter. Note that H(t) is manifestly Her-
mitian since the P(t)'s are real functions.

The stochastic properties of II(r) are

(p;(r)) =0,

(P;(t)P, (s)) =Q;5J(e;/2)exp( —e;
~

& —s
~

) .

(1.39}

(1.40}

A.. Max'kovian case

This is the white-noise regime where all the e s in (1.40)
are made infinite, so that all the correlation functions are
Dirac delta functions.

Each stochastic function P;(t) is assumed to be Gaussian.
The setting of the first moments to zero is a simplifying
but not necessary assumption which represents the physi-
cal assumption of an averaged value of zero for the sto-
chastic force acting on the system. The presence of the
Kronecker delta function in (1.40) is also a simplifying
but not necessary assumption. We have found that its ab-
sence, pexxxatting the most general form for the autocorre-
lations, is of virtually no consequence on the conclusions
drawn from the theory, and the expressions of certain en-
tities are only slightly modified. The parameters, Q's and
e's, have the dimension of a frequency.

In Sec. II we study the influence of the stochastic per-
turbation on the time behavior of the spin system, and es-
tablish the creation of relaxation. In Sec. ID the interac-
tion with the radiation field is added. The expression
(1.27) for the averaged density matrix and the spectral line
shape are derived, and each phenomenological parameter
we introduced is linked to the features of the spectral line
shape it influences.

The averaging of the density matrix introduces the re-
laxation tetradic in which all the statistically averaged ef-
fects of the stochastic perturbation are contained. This
tetradic teams in the differential equation for the averaged
density matrix cannot be written as a commutator. This
means there is no Schrodinger equation equivalent to the
averaged density matrix equation, i.e., there is no "aver-
age" Hamiltonian, Hermitian or not, that could describe
the perturbed system and reproduce the effects stated
hereafter. This confirms the claim that our theory is fun-
damentally different from several other phenomenological
theories which are based on the Schrodinger-equation lev-
el of description.

We end this introduction by stating the long list of
main results. As we pointed out, there are two regimes
for a stochastic process: the white-noise regime, and the
colored-noise regime. The prob1em is not analytically
solvable in the second regime, except at the one end of the
"noise spectrum" closest to the white-noise regime, i.e., in
the weakly colored noise case. The problem is exactly
solvable in the white-noise regime, and therefore this case
is treated first.

Qi =Q2=Q~ =Q . (1.41)

We find that the population of the two states exhibit the
following time behavior:

1+1 0 (1.42)

The + sign corresponds to the state initially populated.
This introduces the concept of "lifetiine. " Whatever state
is initially populated, the relaxation drives the spin system
towards an equilibrium where statistically the total proba-
bility is equally shared by the two states. I 0

' can be re-
ferred to as the lifetime of the two coupled states. In the
following paragraphs, it is shown that a stochastic cou-
pling between the two states is absolutely necessary for a
nonzero value of the relaxation parameter I 0. If the sto-
chastic perturbation does not couple the two states, but
only disturbs the energy levels by making these levels fluc-
tuate about their natural positions, then the energies of the
two eigenstates are only randomly modulated. The latter
remain stationary in the usual quantum-mechanical sense.

As for the coherence between the two states, it exhibits
the following time behavior:

(pi2(&) ) =pip(0)& (1.43}

In the isotropic stochastic properties, Markovian case, and
only in this case, the two relaxation parameters I" and I o

are equal,

I'o=l =4Q . (1.44)

It is worth noting that a simple phenomenological ap-
proach that assigns an imaginary energy to the upper, or
excited, state because of the perturbation produces this
form for the coherence. I would be the imaginary part of
the energy, but I ' would also be the lifetime of the ex-
cited state as usually conceived since the population of
this state would be given by e '. As this simple ap-
proach would predict, we find also the line shape to be a
simple unshifted I.orentzian,

r1(~)=-
ir (a) —a)0) +I (1.45}

The conclusion that would then be drawn is that the in-
verse of the observed width of the line shape is the life-
time of the excited state. In fact, one should conclude
from our approach that, in this particular case, the inverse
of the observed width measures the lifetime of the states
as defined by (1.42). Shortly, we shall see that this is the
only instance where this identification is precise.

