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Models of hopping-controlled reactions with variable hopping range
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%e propose two classes of models for hopping-controlled reactions in which one of the reactants
forms a random distribution of static traps and the hopping distances of the other reactants (random
walkers) are independent random variables with a preassigned distribution. Specifically, in the
discrete model, at each step the random walkers are allowed to make hops of all possible lengths of
integer units up to a preassigned maximum value L, all with equal probability. In one of the con-
tinuous models, the hopping distances are Gaussian-distributed independent random variables with
a mean L. In the other continuous model, the distribution of the hopping distances r follow an ex-
ponential distribution, namely, exp( —

~

r
~

/L). We predict the I. dependence as well as the time
dependence of the reaction rates (the decay of the particle density as a function of time) for these
models analytically. %e also verify some of these predictions by Monte Carlo computer simulations.

I. INTRODUCTION

The prototypes of the diffusion-controlled reactions are
(a) the unimolecular trapping reaction

2+8~(1—e)A+8 (0&@&1),

(b) the irreversible bimolecular reaction

A +8~inert,
multiparticle reactions, etc. These reactions have applica-
tions to a variety of phenomena of fundamental and tech-
nological importance in fields such as chemistry, biology,
and surface science (including semiconductor and dielec-
tric surfaces), one example being heterogeneous catalysis. '

In the latter class of problems it is assumed that one of
the reactants, say the A particles (by the term "particle"
we mean an atom or a molecule or a cluster of molecules),
wander diffusively in a medium in which the 8 particles
are distributed randomly. For simplicity, the 8 particles
are assumed to be immobile. It is also assumed that when
any A particle comes in contact with a 8 particle the two
particles react instantaneously. In other words, each of
the A particles performs a random walk until it hits one
of the "traps" formed by the 8 particles. For example, in
the case of catalytic reactions on SiOi„ the so-called active
centers, where the reactions take place, play the roles of
the trap sites. We shall focus our attention on the uni-
molecular trapping reaction with @=1, so that each of the
traps can react with an infinite number of A particles.
For simplicity, we shall further assume that the random
walkers (i.e., the A particles) are mutually noninteracting.

The problem of the random walk (diffusion) of particles
in the presence of a random distribution of traps " has
attracted much attention in the past. The Auctuations in
the position of the traps give rise to trap-free regions of
various sizes. This leads to a long tail in the decay of the
particle density with time, viz. , the particle density decays
as exp( —const X t") where x depends on the space dimen-
sionality d [x =d/(d+2)]. Such a "stretched exponen-
tial" decay is observed not only in the types of walks

under consideration but also in many other disordered
systems, e.F, , in glasses and dielectrics as well as spin
glasses. ' However, so far in almost all the models of ran-
dom walk with random trap distribution the particles are
allowed to move only to one of the nearest-neighbor lat-
tice sites at each step. Moreover, the problem of the
long-ranged random walk without traps has been investi-
gatei quite extensively in the pmt. '3 " Familiar example
of such long-ranged walks are the Levy flights, Levy
walks' and the problem of random walks with unequal
step sizes. ' Because of long-ranged hoppings the parti-
cles sometimes run away from the nearby traps but at
some other times run towards faraway traps. Recently, it
has been shown' that in the presence of randomly distri-
buted traps, the density of the Levy walkers decays as
exp( —const Xt~~'"+") with time t. In this paper we pro-
pose a few models of hopping-controlled reactions where
nature of the long-range hopping of the particles are dif-
ferent from those considered in the Levy flights and Levy
walks.

We formulate the problems in the following way: on a
d-dimensional lattice we have a density p~(r, t) of the par-
ticles at time t and a distribution p, (r) of traps; the traps
are immobile and each of the traps can absorb an infinite
number of particles. Then the three models are defined as
follows.

Model I: in this discrete model, the maximum length of
a step is I. (with L much less than the linear size of the
lattice) and the probability of a step of any length of in-

teger unit r (with 1 & r &L) is 1/(2L), assuming the for-
vvard and the backward steps to be equally probable.

Model II: in this continuous model, the hopping lengths
are Gaussian-distributed independent random variables
with mean L.

