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Adiabatic-invariant change due to separatrix crossing
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A slowly varying Hamiltonian with one degree of freedom and nearly closed orbits has an adia-

batic invariant. This adiabatic invariant is conserved to all orders in e, the slowness parameter, ex-

cept for orbits that cross a separatrix. The present work discusses the change of the adiabatic in-

variant during this crossing process through order e. First, a calculation of the change of the adia-

batic invariant is presented. This calculation is general and, hence, encompasses previous results for
specific cases. The change in the adiabatic invariant is shown to depend on a maximum of five pa-
rameters, which are functions of the Hamiltonian of interest. Second, the statistics of this process
are derived. Finally, these results are applied to the motion of a particle in a wave with changing
amplitude and phase velocity.

I. INTRODUCTION

Nearly periodic orbits of a Hamiltonian H(q, p, et) with
one degree of freedom and slow time dependence e«1
have been extensively studied. The action I(h, A,

—=et), the
area enclosed by a contour of constant energy (i.e., value
of the Hamiltonian) h =H(q, p, et), is an adiabatic invari-
ant to lowest order in the slowness parameter e. Further-
more, there exists' an adiabatic invariant

J=I+eJ&(p,q, k)+e J2(q,p, &)+

which is conserved to all orders in e for a time that is
0 (1/e). The corrections J&,Ji,J3, . . . have been calculat-
ed in many special cases. In Appendix 8 the calcula-
tion for general Hamiltonians with 1 degree of freedom is
presented.

For practical application of adiabatic thtery one must
verify that the terms in Eq. (1) are successively smaller.
This allows one to use only the first few terms of the
series. This is important since the series is usually asymp-
totic, not convergent, and, in any case, only the first few
terms in the series are ever calculated and used.

The general theory (see Appendix 8) shows that the ra-
tio of successive terms in Eq. (1) is of order
5(h, A, )—=@To(h,A, ), where To(h, A, ) is the period of the or-
bit of energy h for the frozen Hamiltonian. (The frozen
Hamiltonian at parameter value A, is the time-independent
Hamiltonian obtained by the limit a~0 with A, held con-
stant. ) The requirement 5 «1 is simply that the Hamil-
tonian must change little in one period for adiabatic
theory to apply.

This requirement is not satisfied for trajectories in the
vicinity of the separatrix. (A separatrix is a contour of I
containing an x point, a saddle point of H. The generic

separatrix, a figure eight, is shown in Fig. 1.) The lack of
validity arises because the period To is infinite on the
separatrix. Hence, no matter how small e is, the parame-
ter 5 is arbitrarily large in some neighborhood of the
separatrix.

This would be of little consequence were few trajec-
tories ever near the separatrix, but, in fact, adiabatic
theory indicates that many trajectories cross separatrices.
For example, consider a trajectory initially in region c
(referring to Fig. 1). As long as the trajectory is far from
the separatrix, the adiabatic invariant J remains at its ini-
tial value J;. However, if the sum of the areas 1;(A,) in-
side lobe a and Ft, (A, ) inside lobe b are increasing in time,
then there eventually comes a time et, =A,„wecall the
pseudocrossing time, such that J;= F,(A, ) = F, (A,„,)
+ Fb(A,, ). At later times the trajectory has crossed the

FIG. 1. Contours of Hamiltonian with a typical, figure eight
separatrix. Arrows indicate direction of Aow when the energy
increases upon entering region c.
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separatrix and is confined to either lobe a or lobe b .A
new adiabatic invariant is well conserved at some final
value Jf. However, its definition has changed while
crossing the separatrix, during which time adiabatic
theory ls Ilot valid.

The motivation for analyzing this problem comes from
studies in many fields. Action-variation calculations have
been applied to studies of energy and momentum balance
for waves in collisionless plasma, ' ' while slow separa-
trix crossings have been discussed in studies of mirror
containment degeneration due to low-frequency fluctua-
tions" and particle transport in strongly turbulent plas-
mas. '2 Slow separatrix crossings also occur in high-
energy accelerators, where coasting particles are trapped
and bunched by slowly ramped rf fields, in colliding beam
storage rings, where betatron amplitudes can diffuse due
to repeated slow crossings of synchrobetatron coupling
resonances, ' and in three-dimensional toroidal plasma-
confinement systems. In addition, slow separatrix cross-
ings occur in celestial mechanics ' ' due, e.g. , to tidal
dissipation effects.

Previous analyses dealt with separatrix crossings for the
particular Hamiltonian

H =p /2+2 (t)cos[q —y(t)]

of a particle moving in a wave with a slowly varying am-
plitude A =O(e} and phase velocity p=O (e). (The over-
dot denotes time derivative. ) Pocobelli' discusses the
continuity of the elliptic function solutions across the
separatrix. Menyuk' numerically analyzed a particular
case of (2} obtained by summing two waves of constant
amplitude and phase and close in frequency. He found
that all particles that cross the separatrix are stochastic in
the limit e~O.

Other analyses seek to determine analytically the
spreading in the adiabatic invariant due to separatrix
crossing. However, these analyses applied only to the
cases of fixed amplitude' or fixed phase velocity. 2 ' '

The present results include these previous results as spe-
cial cases.

The present work is a general analysis of the separatrix
crossing process. A detailed calculation of previously re-
ported results is presented. Not surprisingly, it is found
that to lowest order the final value of the adiabatic invari-
ant is phase independent and is given by Jf——F~(A, ) for a,
particle ultimately in region P (P=a, b, or c). However, it
is also shown that there are phase-dependent deviations
5Jfp~ Jf Fp(A,, ) of order @in (e). [This is an improve-
ment over the previous result of sin (e) of Janicke. ~ ]
This phase dependence implies that for separatrix crossing
orbits, the adiabatic invariant is not conserved to all or-
ders in e, but only to lowest order.

The main calculation of this paper is in Secs. II—V.
Section II is an overview of the calculation. Preliminary
to calculating the deviation, the adiabatic theory for parti-
cles near the separatrix is developed in Sec. III. To
correctly calculate the deviation of the adiabatic invariant
through order e, the first-order correction to the adiabatic
invariant must be obtained. Then, in Sec. IV, the change
of the adiabatic invariant for a single oscillation period is
obtained. In Sec. V the sum of changes due to all the

steps is calculated.
For many problems a statistical analysis is important.

For this purpose an ensemble of trajectories with initial
conditions uniform in an adiabatic invariant annulus is
considered in Sec. VI. Phase mixing causes this to be the
asymptotic (t~cc) distribution for any initial distribu-
tion with a narrow spread in J. For such a distribution
the probability distribution for the crossing parameter ho
and various moments of 5Jf are calculated in certain spe-
cial cases.

In Sec. VII these results are applied to the motion of a
particle in a wave with slowly varying amplitude and
phase velocity. Specializing to the cases of constant am-

plitude (q)»0, A=O) and constant phase velocity (tp=O,
3+0) allows comparison with previously obtained results.
The present results agree with those of Timofeev 0 for the
constant-phase-velocity case. However, there is a
discrepancy between the present results and those found
previously for the constant amplitude case in Ref. 19.

u. ovpRVImv Oe THa Ch.r.CUx.~mOx

H =co(p q) /2+ 5H (q,p, k, )—, (3a)

5H =0(q, q p, qp, p ), (3b)

and ~ is a constant. In Appendix A it is shown that an
arbitrary slowly varying Hamiltonian can be put in this
form to arbitrarily high order in e. With this choice one

The main goal of this work is the calculation of the
change of the adiabatic invariant due to separatrix cross-
ing. This calculation is performed in Secs. III—VI. In
this scetion, an overview of the calculation is presented to
lay out the major issues.

A trajectory that crosses the separatrix consists of three
parts. Long before the actual separatrix crossing, adiabat-
ic theory is valid. For those oscillations in the vicinity of
the separatrix, adiabatic theory breaks down. Long after
the crossing, adiabatic theory again is valid. The change
of the adiabatic invariant occurs during the critical oscil-
lations in the vicinity of the separatrix.

This scenario suggests that the analysis of the trajectory
can be split into three portions. The portions of the tra-
jectory long before and long after the crossing can be
treated by standard adiabatic-invariant theory. According
to standard adiabatic theory, the adiabatic invariant is
conserved to all orders. This implies that the first-order
corrected adiabatic invariant J'—=Jc+eJi deviates from
being constant by the magnitude of the next correction
e J2 during these two portions of the orbit.

To connect these two parts of the trajectory the portion
of the trajectory near the separatrix must be analyzed.
This analysis cannot rely on the validity of the adiabatic
invariant, because the series for the adiabatic invariant
rapidly diverges near the separatrix, as is shown in Sec.
III. Instead, the variation of only the first two terms,
Jo+eJi, of the series is calculated for the portion of the
trajectory near the separatrix.

This part of the analysis is greatly simplified by assum-
ing the Hamiltonian has the form
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can use the approximation of small energy h in the calcu-
lation of the variation of Jo+eJ, for the portion of the
trajectory near the separatrix.

For the figures and purposes of discussion, the choice is
made that the energy inside the lobes is negative, so the
flow proceeds clockwise around the lobes. This choice
helps prevent sign confusion. However, provided one cal-
culates the various line integrals, such as in Eq. (17), by
integrating along the flow, all of the formulas are valid
with other conventions for the energy.

The first part of the calculation is the development of
adiabatic theory for particles near the separatrix. This is
carried out using standard techniques in Sec. III.