2. Nonisotropic stochastic properties

Now the Q's are assumed to be all different. The popu-
lations have the same time behavior as before,

1 1—+—e2 —2 (1.46)

But the time behavior of the coherence is now found to be

1. Isotropic stochastic properties

To start with the simplest case, we assume that all the
correlation strengths are equal, i.e.,
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No
(pii(t)) =pi2(0) cos(Qt)+i sin(Qt) e

—"'
0

11—I 2+p2i(0) sin(Qt)e

I;=2Q;, i =1,2, 3

I = —,(I i+I i)+I'i,
' 2 1/2I",—I0= Qpo—

2

(1.47)

(1.48)

(1.49)

(1.50)

The connection between off-diagonal terms of the sto-
chastic Hamiltonian and the shift and asymmetry of a
line shape is manifest. In the Markovian case, the isotro-

py of the transverse stochastic properties annihilates both
the shift and the asymmetry of the line, and reduces the
latter to a simple unshifted Lorentzian.

We are reminded that the results above are exact (as is
demonstrated in Secs. I and III) since the problem is ex-

actly solvable in the white-noise regime. The line shape
(1.56) is depicted in Fig. 1 and Fig. 2 for various values of
the parameters.

B. Non-Markovian case

The coherence and its complex conjugate are coupled by
the anisotropy between the two transverse directions.
This anisotropy shifts the frequency at which the coher-
ence oscillates from the natural frequency F00. As for the
relaxation parameter I"o in (1 46), it is given by

~0 ~1+~2 (1.51)

This proves the claim that I'0 and 1" are different in gen-
eral, and that a coupling between the two states is neces-
sary for a finite lifetime. If the isotropy of the transverse
space is assumed, i.e.,

This is the colored-noise regime where all the e's in
(1.40) are finite. For arbitrary values of the e's the solu-
tion to the problem is not analytically tractable. However,
the problem can be solved in the weakly colored noise
case. The e's, although finite, are considered to be very

large compared to the natural frequency coo. This is the
end of the noise spectrum closest to the Markovian case.
The results stated hereafter are expected to, and do,
reduce to the previous ones as e~ 00.

The populations of the states have the same time
behavior as before,

Qi =Qz =QAQi, (1.52)
I of+

2 —2
(1.57)

one recovers the time behavior of the coherence found
previously,

The coherence exhibits the following time behavior:

(piz(t) ) =pi2(0)e (1.53)
(p, i(t) ) pii(0) cos(Qt)+ —F00+

but the two relaxation parameters I'0 and I are still dif-
ferent, &(sin(Qt) e

r=2g+2g, ,

I 0 ——4Q .

(1.54)

(1.55)
+pi, (0) [I i

—I &+i(b i
—hi)]sin(Qt)e

2Q

Only the isotropy of the full space makes them equal.
Note that if the off-diagonal part of the stochastic Hamil-
tonian is dropped altogether, the time behavior (1.53) for
the coherence is preserved, and would induce an unshifted
Lorentzian form for the line shape. The two states would
remain stationary since I 0 would be equal to zero. It is
the decay rate I' of the coherence that sets the width of
the line, and not the inverse of the lifetime I 0.

For the nonisotropic stochastic properties, Markovian
case, we find the line shape to have the following form:

(1.58)

(1.56)

The decay rate I of the coherence measures the width of
the line, but is different from the inverse of the lifetime
I 0. The shifted frequency Q at which the coherence os-
cillates defines the center of the line. The amount of an-
isotropy of the transverse space measures the asymmetry
about the center of the line, as well as the amount of shift
of this center from the natural frequency coo.

FIG. 1. I,/co =0.1, (1) I q/coo ——0.1, {2}
(3) r2/k)o ——0.5, (4) r2/APO ——0.7.

I 2/uo ——0.3,
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where
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1 (, = .1, (2) rr/~o=0. 3,= .1, (1) I )/a)p ——0.1, ( i ——.3,2. I g/a)p ——0.1, ( ) ——.1, (

(3) I )/cop ——0.5,

(1.72}I(to— —6} +
los arkovian re-loser to the Mar ov'tuned closer and closIf the noise is tun

x ression 1.gime, the exp
' 1.

ro rties, non-
expected.

tropic sioc
l

"k' .-h. --,
s following form:

kovian case wi
shape has the o

and

; =2Q;(a)o/eg N 1+oio I (1.61)
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7T

I
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(1.73)

~o=~~+12

I'= —(I,+I,)+I', ,'
2

(1.63)

(a, +a,)+a,a,—~o+~o

2* 1/2
I i —I 2

2
(1.64)
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II. MAGNETIC RELAXATION

In this section the spin system in the constant magnetic
field is made to interact with the stochastic magnetic
field, and the effects the latter has on the time behavior of
the spin are derived. The total Hamiltonian is

H(t)=H, +H(t), (2.1)

No
Ho ——fi o3,

2
(2.2)

(2.3}

coo and P;(t) are defined by (1.36) and (1.37), respectively.
The stochastic properties are

(2.4)

({));(t){I)j(s))=Q;5,j(e;/2)exp( —ei I
t —s

I
) .