Mode/ III: in this continuous model, the hopping dis-
tances r follow an exponential distribution of the form
exp( —

i
r

i
/I. )

Our main aiin is to calculate the I. and t dependences of
the density nz(r, t)=(pz(r, t)) (where ( ) denotes the sta-
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tistical average over all trap configurations).
Model III is, probably, the most interesting because of

its relevance in the motion of micro-organisms. It has
been known for a long time that bacteria move on an ap-
proximately linear trajectory for some time and then
choose a new direction along which they move again ap-
proximately linearly. Thus, the total trajectory of bacteria
consists of a large number of linear segments, each con-
nected to two others at its two ends. The real motion of
bacteria is a little more complicated'~ because of the vari-
ous biasing mechanisms. Besides, bacteria may remain
immobile at a point for some time before resuming their
motion. The lengths of the linear segments of such a tra-
jectog of bacteria follow an exponential distribution. '

Therefore, in model III, the random walkers can be as-
sumed to be the models for the bacteria whereas the traps
represent the randomly distributed bactericides.

For L much smaller than the linear size of the lattice,
we propose a set of heuristic arguments for these models
to estimate analytically a lower bound for the density

nr(r, t) We t.hen compare this estimate with the results as
obtained by Monte Carlo (MC) computer simulation of
model I.

II. ANALYTICAL RESULTS

+ +5(z+L)) . (2)

This problem, as formulated through (1) and (2), is a spe-
cial case of the general random walk studied by Donsker
and Varadhan. However, in Ref. 2 only the n depen-
dence of the various relevant quantities was studied. Our
work should be considered as complementary to that of
Donsker and Varadhan in that we investigate the L,

dependence of relevant physical quantities which was not
studied in Ref. 2. We address the following question:
what is the probability that a particle starting from the
origin (the origin being arbitrary) survives and arrives at a
distance r after time t? We shall extend the argument for
the nearest-neighbor hopping problem to our long-ranged
hopping problem.

We first consider a line segment of length 2R centered
around the origin and assume the two ends of this line
segment to be totally absorbing (in the corresponding d-

Since the analytical treatment of the models I, II, and
III will be restricted to d =1 in this paper, let us restate
the model I, defined above, in the following way: the
discrete-time Markovian jump process under considera-
tion is described by

x„+i——x„+g„,
where g„ is a sequence of independent random variables
that determine the jump size at the nth step. The condi-
tional jurnp probability

Prob(g„=z
i
x„=x)= W(z, x)

is assumed to be independent of x and is given by

W(z) = [1/(2L)][ 5(z —L)+5(z L+1)—
+5(z —1)+5(z+1)

dimensional model one draws a sphere of radius R around
the origin and imposes the constraint that the sphere is to-
tally absorbing). That is, whenever a particle arrives at ei-

ther of the two end points of this line segment it gets
trapped. This approximation rules out the possibility of
the return of particles from outside to the line segment,
thereby underestimating the probability. Let us denote
the probability with this constrained geometry as nr'

[where n&(r, t) & n&(r, t)]. From the defmition of configu-
ration averaging, we have

n~(r, t)= gn~(r, t
~
(SI)P{IS[},

ISI
' '

where P(ISI) denotes the trap distribution probability
and nz(r, t

~
[Sj) is the conditional probability nz for a

given distribution IS ) of the traps. Suppose Nz(r, t) is the
probability corresponding to the trap-free segment, viz. ,
ISI =0, only. Since N~(r, t) &nr', N~(r, t) represents only
a lower bound. It is obvious that

Np(r, t) =Po(R)F(r, t),
where Po(R) is the probability that there is no trap within
a line segment of length 2R and F(r, t) is the probability
that a particle arrives, for the first time, at any of the end-

points of this hne segment starting from the center. So
far our approach is very similar to that of Grassberger
and Procaccia (GP). However, the main difference, as
will be shown later, lies in the calculation of F(r, t). Fol-
lowing Gp we get

Po exp( n——, Vi ), —
where Vi ——2R {for the corresponding d-dimensional
problem Vi must be replaced by Vq ——CqR, which is the
volume of the d-dimensional sphere of radius R, with
Cq ——I2&i /[dl (d/2)] j ).