There are three types of separatrix crossings to be dis-
cussed (see Fig. 2). A double crossing occurs when a tra-
jectory begins in one lobe and ends in the other. The tra-
jectory crosses the separatrix upon both leaving the initial
lobe and entering the final. The two types of single cross-
ings occur for trajectories that begin or end outside both
lobes. Without loss of generality the choice is made that
either the particle is initially in lobe a, and/or it is ulti-
mately in lobe b.

As in the work of Timofeev2 the small-h analysis
proceeds by breaking up the crossing into a sequence of
steps. Each step is a single- or double-lobe encirclement
from one vertex, a point on the trajectory close to the x
point, to the next vertex. A vertex is defined to be an in-

FIG. 3. Orientation of phase space for the calculation. The
figure defines the labeling of the distinct vertices u and I of re-
gion c.

tersection of an orbit with the line q=O or the line P=O.
The four possible types of vertices are labeled as shown in
Fig. 3. The vertices are not uniquely defined because the
canonical transformation to q and P is not unique. In Ap-
pendix F we will show that the final answer is neverthe-
less independent of the coordinate system.

Next, the change of the adiabatic invariant in a single
step is calculated in Sec. IV. The single-step period and
energy change are calculated using time-dependent pertur-
bation theory. These results allow one to calculate the
change in the adiabatic invariant for each step.

The final value Jf of the adiabatic invariant is calculat-
ed in Sec. V by summing the effects of the steps before
and after the crossing. This gives the result in terms of
hp and fp, the values of h and t at the zero vertex, which
is the vertex in region c which is closest to the separatrix
crossing(s) (see Fig. 2). To complete the calculation, the
relation between to and the pseudocrossing time t, must
be found. Use of this relation gives the formula for J/ in
terms of the initial value J~ of the adiabatic invariant and
the crossing parameter ho.

III. ADIABATIC THEORY NEAR THE SEPARATRIX

(c)

FIG. 2. Illustration of possible types of motion. A double
crossing for a particle beginning in lobe a and ending in lobe b
is sho~n in (a). Single crossings are shown for a particle begin-
ning in a lobe (b} and ending in a lobe (c). These illustrations are
only schematic. Actually„ the motion loops stay roughly con-
stant in size while the separatrix-enclosed areas change.

To cross the separatrix, a trajectory must be near the
separatrix. For this reason it is necessary to first develop
adiabatic theory for particles near the separatrix. That is,
the various quantities of adiabatic-invariant theory must
be calculated for small Ii. The reason for this calculation
is that it underlies the calculation of the effects of separa-
trix crossing. As will be shown later, the values of h
relevant to the crossing process are of order e.

In the most famihar form of Hamilton's equations, t is
the independent variable, while q and p are dependent
variables. In the present calculation it is more convenient
to use q as the independent variable and t and h as the
dependent variables. Given q, t, and h, one can solve

H(q, P(q, h, A, ),A. )=Ii,
for the function P(q, h, A, ). Application of the chain rule
to Hamilton's equations yields the equations of motion

BP(q, h, A, )

i3h

and
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BP(q,h, A, ) BP(q,h, A, )

Bt N,
(5b)

frozen at A, . The instantaneous period is given by the loop
integral

Po=(2h/a)+q )'i (6)

is found by neglecting 5H. The first correction is ob-
tained by Taylor expansion and resubstitution,

P =Pa —(BPc/Bh)SH(q, PO(q, h), A, ) .

For later reference the derivatives

=(2aih+to q )

+a)(2coh+tozqi) / 5H(q, (2toh +to q )'~~, A, )

i d5H(q, (2a)h +to~q2}'~2, A, )—2ciih +CO q

(These equations can also be derived from the principle of
least action expressed in canonical coordinates. ) An
inessential difficulty of this formalism arises in the
analysis of trajectories on which BH/Bp vanishes. i5

In the analysis that follows, phase space is divided into
two regions. In the region far from the x point, the vari-
ous functions can be evaluated by Taylor expansion in h.
Near the x point this approximation is invalid. Instead,
the solution of Eq. (4) may be found by perturbation
theory based on the Taylor expansion (3). For exterior or-
bits ( h p 0}the lowest-order solution

To{h,k, )=gdq (q,h, A, ) .
I'
h

The contribution from encircling lobe b to the period of
a particle in region c is given by

f ~d BP(q,h, A, )

Of course, q„=qt——0. This notation indicates that the in-

tegral proceeds along the flow from the upper vertex to
the lower vertex. This integral is evaluated by dividing it
into the contributions of the upper and lower halves. The
contribution

(h ){) d
BP (qph7 A )

Obg

of the upper half is defined to be that part of the integral
from the vertex to some final curve given by qs{h, A, ).

From the expansion (8), it is seen that the integral (11)
is singular near q=O. Therefore, the singular portion is
subtracted off,

Tos„(h,k)= f dq(2coh+c0 q )

+ 'qgq, ,

where

a11d

aP/N, =(~P, )-'55H/eA, +

(8) R —=BP/Bh —{2coh +co2q2)

The first integral is found by standard methods to be

q&

q 2NA+co q = 2~ ln 2~q& Q +0 h

(13)

H(Q(p, h, A, ),p, A, )=h, (10a}

must be found. The corresponding equations of motion
are

dt BQ (p, h, A, }
ah

(10b)

dh BQ(p, h, A, } BQ(p, h, l.)

ah

The perturbation expansions and the calculations of the
interior orbits are entirely analogous to those of the exteri-
or orbits. Hence, in the interest of brevity, they are not
presented.

A. The instantaneous period

The instantaneous period TD(h, A, ) is defined to be the
period of an orbit of energy h at the parameter value A, for
fixed e. That is, it is the period for the Hamiltonian

are given.
For interior orbits (h&0) this perturbation theory

breaks down because BPOIBh vanishes at the vertex. In-
stead, such orbits are analyzed by using p as the indepen-
dent variable. In analogy with Eqs. (4) and (5}„the func-
tion Q(p, h, A, ) satisfying

(14)

The second integral of Eq. (12) is evaluated by dividing
the integration region at qt, a value which has order less
than unity,

Tob„(h,A, )= f dqR(q, h, A, )+ f dqR(q, h, A, ) . (15)

To evaluate the first integral, the perturbation expan-
sion (10) is used. This gives

qZq, , =Oq, .

To evaluate the second integral of Eq. (15) the Taylor
expans1on

R (q, h, A, ) =R (q, O, A. )+h ' ' +aR(q, o,z)

is used. When integrating the first term in this expansion,
the lower limit of the integral may be set to zero. This in-
troduces an error that is O(qI). The term BR/Bh in this
equation is bounded above by an order-unity constant di-
vided by q . Hence, upon integration, it yields a contribu-
tion of order h/qr. Therefore, the second integral of Eq.
(15) is given by

f dqR(q, h, k)= f dqR(q, O, A)+O(h/qI) .
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When the two integrals of Eq. (12) are combined, the
various constants of order unity may be collected into the
logarithm. The final result is

Tob„——(2a)) 'ln fhb„/h I
+O(h/qt)+O(qt) . (16)

The constant h~ is given by

ln
I hb„ I

=ln
I 2coqti I

+2' f dq 8 (q, O, A, ) .

From Eq. (16) it is seen that the error is minimized by the
choice, qt ——0 (h '/ ), in which case the error of Eq. (16) is
O(h'").

The period for the lower half of the orbit can be ob-
tained in the same way. The only difference in the answer
is a change in the constant, hb„~hbt. However, even
these may be made equal (hb =hb„——h») by a choice of
qit(h, A, ), since modifying qit changes Tob and Tobt by
opposite amounts of order unity. This choice amounts to
requiring

f dqR(q, O, A)= f dq8(q, O, A) .

These integrals are defined to proceed along the flow.
This choice of qtt gives the results

and the results of Sec. II. Straightforward integration
gives

and

I,(h, k)=I;+(h/~0)(1+in
I h, lh

I
)

+p, (A) fh I'~+o( fh f'~ ) (20a)

Ib(h, A, )=Yb+(h/co)(1+in
I
hblk

I
)

+pb(A, } fh I

~ +o( fh fi~ ), (20b)

where I' is the area enclosed by lobe a. For a particle
encircling both lobes, the action is simply the sum

I(H(q,p, A, ), A, ), the action has the following property.
The value of I on a contour of constant I equals the
phase-space area enclosed by that contour. This implies
that the action cannot be a continuous function across the
separatrix.

The action can be easily calculated from its energy
derivative,

BI(h, A, } d BP(q,h, A, )
dq +To h, A

and

Tot =(M) 'lnfhblh f+0(h'~z)

Tobt=(2') 'ln
I
hblh I

+O(h' ) .

I, (h, A, )=I;+(2h/co)(i+in
I h, /h

I )

+p, (A, }fh I

~~ +o( fh I

~
) . (20c)

The total instantaneous period is found by adding these
two results,

Tob(h A}=co 'ln
I hblh

I +pb(x}
I

h
I

' +o( fh I

'
) .

(18a)

The quantity pb(A, ) need not be known for this analysis.
However, the fact that it is a function of A, alone is needed
to determine the error in the change of the adiabatic in-
variant in a single step. The period for an interior orbit,
which is found by using the alternative formalism (10},is
also given by (18a). The analysis of lobe a is identical.
Therefore,

To,(h, A, )=to 'ln fh, /h
I +p, (A, }Ih I

'~ +o( Ih I

'~ ) .

(18b)

C. First correction to the adiabatic invariant

The change in the adiabatic invariant is a quantity of
order e. To be properly calculated the adiabatic invariant
must itself be computed through order e In this s.ection
the first correction to the adiabatic invariant is calculated
using the theory of Appendix B.