The {))'s are real functions with the dimension of a fre-
quency, H(t) is manifestly Hermitian, and the Q's and e's
are real positive constants with the dimension of a fre-
quency.

The time evolution of the system is governed by the fol-
lowing quantum Liouville equation:

(2.5)

ties only annihilates the asymmetry of the line, and
reduces the latter to a simple, shifted, Lorentzian. The
source of the shift that persists is the colored-noise corre-
lation lifetime, and the observed energy shift is a measure
of the non-Markovianness of the process.

The statement of these results concludes our introduc-
tion and the next sections contain many of the details re-
quired to justify these results.

l lLt(t)=exp tL—
O L(t)exp — t—LO

fi
(2.12)

00 f= T exp ——g f ds C{™(s),(2.13)

where C' '(t) is the tnth cumulant. For a Markovian
process, all cumulants beyond the second vanish identical-
ly. ' For a weakly non-Markovian process, the series of
cumulants may be truncated at the second one since the
magnitude of higher cumulants is generally much smaller
than that of the second cumulants. The first two cumu-
lants are given by

(2.14)

C{l'(t)= ——f ds[(Lt(t)Lj(s) j

(2.15)

The stochastic property (2.4), with the help of (2.8) and
Q.12), implies that the first cumulant vanishes. There-
fore, the expression for the averaged density matrix (p(t) )
18

(p(t) ) =exp — tLO—

(2.16}

is the stochastic Liouville operator in the interaction rep-
resentation. The averaging of the time-ordered exponen-
tial in {2.11) is handled with the cumulant method, '

T exp ——f dsII(s)
I

iA' —p(t) =[Lo+L(t))p(t),
t

where

Lo=—[Ho ]

L(t) —=[H(t), ] .

(2.6)

(2.7}

{2.8)

which llllplles

—(p(t) ) = ——[Lo+R (t)](p(t) )
t

(2.17)

(2.18}

[0, ]=0 —.0,
where 0 is an operator, are

(2.9)

The tetradic elements of a commutator operator, or su-
peroperator, of the form

G(t,s)= Texp ——f d~[LO+R(~)] (2.19)

where 6, the super Green's function that governs the time
behavior of the averaged density matrix, is given by

[0~ ]ijkl 0ik8lj ~ik—0lj (2.10)
where R ( t) is the relaxation tetradic, defined by

A. Averaged density matrix and relaxation tetradic

From (2.6) it follows that

l
p(t)=exp ——tLO T exp —— ds Lt(s) p(0),

(2.11)

R(t)= ——f ds L(t)exp — (t s)LO— —
r

XL (s)exp (t —s)Lo—

(2.20}

This general expression for the relaxation tetradic takes
on the following form in this problem:
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3

R(t)= g R;(t), (2.21) 1. Isotropic stochastic properties

The simplest case comes about by considering all the
autocorrelation strengths equal, then

&s -~,.(t -s}
R;(t)—:i—AQ; ds —e ' [o;, ]

3

R = i—RQ g ( —ot o'; ) (2.31}

Xexp — (t——s)LO [oi, .]

Xexp (t ——s)LO (2.22)

and (2.25) gives

—Mi(t) = coDM—3(t)—I Mi(t),
dt

—M2(t) =COOMi (t)—rM2(t),

(2.32a)

(2.32b)

Furthermore, since (p(t) } is a 2X2 matrix, it can be ex-

panded in terms of Pauli matrices, —M, (t)=-I OM3(t),
d
t

(2.32c)

3

(p( t) }= i Cro+ y M; (t)tt; . (2.23) where

The coefficients of the expansion are given by

M~(t) =—, Tr[o;(p(t) }]. (2.24)

r,=r=4Q . (2.33)

The averaged density matrix elements are found to be
given by

P3(t)= (pi2(t) ) = —,
' +M3(t), (2.26b)

They obey the following system of coupled differential
equations

d t—M;(t) = — g TrI cr,.[L,+R (t)]o, IM (t) . (2.25)
dt '

2R J=i

From (2.23) one can read what the averaged density ma-
trix elements are, for populations,

Pi (t)= (pi i(t) ) = —,
' —M3(t), (2.26a)

Pi(t) = (pii(t) )

= —,
' [P,(0)+P (0)]+—,

' [P,(0)—P (0)]e

Pi(t) = (p22(t) }
= —,

' [Pi(0)+P2(0)]——,
' [Pi(0)—Pi(0)]e

C»(t) =«»(t}&=p»(0}e'" -"".