Next, we have to calculate the probability F(r, t). The
latter is the first-passage time distribution. We shall first
estimate the dominant L dependence of F(r, t) for the
one-dimensional case. Suppose

p (x,y, n) =Prob(x (n) =y
~

x (0)=x )

denotes the transition probability. The latter satisfies the
master equation

p(x,y, n+1)—p(x,y, n)= f [p(x,y z, n)W(zy ——z)

—p (x,y, n }W(z,y)]dz . (5}

The mean first-passage time r(x), defined as

r(x)= g f p(x,y, n)dy,

satisfies

f [r(x+z) r(x)]W(x,z)dz—= —1 for —R &x &R (7)

r(x)=0 for ix i
&R .

Equation (7) is valid for all possible choices of W. '

However, we shall present here a simple derivation which
is valid only for the special form (2) of W. Since the W
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in the problem under consideration is independent of x,
we can rewrite Eq. (5) as

p(x y, n+1)—p(xy, n)= f [p(xy —z, n)

p—( xy, n)] W( z)dz .

Utilizing the homogeneity of space between —R and +R,
(8) further reduces to

p(x,y, n+1) p—(x,y, n)= f [p( x+ zy, n)

—p(x,y, n)] W(z)dz . (9)

Finally, utilizing the definition (6) of r we get (7). From
(7) we get

g(m /k!)(8 v/Bx )„=—1, (10)

mk —— z 8'z z,
is the kth moment of W. Equation (10) is analogous to
the Kramers-Moyal expansion. Using (2), (11) reduces to

g =(C 1/Lt/D)1 j3 (18)

in time t is (R ) -t .On the other hand, in the case of
Levy walks, where (R )-r, the corresponding probabil-
ity I' is proportional to exp( —const X r/8). It is difficult
to calculate the true mean-square distance (R ) for the
long-range jump problem under consideration. However,
the form of the t and R dependences in (16) should be
taken in the spirit of a plausible ansatz. This ansatz is
based on the assumption that the effect of the long-ranged
hoppings is to enhance the diffusion constant, so that
(8 )-h(L)t, where h(L), a function of L, is indepen-
dent of t [T. he latter argument must not be confused
with the behavior of (R ) in the presence of traps; it is
well known6'" in the latter case that for the special case
L =1, (R )-t where a=2/(d+2) for all finite d.]
Now substituting (16) and (4) into (3) we get

n~(r, t) &expI [C(e —'~~i/R')+DR]J for d =1
(17}

where C and D are constants independent of L and t Fi-.
nally, following GP, we optimize R so as to maximize the
probability (17). This leads to

Since

(1/L)(1+2"+3"+ +L") for even k

0 foroddk.
(12a)

(12b)
for the optimum value of R and hence

n~(r, t}&A exp f
—8[exp( —1/L))t'~ I for d =1 (19)

g i"-L"+'+(lower order term-s},

we make the approximation that the dominant k depen-
dence of mk is given by

mk -L for even k .k

Hence, in order to satisfy Eq. (10), given the form (13}for
mk, a plausible estimate of the dominant contribution to
a"~/ax' is

in the long-time regime, where A and 8 are constants in-
dependent of L and t

Next we shall extend these arguments to models II and
III. In the case of model II,

W(z)=[1/(2n)'~ n]exp[ —(z —L) /(2n )],
where we are mainly interested in the L dependence of
n~(r, t). In this case the moments are given by

mk =(V 2a) (2i) "Hk(iL/(~2o')),

(8"r/Bx )„-fk(x)/L (14)
where Hk is the Hermite polynomial of order k. So far as
the dominant dependence on L is concerned,

where the function fq(x) is independent of L. The form
(14) indicates that

P7lk ~L k

~-exp[g (x)/L], (15)
and hence, following the same arguments as those from
Eqs. (12}—(18), we get

where the function g(x) is independent of L. [As we
shall see later, our Monte Carlo results provide an a pos-
teriori justification of (15).] The form (15) for the mean
fast-passage time ~ would be consistent with the first-
passage time distribution

expI —const X [exp( —1/L)]r/R ], (16)

where the negative sign in front of 1/L ensures smaller w

for longer L. We will explain the significance of the form
(16) for the first-passage time distribution soon, but first
let us justify the R dependence of (16). In order to get
more insight into the problem, note that in the case of
nearest-neighbor random walk the probability I'(r, t) is
proportional to exp( —const)&t/r ) where, as is well
known, the mean-square distance traversed by the particle

n~(r, t) & A'expI —8'[exp( —1/L)]t'~3I for d =1
which has the same s and I. dependences as in expression
(19) with L now standing for the mean of the Gaussian
distribution. However, note that the nonuniversal con-
stants A and 8 can differ in the two models.