The correction to the adiabatic invariant depends on q
as well as h and t. Therefore, one must specify the loca-
tion on the energy contour at which the action is being
calculated. For the calculation the adiabatic invariant at
the vertices is needed. There are four such vertices, as can
be seen in Fig. 3. The four corrections to the adiabatic in-
variant wi11 be labeled accordingly.

According to Eq. (814) the correction to the action at
vertex b is given by

For a particle encircling both lobes the total instantaneous
period is simply the sum of the separate periods,

To (h.~}=(2/~)hi
I h. lh

I +p. (~}
I
h

I

'"+o(
I
h

I

'"»
(18c)

1 ~gab ~gOb"=2 ah aX

BP(q,h, A, ) ( & d, BP(q', h, l, )
(21)

where h, =—(h, hb)'~ .

B. The action

The action is defined to be the phase-space area en-
closed by a contour of H. In terms of the momentum
function P, the action is given by

I(h, A. )=fdq P (q, h, k, ) . (19)

Considered now to be a phase function by substitution,

where qb is the location of vertex b, i.e., P(qb, h, A, )=0.
The loop integral over dq may begin and end at any point.
The choice here is to use qs, which was defined such that
the upper and lower half-periods of Sec. IIIA are equal.
As discussed in Appendix 8, the branch of the mul-
tivalued integral over dq is specified by requiring the in-
tegration to proceed along the Aow.

This expression simplifies if the replacement

& d, BP(q', h, A, ) 4'Ob p'tb d, BP(q', h, A, )

i3A, BA, e i)A,
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is made for that part of the dq integral from qz to qs.
With this the expression (21) for J» can be rewritten in
the form

1 ~/oa ~gob ~+Oa /Ob

a~ a~
(27)

where

+J]s++Jis- (22)

where g, =g, +g~.
Equations (20) can be used to evaluate this expression.

In this evaluation, BI, /BA, =dF, /dA, to relevant order.
Differentiating the remainder term ( h/ca)(1+in

~
h, /h

~
)

with respect to A. gives a term of order h which may be
neglected. The result of these inanipulations yields

aP(q, a, z) q, aP(q', a, X)J +—= —
q,

dq a'h'
q,

dq' ai
Ji„——g, +[(dI;/di. )ln

i
hb/h

i

—(d1'i /&&)In
~
h, /h

~
]/(~)+O(h) .

and

'ib BP(q,h, A, ) i& ~, BP(q', h, l, )

ai
"' a~

(23b)

A summary of the expressions for the first-order
corrected adiabatic invariant,

J'=Jp+eJI,
The first two terms of expression (22) for J» cancel since

qa was chosen to be the halfway point of the loop integral
of BP/Bh. Thus the expression for Jii, is

calculated in this section, follows.

J' =F (A)+5J +p, ~h ~'~2+o(
~

h ~'~ )+O(eh),

J&s JIs+ +J&b— (24) (29)

The value of Jii, has a finite value in the limit h~0.
In this limit qb ——0, and dP/M, =O(q ). [This last fact
can be seen in the perturbation expansion (9), upon using
the separatrix condition Po-(roq) . ] Hence the interior
integral of Eqs. (23) is O(q ). This cancels the O(1/q)
singularity of aP/alt. The correction to Jis due to
nonzero h is estimated in Appendix C and given by Eq.
(C3). Therefore, near the separatrix,

where a=a, b, or u, and

5J =(Ii/co)(1+in
~

Ii /h
~
)+eg (30)

for a =a or b, while

5J„=5J,+5Ji, + ( F, ln
i hi, /h

i

—Fgln
i h, /Ii

i
)/(2') .

(31)

Jib=gb+O(h), (25) D. Higher-order corrections to the adiabatic invariant

where

aP(q, o,z) &„,aP(q', Q, z)
gb = — Oq Bh' 0 q a

aP(q, o,z) 0, aP(q', Q, z)
&s Bh e BA,

(26)

Identical results are valid for J~, with the substitutions
b —+a and 8~A.

In all previously studied cases' ' the quantities g
vanish. This vanishing occurred because of a special sym-
metry between the upper and lower halves of the lobes.

It remains to calculate the correction J, at the upper
vertex. (The value at the lower vertex, while not needed
here, follows from the interchange of a and b. ) Accord-
ing to Appendix 8 this correction is given by

1 40 ~oi
aa

+
aa

~go ~poi

M.
+

aA,

(Of course, q„=Q. The notation of this equation is in-
tended to convey that the lower endpoints of the integrals
are at q=0 and P & 0.) The integral in this expression can
be divided into contributions from the separate loops.
With the results (23)—(25), this equation can be put in the
form

Some estimate of the higher-order corrections to the
adiabatic invariant is needed for this calculation. This es-
timate can be obtained by noting that in the calculation of
subsequent orders, an additional derivative with respect to
h is introduced in Eq. (88). This gives the dominant term
because it is singular as h ~0. This phenomenon is mani-
fest in the lowest two orders in that Jo has a finite limit
as h-+0, while Ji [see Eq. (27)] diverges logarithmically.
In the next order, another derivative is introduced. There-
fore,

J2 ——O(1/)'i) . (32)

IV. ADIABATIC INVARIANT CHANGE
DUE TO A SINGLE STEP

In this section the change of the adiabatic invariant in a
single step is calculated. In Sec. V the effects of individu-
al steps will be summed to obtain the total change of the
adiabatic invariant. The present calculation relies on the
two basic calculations of the time required to make a step
and the energy lost in making a step. Given these quanti-
ties, the change of the adiabatic invariant, which was
found as a function of h and t in Sec. III, is easily com-
puted.

Some of the error calculations in this section are partic-
ularly tedious. For continuity of development, these error
estimates have been relegated to Appendix D.
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A step is a single lobe encirclement. The beginning of
the step occurs at a vertex, when either @=0 or q=O.
This occurs at the initial time t =t; =A,; le. At this time
the particle is assumed to have energy h;. At the final
tiine tf =Af le the particle is again at a vertex and has en-

ergy hf. The goal is to find tf and hf given t; and h;.
To be specific we consider a step bebveen points 0 and l

of Fig. 2(b), which begins and ends at q=0 and encircles
lobe b T.he generalization to other types of steps is
straightforward .

The values of tf and hf are determined from the equa-
tions (5} of motion. An approximate solution to these
equations for t near tJ and h near hj (j =i or f} is ob-
tained by perturbation theory using

comes from using the lowest-order expression (35} for the
elapsed time. The two terms in this expression were cal-
culated in Sec. III. The results (18), together with the
just-mentioned error estimates, give

Tb=(2~} '»I hb(~ }~h I+(2~} 'lnlhb(~f)~hf
I

(41)

for the time required to encircle lobe b
The error in this expression arises from the neglect of

the correction (37), from the change of limits in the
second integral of Eq. (39), and the errors of Eqs. (18).
This second error 1s

O(eTt, ) =O(eln[minI
I h; I, I hf I ]]),

and

t(q) tj =h—t,o(q)+E&tj i(q)+

h(g) h, =—ebh, o(q)+e hh, ~(q)+

The lowest-order solutions are

aP(q, h, ,et, )
htjo(q) = dq'

q aP(q', hj, etj )
b h 0(q) = — dq'

while the first-order corrections are given by
T

q azp(q', hJ, etJ )
b, tji(q)= f dq' btjo(q')

(33}

(34)

(35)

(36}

i.e., it is the amount of movement of the endpoint of the
integrand in one period, which is related to the value of h
that is of lesser magnitude. The error due to the correc-
tion (37) is calculated in Appendix D and given by Eq.
(D7). In combination, these results give

Ts ——(2a)) 'ln
I hb(g, )/h, I

+(2~) '»Ih (~f)~hf I+O(eln[mint lh, I, Ihf I j])
+O(maxI lh, I

'", lh, I
'"$), (42a)

for the time required to encircle lobe b, and

T, =(2') 'ln
I h, (A,;)Ih;

I

+(2 ) '» Ih. (~f}~hf I+O(~»[minI lh I

+o( I I
h;

I

'", Ih I
'"1}, (42b)

and

a P(q', hj, etj )
+b,hj 0(q')

i3h

for the time required to encircle lobe a.

8. Single-step energy change
q aiP(q', h~, et~ )

ah, ,(q) = f dq' b, t,,—(q')J aA
According to Eqs. (5), the energy change in one step is

given by

a p(q', h, ,et; )

aha)
' (38) aP(q, h (q), et(q))Ah = —e dq

aA,
(43)

aP(q, h (q), et (q) )

ah

in which q~; denotes qadi(h, k;). The dominant term

e&; aP(q, h;, et; ) o aP(q, hf, etf )
T dg' —+ dp0 Bh &af

(39)

(40)

A. Period of a step

The period of a step is analyzed by breaking the step
into two halves. The first half is the portion from time t;

to some time intermediate between t; and tf. The second
half is the remainder from the intermediate time to the fi-
nal time. The exact expression for the period is

ap(q, h (q), et (q) }
dg

where the h (q) and t(q) are the actual orbits. The dom-
inant part of this integral is

aP(q, O, et; )—e f dq = —Y(A). (44)

hh, = —Y, +O(e in[min[
I h; I, I hf I I ])

+O(EmaxI
I
h'

I
(45a)

The energy change caused by encircling lobe b is similarly
found to be given by

There are two sources of error in going from Eq. (43) to
Eq. (44). The first is the neglect of the correction (38).
As discussed in Appendix D and given by Eq. (D8), this
error is found to be of relative size gin(h). The second
source of error is the neglect of the nonzero-h corrections
to (44). This error is of relative order h. Therefore, the
energy change caused by encircling lobe a is given by
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~hs = —Yi, +O(~»[minI
I
h

I I hf I I ])

+O«max[ Ih; I, Ihf I
l}.