(2.34a)

(2.34b)

{2.34c)
1 and 2 denote the lower and upper states, respectively,
and for the coherence, From these expressions and (2.28), we find that the non-

vanishing tetradic elements of 6 are
Ci2(t) = (pi2(t)) =Mi(t)+iM2(t) =C2](t) . (2.27)

&p,,(t) &= y6,», (t,0)p„(0}
k, l

(2.28)

Finally, since the super Green's function 6 is a tetradic,
(2.18}is to be read as

I 0(' —s}
6iiii(t»)=6z222(t»)= z + 2e

) —1 0(t -s}
6»22(t») =622ii(t») =

(iso —I )(t —s}
6izi2(t»}=6zizi {t»}=e

(2.35a)

(2.35b)

(2.35c)

In the cases studied hereafter, (2.22) is used to compute
the relaxation tetradic, which, when put into (2.25), allows
one to compute the coefficients of the averaged density-
matrix expansion. These coefficients are used in (2.26)
and {2.27) to derive the time behavior of the density ma-
trix elements. Finally, (2.28) is used to find the expression
of nonvanishing tetradic elements of 6 in each case.

2. Nonisotropic stochastic properties

If the autocorrelation strengths are aH different, the re-
laxation tetradic R, given by (2.30), is to be used in (2.25)
which then gives

$. Markoviam case

All the correlation functions are taken to be Dirac delta
functions, i.e., all the e's are considered infinite since

lim [(e/2)exp( —e
~
t —s

~
}]=5(t—s) . (2.29)

3
R= —iA$ Q;( cr; cr;) . .— (2.30}

Then, the relaxation tetradic, defined by (2.21), is indepen-
dent of time

dt
—M, (t)= —e30M, (t)—(I',+I,)M, (t),

d
dt
—M, (t) =c00M, (t)—(I',+I,)M,(t),

dt
M3(t) = —(I i +I 3)M3(t)

where

I ( ——2Q;, i =1,2, 3

with the following definitions:

(2.36a)

(2.36b)

(2.36c)

(2.37)
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~0 ~1+~2 s

I = —,'(I",+1,)+I, ,
'2' 1/2

~1 ~20= C00—
2

(2.38)

(2.39)

(2.40)

The populations of, and the coherence between, the two
states then exhibit the following time behavior:

&1(t)= (Pii(t))
= —,

' [~1(0)+&2«)]

—I 0(t —s)
61111(t~s) 62222(t s} 2 + 2 e

—r,[t —s]
61122(t,s) =62211(t,s) =

2
——,e

61212(t~s) 62121(t~s)

(2.42a)

(2.42b)

cos[Q(t s)—]+i sin[Q(t —s)] e0

With the help of (2.28) and these expressions, one finds
that in this case the nonvanishing tetradic elements of 6
are

+ —,
' [&1(0)—&2(0)]e (2.41a)

61221(t~s) 62112(t~s)

(2.42c)

= —,
' [Pi(0)+Pz(0)]

T1 [~1(0}—~2 (o)]e

&»(t) = (p»(t) )

=piz(0) cos(Qt)+i sin(Qt) e0
r

I 1
—I 2

+pzi(0) sin(Qt)e

(2.41b)

(2Alc)

(I'1—I 2)sin[Q(t —s)]e "" ' . (2.42d)20

C. Non-Markovian case

3

R(t)= g R;(t), (2.43)

where R;(t), for i =1 or 2, is given by

Now the correlation functions have a finite width. The
relaxation tetradic is defined by (2.21)

r

R;(t)=— [cr3, ]+i cx—;(ai oz+crz cr, }
2 2

'
2 2

0 . —Et.t
i I —( —o ".a —) 1 — cos(coot) — sin(coot) et l

—Ett+i —
I i[os, ]—a;(ai oz+oz a, )I sin(coot)+ cos(coot) e

2 2

with

o,'1 ——1 and a2 ———1.

Rz(t) is given by

—E3t
Rz(t) = —i —I 2( —o3.cr3)(1 —e ) .

2

The various constants are defined by

(2.45)

relaxation tetradic. Then,

fi ~1+~2R=—
2 2

laz 1
r

r

~1-~2
+l

2 2
(ai az+az'a1 }

3

i & I .(.———a"o ) .t
i=1

(2.49)

r, =2g, (1+~02//)-', f«i=1,2

&;=2Q;(c00/e;)(1+a)0/e;) ', for i =1,2
13=2Q2 ~

(2.47)

(2.48)

For weakly non-Markovian noise, we consider the e's,
although finite, to be very large compared to c00, and
therefore, we can neglect the time-dependent terms in the

The system (2.25) then takes on the following form:

—
M 1(t)= —(coo+ 62)M2(t) —(I"2+I 3)M1(t),d

dt

—Mz(t) =(coo+61)M1(t)—(I 1+1 3)M2(t),
dt

—Mz(t) = —(I,+ I 2)M3(t),
dt

(2.50a)

(2.50b)

(2.50c}
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with the following definitions:

I'p ——I i+I'2, (2.51)
Q= tpp+tpp(51+62)+b, ibz—

'2' 1/2

I'= —( I 1+I 2) +I'3,1
(2.52) The populations and the coherence are given by

(2.53)

Pi {t}=~pi 1(t» = -,' [Pi(0)+Pz(0))+ -,
' [P,(0)-P,(o)]e

Pz(t) = &Pzz(t) & = —,
' [P,(0)+P,(0)]——,

' [P,(0}—P (0)]e
A

~2(t)=&p»(t) &-p„(0) ~(Qt)+—1 ~1+~2
sin(Qt) e

Q 2

(2.54a)

(2.54b)

1
+pz (0) [I' —I +i(h, —hz}]sin(Qt)e (2.54c)

And finally, the nonvanishing tetradic elements of 6 are
deduced from these expressions with the help of (2.28),

COp

+iQ —'Pg g 3
2

(3.2)

61111(t,s) =Gzzzz( t,s) =—,
' + —,

' e

-I'o(t —s)
61122(tIs) 62211(tIs) 2 2 e

(2.55a)

(2.55b)

3

H(t)= g hp;(t)o;, (3.3)

61212(t s) =IGzizi(tIs)

cos[Q(t —s))

&1+~2+ p+

V(t) =iky(ae ™ate' ')—oz . (3.4)

Np, Ipg(t), and y are defilied by (1.36), (1.37), and (1.38),
respectively. The stochastic properties of H(t) are given
by (1.39) and (1.40).

The Liouville equation for the density matrix p(t) is
now

Xsin[Q(t —s)] e r(s '1

61221(t,s) =62112(t,s)

1 [I 1
—I 2+i(dL1 —52)]2

Xsin[Q{t —s))e

(2.55c)

(2.55d)

i R p(t) =[Lp—+L(t)+L.(t)]p(t)

where

Lp=[HQ, ],
L(t)=[H(t), ],
L„(t)—=[V(t), ] .

(3.5)

(3.7)

(3.8)

~en the e's are made infinite, these expressions tend to
their counterparts in Sec. 1182 of the Markovian c»e as

Equation (2.47) shows that 6; is of order
Q(p/e), and vanishes in the hmit e~oo. In the fully
Markovian Hmit, there are no 4; energy shifts.

III. LINE SHAPES

Having shorn hove the relaxation enters into the time
behavior of the spin system, we now make the latter in-

teract with a radiation field to see the effects of this relax-
ation on the spectral line shapes.

A. Second-order partial averaged density matrix

Let us define

U(t, s)= T exp ——f dr[LQ+L„(~))

Ut(t, s)= T exp —' J dr[LQ+L„(~)]

From (3.5}it follows that

p( t)= U(t, 0) T exp ——I ds Lt{s) p(0),+—

where

(3.9a)

(3.9b)

(3.10)

The total H'uniltonian is now given by

H(t) =Hp+H(t)+ V(t), (3.1)

Lt(t)=U (t 0)L{t)U{to) (3.11)

is the stochastic Liouvilhan in the interaction representa-
tion. The averaging of the time, ordered exponential in
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(3.10) is again handled by the cumulant method, and is
identical in form to the one that had to be performed in
Sec. II [see (2.13)]. Therefore, the averaged density matrix
is now found to obey the following differential equation:

the effect of the one term of zeroth order in L„(t), which
represent the "direct" relaxation of the spin system. We
shall therefore approximate the expression (3.14) by

0—&p(t) & = — [L—o+R (r)+L„(r)]&p(i) &,
fi

where the relaxation tetradic R (t) is defined by
0

R (t)= ——f ds & L(r) U(t, s)L (s)U (r,s) & .

The expression (3.13) can be rewritten

3

R(r)= g R;(r),

(3.12)

(3.13)

(3.14)

&g -~,(~ —S)R;(t)= —iRQ; ds—e ' [a;, ]

)(exp — (r—s)Lo —[0;, ]

(3.18)

~l —6f[t —S)Ri(t) =— i~—; dg
0

E

Xexp —(r —s)I.O
is

(3.19)

(3.15}

In the case of white noise, the e's are infinite, and there-
fore the correlation functions are Dirac delta functions.
(3.15) then gives very simply

which is the extension to the full Hilbert space of the re-
laxation tetradic given by (2.21).