To the order of the calculations, these formulas are valid
for both positive and negative energy.

C. Adiabatic-invariant change during one step

time t„is obtained.
In this first part of the calculation, a particle with ener-

gy ho at time to ——Q/« is becoming trapped in region P.
At each step the energy changes by —Fp according to
Sec. IV. Because the particle either just left lobe a, or is
about to enter lobe b, the energy satisfies the inequality
0 & ho &

I Yti I, in which P equals a or b, respectively. It
is convenient to define the parameters

The adiabatic-invariant change due to encircling one or
both loops is given by I,= —ho/Y (a=a, b, or c) (49)

J'(hf, Af ) —J'(h;, A,;)
= YN(A,f)—Y (A,;)+LI~(hf, k,f)—5J (h;, A,;)

+O(«maxI Ih; I

'~, Ihf I

'~ }) . (46)

The last term in this expression comes from the subtrac-
tion of the terms containing the p, s. This expression can
now be evaluated using the results (42} and (45). The first
two terms of Eq. (46) are calculated through first order by
Taylor expansion,

Y («tf) Y(«t;)—=T Y («t;)[1+O(«T )] .

In the calculation of the second two terms, the time-

dependent qumtities Y, h, co, and g may all be
evaluated at A, =A,; without affecting the error of these re-
sults. Hence, the change of the adiabatic invariant is
given by

~J (hf Af ) —J,'(hi, A,; )

0& IM. I
& lentil (51)

in which P equals a or b, respectively.
The approximate expressions for the change of the adi-

abatic invariant are valid only if the error terms of the
change (47) in a single step are small. These errors are
small relative to the lowest-order result for the one or two
steps during which the separatrix is crossed, if

«ln
I h, I, «ln

I
ho I, «»

I
h i I

«I
Therefore, this analysis applies to a particle that has ei-
ther just left lobe a, or is about to enter lobe b, if the
crossing parameter satisfies

and the order-unity parameters

Rtt —=Ytt/Y, (P=a or b) .
In terms of these parameters, the aforementioned inequal-
ities are

= dEJ (h;, Af )(1+0(« in[min(
I h; I, I hf I I ]))

+O(«max[ I h;
I

',
I hf I

'~
I ), (47)

and

I I, I
»O(exp( —1/«)/«) (52a)

where

codd (h;, A,;)=[—Y +(h; —Y /2)lnIh;/(h; —Y, )
I ]

(48a)

for an encirclement of lobe a (a=a or b), and

co ng(hc, &c)= [ 2' 2Yt, +—(2hc —Yi, )» I
hc/(—hc Y$) I—

0

+(2hi 2Yb —Y,—)
xln

I
(h, Y, )/(h, Yt, Y. )—

I ] (48b)— —
for an encirclement of both lobes starting and ending at
vertex u.

V. FINAL VALUE OF THE ADIABATIC INVARIANT

The results of Sec. IV for the change in one step must
be combined to obtain the total change of the adiabatic in-
variant. In this calculation one must account for each in-
terval t„&t & t„+i for —ao & n & 00. The choice of to is
made as shown in Fig. 2. The time to is either the last,
first, or only time that the particle is in region c at vertex
u, i.e., it is the time that the particle is at the vertex
closest to the separatrix crossing(s). The first part of the
calculation will discuss how the value of the adiabatic in-
variant at time to is related to its value at large time. In
the second part the relation of the time to to the crossing

ti I

—
I ~. 1»O(exp( —1/«)/ (52b)

W —1

Jtt(h~, k~)=Jtt(ho, AO)+ g [Jp(h„+i,A,„+i)
n=0

—Jp(h„,A.„}]. (53)

(In calculating the first term of this sum, the formulas for
the adiabatic invariant may have to be extended, because
the particle may change regions between vertex 0 and ver-
tex 1. This is no problem because the step-change formu-
las derived in Sec. IV still apply. A way to avoid this ex-
tension is given in Appendix G.) Insertion of the step-

where P equals a or b, respectively. These conditions im-

ply that particles with crossing parameter in a small range
that vanishes exponentially with «must be excluded from
this ailalysis.

In Sec. VI it is shown that the crossing parameter is
uniformly distributed for an ensemble of particles that has
a distribution uniform in the angle variable conjugate to
the adiabatic invariant. Hence, only an insignificant frac-
tion of particles are excluded by the condition (52}. More-
over, as we will see in this section, the associated singular-
ities are only logarithmic and so are integrable.

To find the total change in the adiabatic invariant, one
would like to combine the previous calculation of the
change of the adiabatic invariant with the identity
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change formulas (48) into (53) is not completely straight-
forward because the approximate expressions (47) for the
terms of this sum have errors that increase with h.
Hence, the total error will diverge if the hmit N~ co is
taken immediately. To get around this complication the
errors for large but finite N must be estimated.

To begin this procedure, the asymptotic value,

Jlp= lim Jp(htt, AN), (54)
%~co

Jlp ——Jp(hp, kg}+ g ddp(h„,kg)+0(N'~V~ )

+0(e/N)+0(e ln
I h;„I

) .

The sums

00

a Jop "(ho,g) =—g hap'(ho n—Yp,4}
n=0

and

(58)

is introduced. This limit is not a strict mathematical lim-
it. Rather it refers to times of order 1/e, such that the
particle is far from the separatrix, and has not crossed the
separatrix in the intervening interval. From adiabatic
theory we know that for such times the adiabatic invari-
ant is conserved to arbitrarily high order in e. This im-
plies that the error in carrying out the sum to large N
rather than to infinite N is given by

Jlp —Jp(h~, A~) =0(J2p(h~, k~))+0(J2/p) . (55)

That is, the error is of the order of the next correction in
the adiabatic-invariant series. The correction Jip(h~, A,N )
is the larger because the terms of the adiabatic series fall
off less rapidly as the separatrix is approach. This correc-
tion from Eq. (32) with

hN - Ne(d Y—p/d A), ,

together with Eqs. (53) and (55), indicates that
N —1

J) p ——Jp(hp, g)+ g [Jp(h„+i,A,„+i)

—1

rh Jp "' (hp, lo) —= g bJp(hp —n Yp, g), (59b)

in this and later expressions are calculated in Appendix E
and given by Eqs. (E3)—(E6). The error in Eq. (58) is
minimized by the choice N =@ '~5, which gives error
terms that are 0 (e ~5). As the sum is 0 (e), the result

J)p ——Yp(A,o)+5Jp(ho, Ae}

+Mp' (hp, Ag)[1+0(e' )+0(sin
I hm;„ I )]

(60)
is obtained.

The time to and the pseudocrossing time t, are related
to ho for particles initially with the same value of action.
The analog of Eq. (60) for the initial adiabatic invariant
for the particle at vertex a is given by

J~ = Y~(Ap)+5J~(hp, kp)

"' (ho, kg)[1+0(e'/ )+0(sin
I h;„I )],

—Jp(h„,A,„)]+0 (e/N) . (57)

Taylor expansion, Y (Q)= Y (A, )+(to —t„)Y(A, )

+ 0(e ), and the definition of t„,J; = F (et„),imply

The next step is to use the results (47) and (48) for the
individual terms in the sum of Eq. (57). The relation (56)
implies that the dominant error for large n is the
0 (eh '~ ) =0(n '~ e / ) term. For small n the dominant
error is 0(e ln(h;„)), where h;„is the smallest of

I
h i I, I ho I, and

I
h i I

. Thus

Jyp ——Jp(ho, kp)+ g hfp(h„,il„)+0(N/V~ )

X[1+0(e'~')+0(@in
I h;„I )], (61)

Taylor expansion of Eq. (60) and use of the result (61)
yield

J/p ——Yp(A,„)+5Jlp[1+0(e' )+0(@in
I h;„I )],

(62)
vvhere

+0(e/N)+0(e ln
I h;„I

) .

This can be further simplified by the replacement A,„~Q
in the sum. This introduces an error that is 0(N e ),
which may be neglected since Ne must be small for the
result (48) to be meaningful. Finally, the sum may be ex-
tended to N-+ ao, without further increase in error. This
yields

5JIp=fhJtf" +4J~ "' Yp/Y~+5Jp(hp)

—5J (hp)Fp/F ] . (63)

Specific results for the three different crossings illustrated
in Fig. 2 are obtained by inserting the results of Appendix
E for the sums M and the results of Sec. III for the adia-
batic invariant derivations 5J into Eq. (63). For an a~b
transition, the result is

5JJb ——6+(Fb/oi)[in I I (1+Mb)I (1—M, )/(2n. )
I
——,'ln IM,Mb I +M, ln

I h, /F, I
—Mbln

I
hb/Fb

I ],
for a~e,

5', ——6+(Y,/oi}[ln I
I ( —M, )1(1+M,)I'(Rb+M, )/(2m) ~

I +—,'ln
I
hblh,

I

+( —,'+M, )»
I h, /Y, I

—(Rb+2M, )»
I h, /Y, I ],

(64a)

(64b)
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and for c~b,

5Jfb ——6+(Fblco)[ln
~
1(Mb)l (1 —M, )I (R, M—, )/(2ir)

~

+T~ln
~
h, /hb (

+( 2
M—b)» I ~b/Fb I

—(~.—2M. )»
I
&./F.

I 1 .