Thus the formal solution of the differential equation
(3.12) is

&p(i) & = T' exp ——f ds[LO+R (s)+L„(s)] p(0),
3

R= —iA g Q, ( —o; o';) . (3.16) (3.20)

The presence of the unit superoperator in the photon
space is implicit, and therefore, this relaxation tetradic is
simply the extension to the full Hilbert space of the relax-
ation tetradic in the almmce of the radiation field given by
(2.30). We recall that in the Markovian case, the trunca-
tion of the series of cumulants is exact, and therefore, the
expression (3.16) and the results derived hereafter for this
case are exact.

By comparing (3.14) to (2.21), we sm that in the non-
Markovian case the relaxation tetradic in this problem is
not a simple extension to the full Hilbert space of the re-
laxation tetradic in the absence of the radiation field.
However, we can write the superoperator U(t, s), given by
(3.9), as follows:

&p(t) & = T exp ——f ds [Lo+R (s}]

X Texp —— s „s pO, (3.21)

where

where R (r) is the extension to the full Hilbert space of the
relaxation tetradic in the ateence of the radiation field.
This holds for both the Markovian and non-Markovian
cases.

Using now the "interaction picture" with respect to
V(t), &p(r) & can be rewritten as follows:

U(t, s) =exp — (r s)LO— —

g l
drexp — (t ~)LO L„—(t)

4

L„(t)= T exp —f ds[LO+R(s)] L„(t)

& Texp —— s I.O+R s (3.22)

l
)&exp — (~ s)LO +——(3.17)

This expression can be used to write R (t) as a series in the
Liouvillian operator L„(t). All terms of the series involv-
ing the latter represent the feedback influence of the radi-
ation field on the relaxation induced by the stochastic
magnetic field. The effect of these terms on the spectral
line shape is expected, and found, to be small compared to

By expanding the second time-ordered exponential on the
right-hand side of (3.21},one can write

(3.23)
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(p (t)) =G(t,O)p(O),

tl

(p'"'(t)) = ——' f dsi f ds2 f "
ds„G(t,s, )L„(s,)G(si, sq) . - G(s„ i,s„)L„(s„)G(s„,O)p(0) .

o o o
s

(3.25)

We refer to (p'"'(t)) as the partial averaged density ma-
trix of order n. G is precisely the super Green's function
which governs the time behavior of the spin system in the
absence of the radiation field,

r

G(t,s)= T exp ——I drtLO+R(r)] (3.26)

The series (3.23) is the generahzation in form of the usual
expansion of the density matrix of a nonperturbed system
interacting with a radiation field, where the super Green's
function would simply be

G(t,s) =exp — (t ——s)L0 (3.27)

&( G (s i,sq )L„(sq )

XG(s2,O)p(O) . (328)

In the applications to photon processes, the physical ob-
servables are obtained from the density matrix using even
orders of the interaction V(t). Therefore, the relevant
partial averaged density matrix for a single-photon pro-
cess is the one of second order,

S)
(p( (s)) = s— f ds, f dss G( ) ss( L)s,

0 0

and the initial density matrix is

«O) =
I

1 & & 1
I
e

I
n & &n I, (3.3O)

where n is the number of photons, and ~1) represents the
ground state of the two level system. It was established in
Sec. II that the tetradic elements of G have the following
PfoPcItlcS:

Giijk —Giij j~jk I

Gkji =Ga,jsk

~iijj Giijj s

(3.31a}

(3.31b)

(3.31c)

Gijki =Gijkl(~ik~jl +~il~jk ) «« Aj '«k&~

Gijij Gjiji—I

Gij'ji =Gjiij s (3.31f)

Using the expression (3.28) for the second-order partial
averaged density matrix and the properties (3.31a), (3.31b),
and (3.31d), the explicit form of the averaged probability
of transition (P(t)) is

(3.31e)

The averaged probability of transition in a single-photon
absorption process is then

(P(t))=(n 1—
( (2( (p"'(t)) (2) (n —1) (3.29)

(P(t)) = — g I dsi J . ds2(n —1
( [G z;;2( t )sLiN(iski)Gikt(s st)L„~ I(Iis)iI}G2»i)i()sz, O) ( n)(n ( ] ~

n —1),1

, k, i,

m, n,p

1 g S)
(P(t)) = — g dsi ds262q;;(tssi)Gki~„(siss2)Gi)i) ii(s2, 0)

+;k, i,

m, p$Fp

«n —1 l, lL.;;ki(si}L. ~,(s2) (n&&n ~] [n —1) . (3.32)

Using the identity

jkl(t} l ~(t) ]ijkl = I ik(tel' 4i ~ij (t}' (3.33)

one finds

&n —1
I PDiikl(si)Lumnpp(s2) ln&&n I]In »= n—+r'(~2—}ik(~z)~.(6(i6~,e

'"" "'+&.,eke'"" "'). (3.34)

Since oz is purely nondiagonal, (3.32}can be written as follows:
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S)(P(t))=et'g g (ct)te(ct) „f ds, f 'dstGtttt(ts, )e 'Get (s„„st)e 'G»(sto, )

k l mn
k~lm~n

+BI g g (&2)tk(&2)ntn Ill dsl fo d$2 622kk(tssi )e Gklntn(sle$2)e Gnn 11($2,0) .
k l mn
k~l m~n

(3.35)

Given the properties (3.31c)—(3.31f},by interchanging the indices k and I, and m and n in the second term on the right-

hand side of (3.35},it is easily seen that the latter is the complex conjugate of the first term. Then

S)
(P(t)) tt)' =f 1st f 1st Gtttt(ts, )e 'G, t„(s„st)e 'G»»(s„o)+cc

— 2 1 —iNS i lNS2+ ny odsl 0
ds262211(t si)e 62i21(sl $2)e 622il($2 0)+c.c.

e-2 1 —lNS) iN$2
n Y 0 $1 0

d$2 62222(t Si )e 61221($1 $2)e 62211($2,0}+cc.
e

0 0
$2 2211 f,$1 e 62112 $1,$2 61111 $2,0 +C.C. (3.36)

The diagonal tetradic elements of 6 are of the form

—I O(t —S)
G;,JJ(t,s) = —, + —,e

All te~s in (3 36) that involve the exponentias abo ve tend to a inst nt whm t tends to l~imty. Therefore

tT 2. d —1NS )»m —(P(t)) =—
Y lim — ds, ds {e '[61212($1,$2)+62121(sl,s )

t~te) dt 4 thos dt 0 0

(3.37)

AS 2—61221(sl,s2) —62112(sl,s2)]e +c.c. ] (3.38}

md the no~a ZK sp trd line shape is given by

ds {e {.61212(t s)+62121(t»)—61221(t s) —62112(t,s)]e'"'+c.c. j
2m' t~m

(3.39}

This general expression is evaluated for various special
cases in the Secs. III 8 and III C.

8. Markovian case

1. Isotropic stochastic properties

I (e(2) =—1+ 1——1 M

0
12—I 1

2I
I

(~ n)2+—r'

(3.42)

The nonvanishing tetradic elements of 6 which appear
in (3.39) are given by (2.35c),

(iNO —I )(t —S)
61212(t,s) =62121(t,s) =e (3.40)

co is tuned to the vicinity of the natural frequency F00,

therefore 62121(t,s) will produce an antiresonant term
which can be neglected. The line shape is given by

I and Q are given by

r= —(r, +r,)+r, ,
1

2

with r» I 2, and I & defined by (2.37).

(3.43)

(3.44)

1 II (to) =—
~ (tie —too) +r

where 1 is defined by (2.33).

(3.41} C. Non-Markovian case

Now the tetradic elements of 6 in (3.39) are given by
(2.55c) and (2.55d). The line shape is again given by

2. Nonisotropic stochastic properties

All the tetradic elements of 6 which appeir in (3.39) do
not vanish in this case, and are given by (2.42c} and
(2.42d). The line shape takes on the following form:

I(to) =—1+ 1 ——
Q

I 2-I1
21

I
(re —0}+I

(3.45)
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Here I and 0 are given by

(3.46)

)
2' [st2

(3.47)
2

APPENDIX

Here we present the various steps of what we have re-
ferred to as the natural approach. Starting with the quan-
tum I.iouville equation

h=b, i
——hi . (3.49)

Finally, we shall note that for the isotropic stochastic
properties, non-Markovian case, a long and difficult com-
putation has shown that, to lowest order in e ', the
correction to the approximate relaxation tetradic (3.18),
relevant to the single-photon process, does not influence
the line shape. The effect is to replace the coupling-
strength constant y between the spin system and the radi-
ation field by a larger coupling strength constant y,tr
given by

y.tt=y(1+2Q/s)' '=y(1+Q/e) . (3.50)

where the I'&'s and 6 s are defined by (2.46)—(2.48}. For
isotropic stochastic properties, (3.45) reduces to

I (co)=—1 I (3.48)
~ (c0—t00 —b.)2+ I

where

p—(t)=[Lo+L(t)+L„(t)]p(t),
Bt

(Al)

where the three I.iouvillian operators are defined by
(1.9)—(1.11), this equation has the formal solution