The paramete« —=(gb —Fbg, /F, )/ro has been intro-

duced in these equations. The various parameters (F,
&, and g ) in Eqs. (63) and (64) are evaluated at A, =it,
without increasing the error.

The deviation (64) is a function of the crossing parame-

ter M, and the five parameters F, /co, Fb/co, h, /co,

Able, and 6 typical of the Hamiltonian. Since these pa-
rameters are coordinate independent (sm Appendix F),
they can be computed from the original Hamiltonian
H(q, p, et), even if it is not of the type (3). However, ap-
plication of the procedure of Appendix A to first order is
necessary in order to get the value of hp with negligible
error. (See Sec. VII for an example. ) The quantities

F~/ai give the rate of change of the lobe areas in units of
the exponentiation time of the x point. The quantities
h /co are related to the amount of time the trajectory is
far from the x point. The quantity 6 is an asymmetry
parameter of J, . In Appendix F it is shown that the
quantity 6 and, hence, the results (63) and (64) are coordi-
nate independent.

Equation (63) shows that there are three parts to the fi-
nal value of the adiabatic invariant. The first term is the
expected O(1) piece discussed in the Introduction. The
first two terms inside the braces are O(e) and O(aine ')
corrections from the oscillations before and after time tp
The last two terms inside the braces come from the
change in the adiabatic-invariant function at time tp.

Of special interest is the case of symmetric crossings.
In this case both lobes grow equally (F,= Fb) and are
similar (h, =hb and g, =gb). No transitions between the
two lobes are possible. If F,

'

&0 particles leave the lobes

and end up in region c. If F, & 0 the opposite occurs. In
the latter situation the resulting final adiabatic invariant
has the remarkably simple form

VI. STATISTICS

The formula (64) for the final-action value depends on
the crossing parameter hp. This paraineter corresponds to
the initial phase of the particle. In practice the specific
phase dependence is not relevant since any distribution in
phase space quickly phase mixes to a distribution that is
(upon criarse graining) uniform in each infinitesimally
thin adiabatic-invariant annulus (see below). The relevant
quantities will be the various moments of the final action.
In fact, after many jumps only the first two moments are
relevant because of the central-limit theorem. To calcu-
late these moments, the distribution function for the
crossing parameter is needed.

For an initial particle distribution that is uniform, the
distribution can be deduced in the following way. Unifor-
mity of the initial distribution and the fact that Hamil-
tonian flows conserve area guarantee that the density
remains uniform in the small region shown in Fig. 4 near
the x point. In this region the number of particles cross-
ing the line q=0 between p and @+de is given by the
flux

dn =npq ddt =npcop ddt =npdhpdr .

Since the probability p(hp)dhp is proportional to dn/dt,
the probability density p(Iip ) is uniform.

An immediate consequence of this result is the proba-

bility of trapping in different lobes. In the case F, ~0
and F~ y 0 particles leave region c and become trapped in
lobe a or lobe b They b.ecome trapped in lobe b for
0& hp & Fb, while they become trapped in lobe a for

Jfb = Fb(A) —(Fb,/ai)ln
~
2sin(nhp/Fb) ~, (65)

aside from the standard error terms in Eq. (62). The con-
stants h, and hb do not enter the formula. For the other
situation, F, &0, the same formula applies if the subscript
b is replaced everywhere by c except in the argument of
the sine. This formula was first derived by Timofeev
for the particular Hamiltonian (2) with y=0.

In the antisymrnetric case F, = —Y~ transitions occur
only between the lobes. For the case Fq &0, the final
value of the adiabatic invariant is given by

Jfb Fb(~ )+g +( Fb/co)[ln I MbI (Mb)/(2'Ir)
I

—2MblniIi, /F,
i ],

aside from the standard error terms of Eq. (62). In this

expression the definition Mb= hp/Fb is used. —In this
case the constants h, and g, remain in the equation.

FIG. 4. Region of phase space that has left lobe u or is about
to enter lobe b. For the argument of Sec. V, the distribution is
nearly constant in this region.
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1'q & ho & Yb+ Y, . Since the probability is uniform in ho,

the fraction R, = Y, /Y, becomes trapped in lobe a, and

the fraction Rb ——Ys/Y, becomes trapped in lobe b. This
result was proven in Refs. 6 and 16 and was stated previ-

ously (without proof} as Kruskal's theorem in Ref. 14.
The previous derivation of the probability density can

be refined to show that the density p(ho) is also uniforin
for an initial distribution of particles that is uniform
within an adiabatic-invariant annulus, i.e., a region of
phase space such that J~ &J &J;+5J;. To be specific, an
annulus in region c is chosen, and it is assumed that

Y, &0 and Yb&0. This region is illustrated in (q,p}
space in Fig. 5(a). The corresponding region in the space
of the adiabatic invariant J and its conjugate angle 8 is
shown in Fig. 5(b). The conjugate angle is chosen to van-
ish at the vertex (p=O) and to have unit period.

To calculate the probability density p(ho), the region in
( ho, to) space corresponding to the adiabatic-invariant an-
nulus must be found. To begin, it is assumed that the
particles in the adiabatic-invariant annulus are n steps
away from the zero vertex at the initial time t; The. n the
region in (h„,t„)space is found by evolving the various
parts of the annulus around to the vertex. The resulting
region in (h„,t„)space has the form of a strip, as shown
in Fig. 6(a). The left end of the strip comes from the por-
tion of the annulus above the q axis and just to the left of
the p axis. The right end of the strip comes from the por-
tion of the annulus above the q axis and just to the right
of the p axis. This portion must evolve through nearly a
full period before it comes to the vertex. Therefore, the
length of the strip is approximately To(h }.

We now show that the transformation to the variables
(h„,t„)is canonical. Let yi be [t =r;]XBi, where Bi is
the boundary of any domain D, in (J,8), let T be the tube
of orbits going through the points of yi, let yi be

[q =q„]XB2, where B2 is the intersection of T with the
plane q =q„,and let D2 be the domain of (h„,t„)bound-
ed by 82. The Poineare-Cartan integral-invariant
theorem proves that, if yi and yi are two homotopic
oriented paths enclosing the same tube o orbits in space
(q,p, t), then I, =I2, where I; = (Jd8 H—dt) with the
loop integral over y;. Thus, fJd8 over yi equals

H t over y2. It is easy to check that i y& is positive-
ly oriented in (J,8), then yi is negatively oriented in

(h„,t„)and vice versa. [This is proven by checking the
orientation of the path y of (h;, t;} corresponding to the
intersection of T by a plane parallel to (p, t) at a point of
Bi such that dq/dp=O. ] Therefore, the transformation
of the path integrals into oriented-surface integrals shows
that the oriented areas of D, and D2 are equal. This
proves that the transformation (8,J)~(h„,t„)is canoni-
cal.

Subsequent transformations to (ho, io) distort the strip
to the form shown in Fig. 6(b). The strip now asymptotes
to ho=0 as to —mao, because particles with ho ——0 stay at
the x point for an infinite period. Nevertheless, because
the transformation to (ho, to) is canonical, the probability
density within the strip remains uniform. Hence, the
probability density p(ho), found by integrating over to, is
given by

p(ho) ~ to(ho~ Ji+5J;) to(llo, J;)—
(67)

The function to(ho, J;) is essentially given by Eq. (62)
because t„and J; are related by J;=Y,(et„).With the
chain rule and the fact that F,(A, } is ind, ependent of ho,
Eq. (67) can be rewritten

(68)

Jc (b)

ho

FIG. 5. Adiabatic-invariant annulus in (q,p) and ( J,O)

spaces.

o

FIG. 6. Adiabatic-invariant annulus in ( h, t) space.
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The right-hand side of this expression is evaluated by dif-
ferentiating Eq. (62). This gives

p(ho) a: 1+0(@in
~ h;„~} .

Therefore, the distribution is uniform except for a class of
particles with crossing parameter in a small range that
vanishes in the limit @~0.

With the uniform distribution, the moments of the final
adiabatic invariant can be easily calculated for the sym-
metric case (65). The mean value of the final adiabatic in-
variant is simply

$+2A

( Jfs) = Fb(A, ),,
while the mean-square deviation is given by

([Jf —Y' (A,, )] ) =(irF /a)) /12.

(70)

(71)

$-2

I

2m q

These moments are not as easily calculated in other cases.
Still the integrals do exist, because the singularities are
only logarithmic. Furthermore, inspection shows that the
rms spread in nonsymmetric cases if of order e ln(e}.

VII. PARTICLE MOTION IN A SLO%'LY
MODULATED %'AVE

A problem occurring in many fields is that of a particle
moving in a wave field with slowly varying amplitude and
phase velocity. The Hamiltonian for this system is

4 (x,v, r) =U'/2+ A cos[x —y],
in which A and y are O(e), and x and U are canonically
conjugate variables. At first glance this Hamiltonian ap-
pears not to fit within the requirements, since it is not
true that jr=0(e). However, a transformation to new
variables qo and po via the generating function

t
F(x,po, t)=[x y(t)]po+—J dt' j /2 —I A(t')dt',

FIG. 7. Contours of the wave Hamiltonian. The regions a,
b, and c and the vertices a, b, u, and I are labeled.

F, =2mtp+8A '

N=A

(74)

(75)

VA'th the correct choices, the action in region a or re-
gion b is the integral Jpdq over one period along the
direction of the fiow of the Hamiltonian (72). The stan-
dard result is

I, (h, t) =2ny+I'(h, A.),
where I'(h, A) = 8( A/m)'~ E(m), m =1/(1+h/2A), and
E(m) is the complete elliptic integral of the second kind.
Near the separatrix, where m is near unity, the expression
(73) reduces to the standard form (20a), with

yields the new Hamiltonian

Ho z(po —y) —2——A sin (qo/2),

h, (r) =32A .