Using the interaction picture with respect to V(t), the ex-

pression (A2) is rewritten as
h

p(t) U(t0)=Texp ——f dsL„(s) p(0),

where

L„(t)= Ut(t, O)L„(t)U(t, O),

U(t, s)= Texp ——' f d—s[Le+L(s)] (A5a)

p(t) Tex=p ——f ds[Le+L(s)iL„(s)] p(0) . (A2)

Physically, this means the instability of the states induced
by the stochastic coupling between them increases the
probability of transition in the photon-absorption process.
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U (t,s)= T exp —' f dr[LO+L(g)] (A5b)

(A6)

where

The expansion of (A3) in terms of L„(t)defines the partial
density matrix of order n, p["'(t), as follows:

p"'(t) =U(t, O)p(0),

'n
S)] S

p'"'( ) —
t) fe dst =fe dss f

ds„U(tet�

)L„(st )U(stet) L„(s„)U,(s„0)p(0) . , (A8)

The probability of transition, in a single-photon absorption process, is given by

P(t)=(2[ (n 1[ p' '(t)
[ n —1—&

~
2&

g Si
~(t)= f ds, f ds—,{n—1( (2~ [U(ts )L[(s0, )U(s sz[)L„(s )U2(s 02) )1)(1~ (n)(n

~ ] (2)
~

n 1&—
(A9)

or in explicit form

1 t s1
d~2&n —1

I

[U22)J(t»[)LU)jkt(&[)Ulled~(&[»2)L0~~(&2)&pqli(~2,

0)
(

n )(n ( ] (
n —1) .

i,j,k, l,

(A10)
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The tetradic elements of U cannot be computed if the sto-
chastic Hamiltonian H(t) has off-diagonal tetanus. The ex-
pressions (A9) or (A10) cannot be averaged since we are
dealing with the average of a product of the form (1.17).

In the special case where H(t) is diagonal, we have

I(co)- lim —{P(t)&,
d

t~«) dt
S

1(ru)= f ds e ' exp i J dalai(r) )2n 0

01

H, +H(t) =A cJ3+fab3(t)F3
2

(Al 1)

or, equivalently,

+C.C. (A18)

Hp+H(t) =&lco2(t)
I

2& &2
I
+coi(t)

I
1&&1

I ]
where

S

I(co)= f dse exp i f drco(r)

(A19)
QP0

co2(t) = +$3(t),
2

N0
coi(t) = — —(()3(t) .

2
(A13b)

co(t) =2/3(t) (A15)

is the fluctuation in frequency. Then, the tetradic ele-
ments of U can be computed,

Ujkt(t, s)=exp —i dr[co (r) coJ(r)] —& kit (A16)

This implies that the first and the last tetradic elements in
(A10) reduce to unity, and the probability of transition
reduces to

P(t}=Ky f dsi f ds2 e

In this case, we can consider, as Kubo did, the system as
an oscillator with a randomly modulated frequency since

co2(t) —coi(t) =cop+co(t),

where

As an application of the fluctuation-dissipation theorem,
the expression (A19) was used by I( ubo as the basis of his
stochastic approach to line broadening, based on the oscil-
lator model. '

Given the stochastic properties of $3(t} [(1.39) and
(1.40)], the cumulant method gives

exp i tN t
S S

=exp ——, dri dry{co(ri)co(rz) &

rI (co)=-
'ir (co —cop) +I (A21)

S —E3T=exp —2Q3e3 dr(s —r)e
0

For weakly colored noise,

~

~

exp i tee t =e (A20)

and therefore, the expression (A19) gives for the spectral
line shape

2
+exp i tee t with

(A22)
+ c.C.

(A17)
The averaging of a single exponential can be handled by
the cumulant method, and therefore, (A17) can be aver-
aged.

Finally, let us note that even in this particular case
[H(t) diagonal], this method cannot handle a multiphoton
process. For example, a two-photon absorption process in
a three-state system would lead to a probability of transi-
tion of the form

f $1 $2p(t)- f dsi f ds2 f ds3 f ds~ e " ' ' exp i f drco32(r)

—I (co—u&1)(s& —s4) . 2
S

Xe " ' ' exp i drcoii(r) +c.c.
$4

si $2

+ f dsi f dsz f 'ds3 f 'ds4 e
'" """""'exp i f 'drco3$(r)

—i (tsar —A@21)(s4—s3 ) 3S

Qe exp i dtco2& t +c.c.
$4

SI $2 $3 —(—
+ f dsi f ds2 f ds3 f ds4 e exp / f drco32(r)

S—l (CO —0)21)($4—$3 ) . 4
Xe exp i drcoii(r} +c.c.

$3
(A23)

which cannot be averaged.
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