(72) The action in region b has the form (20b), where

(76)

which does have slowly varying parameters.
A second problem with this Hamiltonian is that its con-

tours, shown in Fig. 7, are not of the generic form shown
in Fig. 1. This is because the Hamiltonian is periodic in

q, and so phase space is a torus in the q direction (see Fig.
8). There is an equivalence, as shown by the labeling in
Fig. 7, but some sign confusion is possible if the actions
are not chosen correctly.

The transformation of Appendix A to the variables in
which the x point is stationary is not needed for the most

0

part, since the parameters F /co, h /co, and 6 are coor-
dinate independent. However, the transformation does af-
fect the Hamiltonian function, which is needed for calcu-
lating the crossing parameter ho given the phase-space
coordinates. In this case, the choices A; =0 and 8;= 1

may be made for the transformation. According to Ap-
pendix A, the first-order coordinates are given by

pi ——po —y and qi ——qo. The first-order Hamiltonian is

Hi ———,'pi —2A sin (qi/2)+e q&

rb ——2~q +So '",

(78)

/

]
I

I

I

/
I

I

I

FIG. 8. Illustration of the toroidal structure of phase space
for motion in a wave.
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The action in region c differs from (73) for large h. Still,
it is of the form (20c) with

I;=163 ' (79)

and

5J, =5Xs ——(h /co)(1+ 1n
i

323 /h
i )

5J„=(2h/ai)(1+in
i
322/h

i
)

—(2irj/co)in ~323/h (
.

(81)

(82)

The general calculation of Secs. III and IV can now be
directly applied to this case. One need only to substitute
the appropriate values (73)—(79) in the final result (64).
As an aside it may be noted that the errors in the result
(64) are smaller for this special case because 5H in Eq.
(3b) is 0(q ).

The symmetric case is one in which the amplitude
varies while ip=O. For simplicity the frame where y=O
is used. Application of the result (64) with the appropri-
ate wave parameters yields

Jf =Kg(r ) (4A/A)ln ~2sln(irh A'~ /4A)
~

. (83}

This result agrees with Eq. (15) of Ref. 20. To prove this
agreement one must note that Timofeev defines the action
in region c to be half of that defmed here, so that his
change M is simply the second term of Eq. (83). As dis-
cussed by Timofeev, this result disagrees with that of Ref.
21.

In the antisymmetric case, in which the amplitude is

constant while y varies, transitions only between regions a
and b are possible. This case was previously studied in
Ref. 19. In the previous work, the change in the mean
momentum p was calculated. The mean momentum,
which is defined only for particles in regions a and b, is
the action integral (19}divided by 2', except that the in-

tegral is along the + q direction rather than the direction
of the flow. This makes no difference in region a, but in
region b, p = Ib!2n.. Therefore, —

hP = —(Jfs +J;, )/2m.

=—8A' /ir —(h0/mA'~ }ln
~
323/ha

~

(2jr/co) [ ,—+hei/(2nij—)]ln
~

ho/(2nq )
~

—ln
(
I (1+ha/(2ir j&))/(2n. )'~

~ ] . (84)

In this expression the equality J« ——Y, (A,„)has been used.
To compare this result with that of Ref. 19, one must

note that the quantity b, $V of Eq. (10) of Ref. 19 is (up to

for small h.
The correction to the adiabatic invariant of Sec. III C is

calculated in the same way. The left-right symmetry of
the system causes g„gs,and g, to vanish. Thus there are
no corrections to J, and Jq. However, the correction to
J& does not vanish in region e. At the vertex u shown in
Fig. 8, the correction is given by

Ji„—— (2r—re/roe)ln
~
32M/h

~

.

To summarize these results, the adiabatic-invariant for-
mulas (28)—(31) hold but with

a constant factor) hP, not the energy change. In addition,
one must neglect certain higher-order terms in Eq. (13) of
Ref. 19. Even so, the result obtained here does not agree
with that of Ref. 19. We conclude that the problem lies
in the evaluation of the integral in Eq. (10) of Ref. 19.

VIII. DISCUSSION

The present calculation has shown that the final value

Jfp of the adiabatic invariant of a particle that has
crossed a separatrix differs from the lowest-order expected
value Yp(A,, ) by phase-dependent terms of order e and
@in(e). In contrast, the absence of separatrix crossings the
adiabatic invariant is preserved to all orders in e. The
phase dependence of this new term leads to diffusion of
the adiabatic invariant. Particles initially on a single
adiabatic-invariant ring are spread over an annulus after
separatrix crossing and phase mixing have taken place.

The present calculation is general. It includes the pre-
viously studied cases. ' ' Its application requires that
one evaluate a few certain time-dependent functions

(Y, /co, Yblai, h, /co, hblco, G) of the Hamiltonian to be
analyzed.
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APPENDIX A: TRANSFORMATION TO THE
SYSTEM %'ITH THE FIXED x POINT

The purpose of this appendix is to derive the coordinate
transformation that fixes the x point of the given Hamil-
tonian. Near the x point the given Hamiltonian has the
form
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H (q p, A ) =co(p q)/2—+5H(q p, iL), (A2)

in which co is time independent, and 5H is of order q,
q p, qp, p, or higher. The argument is asymptotic.
What we will show is that the form (A2) can be achieved
to arbitrarily high order in e.

By way of preparation the notation

~o:—(vo —&o'Yo) 1/2 (A3}

Ho(qoppcp Ag —&to )

=ao(qo —q„o)/2+pa(qo —q„iiNpo —p 0)

+go(po —p 0) /2+5HO(q»po 4) (A )

in which ao, Po, yo, q, o, and p, o are functions of A.o, and
5HO is of order (qo —q„o)3, (qo —q, o) (po —p„o),
(qo —q„o)(po—p„o),(po —p„ii),or higher. (In this ap-
pendix to denotes the time variable in the original system.
It should not be confused with the time the particle is at
vertex 0.) The objective is to find new variables
( q,p, A=et) for which the Hamiltonian has the form

qo =(qi Di )/—Bi (ASa)

po=~ iqi/Bi+Biai+Ci ~iDi—/Bi (Asb)

The new (intermediate) Hamiltonian is given by the usual
relation

for the exponentiation rate of orbits near this fixed point
is introduced. This rate coo is real because of the assump-
tion that (Al) is an expansion near a (hyperbolic) x point.
Moreover, the choice is made that ao is negative. This
can always be achieved by an interchange of qo and po.

The first step is a transformation to variables (qi,pi)
via the generating function

Fl(qo Pi 4I) =~ lqO/2+Blqopi +Clq0+Dlpl

in which A i, Bi, Ci, and Di are functions of ko. From
the usual transformation equations, qi —BEi/Bpi and
po ——BFi/Bqo, it follows that the relation of the old vari-
ables to the new variables is given by

H i, Ho+ dF——i /Bto

=&0(q i /Bi » /—Bi q.o)—'/2

+Po(qi/Bl Dl/Bi xq0 )~(1 ql /Bl +Basil +Cl ~iDi/Bi p~Q)

+}'0(~iqi/Bi+Bip +C —& D /B —p„o)'/2

+5HO(qi/Bi Dl/Bl ~ lql/Bi+Bipi+Ci —A, D, /B, , A,,)

+ i(qi/ i
—Di/Bi) /2+Bi(qi/Bi —Di/Bi )pi+Ci(qi/B, Di/B, )+D—,p, . (A6)

The last four terms are of order e because they involve
time derivatives.

The functions Ai, B„C„andDi are now chosen to
put the new Hamiltonian in the desired form to order e.
To eliminate the motion of the x point, the choices

Terms with no dependence on q j or p~ have been dropped
from Hi, since they do not affect the motion.

The next step in the calculation is putting H„in the
form (A2). To do so, the displaced x point (q„i,p„i),
which is a solution of

and

aH, . aH,.'(q. l p 1)
Bqi dpi

(Al 1)

Ci =~iDi/Bi+a~a (A7b)
must be found. From the form (A10) it can be seen that
q, i and p„iare order e. Expansion about this point gives

are made. Next, the cross term is eliminated by the choice
la ql&71»

~ i = Po/}'0 ~—
Finally, the remaining coefficients of qi and p, are made
equal in magnitude by the choice

=ai. (q, —q. i)'/2+Pi. (qi —q. i)(pi —p i)

+xi.(S» —p i)'/2+5Hi. (qi pi ~0» (A12)

Bi =(Po &oro) )'0—&y4 —1t2 (A9)

Hi, =coopi/2 (coo+Hi/Bi)—qi/2

+Blqlp1 /Bl +~OP 1 /2

+5Ho(qi/Bi+qxo ~ iqi/Bi+Bipi+u~o 4)
+(Ci/Bi AiDi/Bi }qi+Eipi—. (A10)

With these choices, the new Hamiltonian has the form

in which ai, ———coo+0(e), Pi, —O(e), yi, ——coo, and
5H„ is of order (q, —q„,), (q, —q„,) (p, —p„,),
(ql q 1)(pi —p i)', (pi —S i)', «high«.

The final step in the transformation is the definition of
a new time variable to make y~ a constant. Straightfor-
ward differentiation shows that introduction of a new
time variable ti(to }changes the Hamiltonian to

Hi (dto/dti )Hi, . ——
Therefore the choice
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0
Ai=eri = dA, coo(A, )/N (A13)

~g' (q" ~} BH(q, P(q, h, k, ),A, )

Bq Bp

APPENDIX 8: FIRST-ORDER CORRECTION
TO THE ADIABATIC INVARIANT

A particle moving in a slowly varying Hamiltonian has
an adiabatic invariant J to all orders in the slowness pa-
rameter e. In this appendix the first correction Ji is ex-
pressed in terms of definite integrals which can later be
evaluated for particular Hamiltonians.

This calculation is performed using (q, h, A, ) as indepen-
dent variables. To avoid confusion in the meaning of par-
tial derivatives, the usual phase function J„(q,p, A, ) and the
corresponding function of (q, h, A, ) are expressed as dis-
tinct functions

~'„(q,h, A, ) =J„(q,P(q, h, k), A. ) . (81)

These functions have the same value but different in-
dependent variables. With this convention and the choice
that Jo is the action, it is apparent that ~'p(h, A, )=I(h, A, )

of Eq. (19).
The requirement that J be constant to aH orders

amounts to saying that each term in the series

@[8Jo/BA, + IJ),H j ]+@ [8Ji /M, + [J2,H j ]+ . . {82)

vanishes. This implies

IJ„,H j = —BJ„ i/M, . (83)

The relation J„(q,p, k, )=&'„(q,H(q, p, A, ),A, ) and Eq. (83)
imply

allows the final transformed Hamiltonian to be written

Hi{qi pi ~i)=&i(qi —q. i)'/2+Pi(qi —q i)(pi —p. i)

+yi(pi —p„i)/2+5Hi(qi, pi, l,i), (A14)

in which a& ———co+0 (e), P&
——0 (e), y i

——co, and
5Hi is of order (q, —q i)', (qi —q 2) (pi —p„i),
(q, —q„)(pi—p„,)i, (p, —p„)',or higher. Thus, the re-
sult of this transformation is to put the Hamiltonian in
the form (A2) to order e

%e could take ~=1, but we keep it explicitly in order
to compute easily the five parameters of the theory. In
this respect, taking co =coo(k, ) may be convenient.

Higher-order calculations are exactly parallel to the
lowest-order calculation just presented. %ith each
transformation the deviation of the x point from the ori-
gin and the deviation of the quadratic coefficients from
the desired values (A2) are diminished by one order in e.
Hence we have shown the existence of a series of transfor-
mations that put a slowly varying Hamiltonian in the
form (A2) to arbitrarily high order.

Another way to get the same result is to look for the
most general linear slowly varying canonical transforma-
tion that fixes the x point and the quadratic part of the
Hamiltonian. This yields a system of coupled ordinary
differential equations with respect to time for the coeffi-
cients of the transformation. A slowly varying solution
can be found perturbatively. Then the change of time
that fixes co can be done.

~un —&(q h ~) BH(q, P{q,h, k. ),A, )
ah aA,

a~„,(q, h, X)
(84)

The notation for the partial derivatives, such as

aH(q, P(q, h, z),X)
BA,

in Eq. (84), is that the function H is differentiated with
respect to A, , holding q and p fixed. Then the independent
variable p is replaced by the function P(q, h, A, ).

The various relations

BH(q, P(q, h, A, ), A, ) BP(q,h, A, )

Bp Bh

BH(q, P(q, h, A, ),A, ) BP(q, h, A, )

Bp Bq

BH(q, P (q, h, A, ),A, )+
Bq

(85)

BH(q, P(q, h, A, ), A, ) BP(q, h, A, )

Bp BA,

BH(q, P(q, h, A. ), A, )

obtained by differentiating Eq. (4) can be used to simplify
Eq. (84). The result is

gn (88)
Bq

Equation (88) can be integrated to obtain the first
correction

g'i(q, h, A, ) =p'i(qp, h, A, )+ „dq'~z'o &,BP(q', h, A, )

&0

(89)

~g'o BI
Bh BA,

~+0 BI
BA BI

which allows one to deduce that&'0 must be a function of
I. This technique will now be used in the next order to
calculate &', (q, h, A, ).

Setting n=2 in Eq. (88) and integrating around a con-
tour of constant H yields the relation

up to the undetermined function&' &(qo, h, k). The limit qp
is an arbitrary point on the particular contour
H(q, p, k, ) =h. The integrals over q' must always be along
the fiow direction from qo to q. This specification is
necessary since the separate integrals of (89) are not
periodic, even though the sum is periodic. This periodici-
ty follows from the expression (19) for&'p(h, A. ) =I (h, k, ).

Alternatively, one could require single valuedness for
~'i. Then Eq. (A9) with q =qo implies
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ap(q, h, A) agi(q*~ A)

BA

„ap(q,I,A) a~'i(q" A)

Oh BA.

After considerable algebra this expression reduces to

~go Bg ago Bg
=BA ah aa BA'

where

1 ag'o ap'o
g(h A)—=pi(qo*h A}——

2 A,

(810)

With the previous formulas (89) and (811) the evalua-
tion of hA i is straightforward. The result is

b, A& ———g(j) .

Thus imposition of the requirement that the value of J on
a contour of J equal the enclosed area leads to g(j) =0.
With the further choice q =qo, the result

1 a~o ap'o

2aa BA

, BP(q', }'i,A) q' „BP(q",h, A)

BA s BA

+g(,.(h, A)) (811)

is determined up to a function of ~'o. Since~'o is an adia-
batic invariant, any function of~'o is an adiabatic invari-

ant.
The function g can be determined by the requirement

that the value of J on a contour of J equal the area inside
that contour through first order. This requirement is
equivalent to the requirement that the transformation be-
tween the action-angle variables and the corrected
adiabatic-invariant-angle variables be canonical. This re-
quirement fixes the function in a nonarbitrary,
coordinate-independent manner. To determine the conse-
quences of this requirement, the equation

j=Jo(q P,A)+eJ (qi,P, A) (812)

for the contour with J=j is considered. The lowest-order
solution is

d BP(q, h, A, ) &,BP(q', h, A}+ "'
ai "' BA

Equation (810) indicates that g must be a function of ~'o

alone. Thus

1 a+0 a+0

2ah BA

„BP(q,I,A) s, BP(q,I,A)

a~ " '
BA

(814)
for the first-order correction to the adiabatic invariant is
obtained. From this expression we six: that e&'i/&'o is of
order 5 as stated in the Introduction.

APPENDIX C: ERROR OF THE FIRST
CORRECTION TO THE ADIABATIC INVARIANT

As noted in Sec. III C, the first correction to the adia-
batic invariant is finite at vertices a and b in the limit
h ~0. To assess the error of the total adiabatic-invariant
change of Sec. V, it is necessary to know how Ji deviates
from g (a=a or b) for finite Ii. The order of Ji~ —g is
calculated in this Appendix.

The following calculation of the order of Jib+, defined

by Eq. (23a), is actually for an exterior ( h ~ 0) orbit. It is
straightforward, though tedious, to show that the same re-
sult is obtained for an interior orbit. However, one must
instead use the alternate formalism of Eqs. (10).

To calculate Jib+, a Taylor expansion of Eq. (23a) is
used,

Jib+(h) =Jib+(0}

a p(q, O, A, ) &d, BP(q', 0, A, )

a
"' BA'

BP(q, O, A)+
~ ' aI'

no(q, j,A) =P(q, h =8'o(j, A, ),A, }, 1»„,a'P(q', O, A)
&o "q

BABI
(Cl)

where 8'o(j,A) is the inversion of Jo, i.e., 8'o(j, A, ) satisfies
&'o(S'o(j, A), A, )=j. The first-order correction is found by
expansion,

Estimates of the integrands follow from Eqs. (8) and (9).
We find BP/BA=O(Po), BP/Bh =O(1/Po), B~P/Bh2
=O(1/Po), and a P/BABA=0(1). Therefore,

a~ (q, a, A) BH0= ni(q, j,A}+Ji .
Bp

Therefore,

Jib+ (Ii ) =Jib+ (0)+0(h) .

An identical analysis applies to J&b . Hence

(C2)

BS'o BP(q, g'o(j, &),&)
1Ti(q,j,A) = — g'$(q, So(j,A), A) .

aj a~

Thus the change in the area AA~ due to first-order J& is
given by

Jib gb+O(h) . ——

APPENDIX D: ERROR OF THE SINGLE-STEP
PERIOD AND ENERGY CHANGE

(C3)

BS'o BP(q, N'o(j, A, ),&)
bAi(q, j A)= — . dq

BJ

X~'i(q, 8'o(j, A},A) . (813)

Errors in the lowest-order, single-step period and ener-

gy change arise from the corrections (37) and (38) to the
orbit. In this appendix, the order of these errors is calcu-
lated.
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~ tj l(qaj )=tj 1 (qaj)+ tj 1 (qaj )

is defined, where

(Dl)

The correction to the period for half of a step is given

by ehtji(qaj ), where htji is given by Eq. (37). There are
two terms in Eq. (37) to be analyzed. Accordingly, the
dlvlslon

which takes the form

6,„=2+2(M,+n +Rb/2)

Xln
~
(M, +n)/(M, +n+R~)

~

+2(M, +n + —,
' +Rs/2)

Xln~(M, +n+R, )/(M, +n+1) ~, (E2}

d P(q, hj,etj )
tji(qaj)= dq btjp(q)

jIBj d2P(q, hj, etj)
tjt (qaj) = dq hhjp(q)0 Bhl

(D2)

(D3}

in terms of the quantities M, and Rb defined by Eqs. (49)
and (50).

The total change is obtained by summing the individual
terms,

N

lim

The estimation of this integral is identical to the estima-
tion of the first integral in Eq. (Cl}. Hence

tj'i ——0(l) . (D6)

In combination, Eqs. (D1), (D4), and (D10) imply an error

in the period.
The analysis of the error due to the correction (38}

proceeds in a similar fashion. The result for the error is

e bhji(qaj)=0(e ln
~ hj ~

) .
Hence the relative error is given by

ehhji(qaj)/bhjp(qaj)=0(@in
~ hj ~

) .

(D8)

(D9)

From this equation it follows that the relative error is of
order unity if the period of the particle, 0 (ln

~ hj ~
), is of

order 1/e, i.e., the system changes significantly in that
perl. od.

APPENDIX E: TOTAL ADIABATIC INVARIANT
CHANGE FOR A HAI.F-INFINITE SEQUENCE

OF STEPS

In Sec. V the total change in the adiabatic invariant is
written in terms of the sums (59). In this appendix these
sums are calculated. First the sum for an orbit encircling
both loops is calculated. Specialization then yields the
formulas for orbits encircling a single loop.

The sums for region c at vertex tt can be written in
terms of the order-unity quantity,

coM„(hp
—nY„Ap)/Y—, , (El)

The expression (D2) can be bounded by replacing h, tp
with Tpt as defined in Eq. (11) and moving the partial
derivative with respect to A, outside the integral. This
gives

t', ( qaj) = 0( Tpt BTpt /M )=0 (ln
~ hj ~

) .

The reillallllllg texxas has fhe form

&aj t)IP(q, hj, k~ )
tj&(qaj) =——

b,Jb'" ———(Ys/co)[ Ms+( —,'+—Mb)ln ~M&
~

—ln
~
1(1+Mi, )/(2m)'~

~ ] (E5)

for a particle entering loop b as shown in Figs. 2(a} and

2(c), is obtained from Eq. (E3) by setting Y, =0 and using
one-half of the total. These are the symmetries that pro-
duce the single-loop change (48a) from the double-loop
change (48b). Similarly, one can obtain from Eq. (E4) the
result

hJ ' = —(Y, /co)[M, +(—,
' —M, )lniM,

i

—ln
i
I (1—M, )/(2m. )

'i
i ] (E6}

for a particle leaving loop a as shown in Figs. 2(a) and
2(b).

APPENDIX F: COORDINATE DEPENDENCE
OF THE ADIABATIC INVARIANT CHANGE

In the analysis of the adiabatic-invariant change, a
coordinate transformation q(qp, pp, A, ) and p(qp, pp, k, ) was

This sum can be calculated with standard techniques
including (i) identifying telescoping terms, (ii) writing the
remaining sums in terms of the I function, and (iii) ap-
plying Stirling's formula for large N. The result is

6J„'"= —( Y, /ro)

X[(Rb+2M, )»~M,
~

—2M,

—ln
~
I (1+M, )I'(Rs+M, )/(2m')

~ ] .

(E3)

Time-reversal arguments yield the result

dk Jg "' —( Y,——/t0)

X[(R,—2M, )ln (M,
~
+2M,

—ln
~

I'{1 —M, )I (R —M, )/(21r)
~ ] .

(E4)

for the particle about to be trapped in loop b as shown in
Fig. 2(c).

The single-loop sums are readily obtained from these
expressions by specialization. The result
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introduced to put the Hamiltonian in the form (3). This
transformation is not unique. The generating function for
the general linear transformation, cf. (A4), would also
have a term arith p~. Moreover, the exponentiation rate
m, chosen to be constant in Appendix A, is arbitrary. The
purpose of this appendix is to show that, in fact, the result
(64) does Ilot depend on the partlclllal' coordinate systeill.

The adiabatic-invariant change (64) can be written in

terms of the five quantities I;/ei, I'b/ro, h, /r0, hs/co,
and G =g& Fs—g, /I; =g, —I',g, /F, =gb —&sg, /F„
and the crossing parameter ho/F, . The transformation
(A13) of the time variable does not affect any of these
quantities because g, H/ro, and ro 'a/at are invariant
with respect to the choice of r0. It remains, therefore, to
check whether these quantities depend on the canonical
transformation.

The first four quantities are independent of the particu-
lar canonical transformation because they can be defined
in terms of the action functions I~(h, A, )„which are invari-
ant under canonical transformation. Specifically,

, aI~(O, et„)
F (et )/co=ed

F=Aq /2+BqP +CP /2 . (F1)

The transformation due to this generating function is
given by

correction J&~ on the line @=0 in the limit h ~0. Hence
the value of g does depend on the particular choice of
coordinate system. However, g~ enters the result (64)
only via G. Therefore, the appearance of the g 's does
not imply coordinate dependence if G can be shown to be
coordinate independent.

To investigate the dependence of gb on the coordinate
system, a canonical transformation to new coordinates
will be introduced. This transformation will be required
to preserve the form (3). It will then be shown that the
value of G is independent of the choice of the coordinate
system.

It is sufficient to consider only linear transformations,
since gs is the value of Ji at the x point, and therefore, is
unaffected by higher-order terms. A general, linear,
canonical transformation is affected by the generating
function

q =Q/8 CP/8— (F2a)

h /co —= lim [h exp(nial~/ah)/co] .
h~O P =AQ/8+(8 AC/B)P —. (F2b)

The parameter g is defined to be the value of the The new Hamiltonian, E =H+aF/at, has the form

E = Ia)[(8 AC/8) —C /8 ]+A—C /8 +C—2BC/8 JP /2

+ Ia)[(8 —ACIB)A/8+C/8 ] AC/8 +—8/8JPQ —[ei(1—A )/8 A/8 ]Q /—2 . (F3)

Preservation of the form (3) leads to the requirements

co[(8 AC/B)2 C—~/8 +(A —1)/8 ]—
=28CIB—C —AC /82 —A /8 (F4a)

p'is(qt»»~) p'is(qb» ~)—

ap(q, h, A, ) &,ap(q', h, l, )

ai . ' ai,

v d, aP(q', h, X)

gb aA,
a)[(8 —AC/8)A/8+C/8 ]=AC/8 8/8 . —

To lowest order in e, these equations imply that

(F4b)

p~O
p=O

(F5b)

Hence there is a one-parameter family of coordinate
transformations that preserve the form (3) for the Hamil-
tonian. We must show that G is the same regardless of
which member of this set of transformations is chosen.

The vertices in the new coordinate system are the inter-
section of the orbits with the lines Q=O and P=O (see
Fig. 9). We define qb to be the value of q at which the or-
bit intersects the P=O hne. Since Ji depends on h and q,
Jis(qb)+Jis(qs). The difference follows relidiiy from the
application of Eq. (8.14),

Q =0

QeO

p'R Q

FIG. 9. The lines q'=0 and p'=0 of the alternate coordinate
system.
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feb, tJP

M dA

The simphfied expression is

p'ib(qb»*J ) pi—b(qb» J )]/(d Yb/d J )

I

q '+Tb rb
-'

q (F6)

The relation between the new value of

gb = 11m~ ib(qb~ jtiA, )
h-+0

This expression is simplified by subtracting the qu uitity
in the parentheses and using the identity

tJI'..d'aJ

b hho(qb) in ho from using the (q',p') coordinate system
is 0(@ho )=0(e'~ ) provided qb is of order unity. This
gives a relative change in the crossing parameter of ordere, which is insignificant.

APPENDIX Q: ALTERNATIVE COMPUTATION
OF Jfp

The purpose of this appendix is to show how one can
avoid the extension of the adiabatic invariants referenced
after Eq. (53) and to derive slightly differently Eqs. (63)
and (64).

I.et n(j} (j =tz, p) be the vertex in region j closest to
the separatrix crossing, and let W =—J; and Wp=—Jfp.
Then

and gb is found by evaluating (F6) in the limit h ~0. In
this limit

qb ——
(
2jt/ta

~

'~',

qb=
i
2jt/to

i

'i2/8 .

Jj(jt+(j )&A+(j))+rjj

for j=a,p, where

ggcx gg —ce,n {a)

gJp ~n(ti), co
p

(Gl)

(gb gb)/(dYb—/dk. )=—21n ~8
~

/to .

The analysis of lobe-a is identical. Hence,

(g,
'

g, )/(dY, /dA, )—= —21n ~8
~

/ca .

In combination, Eqs. (F7) and (FS) imply that

gb Ybga /Yu gb Ybgo /Ye

(F7)

(F&)

Therefore, the quantity G is coordinate independent.
The remaining quantity to consider is the crossing pa-

rameter jio/Y, . It is necessarily coordinate dependent to
some extent, because h is continually changing. However,
from the lowest-order expressions of the perturbation
theory, (33}—(36), it can be shown that the change

The latter expression follows from the definition of qb
and Eqs. (F2). For the integrands of Eq. (F6), the lowest-
order terms of Eqs. (8) and (9) may be used. The result of
taking the limit jt ~0 of Eq. (F6) is

and

na—= —&

7/p 1 o

Taylor expansion gives

Wj ——Yj(A,„)+(t„(j)t, ) Yj+K—lq(jt„(j),t, )

+gj AJJ . (G2)

This equation for j=a yields

t„()
—t„=[M LI (—jt„(),t„)]/Y (G3)

In order to compute Jfp we need to know t„[p~—t„=(t„(a)—t„)+(t„(ji)—t„()). The first term is given
by Eq. (G3), while the second term is computed from Eq.
(42). One finally ets Eqs. (63) and (64) with the same
Mjt" and Ma "' . One at least of these two quantities
appears as made up of two pieces: lLP and the contribu-
tion froin the step hnking vertex n (j) to vertex 0.
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