In the case of model III,

W(z)=(1/L)exp( —iz i /L),
so that

and hence the corresponding expression for nr(r, t) is
given by

nz(r, t) & 3"expI —8"[exp( —1/L)]t' I,
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where the t and L dependences are identical with those in
(19), but the nonuniversal constants A" and 8" differ.
Indeed, 1t 1s easy to coilvlllcc oilcsclf that thc t alld L
dependcnces of n~(r, t), expressed by (19), hold for any
type of random walk for which the moments are of the
form (13) where L is the corresponding characteristic
length scale associated with the jurnp sizes.

III. MONTE CARLO SIMULATION

gime varies as exp( —constXt' ), in contrast with the
exp( —const X t '

) behavior in the long-time regime.
Plotting the logarithm of the survival probabilities as
functions of t', we observed an approximately straight
line in the intermediate-time regime (between about 400
and 1000 Monte Carlo steps per particle for L —10) for
different values of L ~~L, . The linearity of the curves
suggests that the prediction of Weiss and Havlin for the
short-time behavior of the survival probability holds also
for L &1. However, for L-L„as mentioned before, a

In order to estimate the goodness of the lower bound
(19), we have carried out a MC simulation of the discrete
long-ranged model, defined by (2), in one dimension. A
random trap configuration with average trap concentra-
tion c ( c &~ 1) was created on a very long one-dimensional
discrete lattice. A large number of particles, typically of
the order of 10, were placed randomly on the remaining
sites. The maximum step length I. was chosen a priori.
At each time step {one Monte Carlo step per particle) each
particle was allowed to jump to any of the 2L lattice sites
centered around its current position with equal probability
1/(2L). If the new position so chosen turns out to be a
trap, the corresponding particle disappears. Then the
number of particles which survived was monitored as a
function of time. The same procedure was repeated for
various values of L. The logarithm of the fraction of par-
ticles which survived after time t has been plotted against
t'~ in Fig. 1(a) for different values of L. When L is
small compared to the average distance between the traps,
L, (where L, was about 200 in units of the lattice con-
stant), there is a large number of trap-free regions with
linear dimension larger than L, and therefore we expect to
observe the stretched exponential decay for large enough t
in our MC simulation. Indeed, the linear tails of the
curves in Fig. 1(a) for small L and large t support the
exp(const X t'~3) behavior in (19). As L increases and be-
comes comparable to L„ there are very few configura-
tions sampled in our MC simulation that contain trap-free
regions bigger than L. Thus, a fast decay of the particle
density persists for a long time, as is evident from Fig.
1(a}. The latter fast-decay law seems to be exponential, as
suggested by Fig. 1(b) where we have plotted nz against t
on a logariththic scale. Increasing the size of the system
increases the probability-of sampling very large trap-free
regions. Therefore, in such big systems stretched ex-
ponential decay will be observed after a long time provid-
ed L is finite.

In principle, one can test the L dependence of nz from
a plot of the logarithm of the survival probability nz
against L for a given fixed large value of t. However, in
order to smooth out the fluctuations in n~(L}, we have
first evaluated the slopes K(L) of the curves in Fig. 1(a}
and plotted —1nK(L) against 1/L in Fig 2. The li.nearity
of the curve in Fig. 2 for L &&L, is consistent with the
exp( —1/L) factor in (19). The latter figure also demon-
strates the fast (exponential) decay dominates for long
times in the case of larger L.

In the special case L, =1 in one dimension, %eiss and
Havlin' showed that the survival probability in the
short-time (or more appropriately, intermediate-time) re-
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FIG. 1. Normahzed survival probability n~(I., t) plotted
against (a} t '~ and (b} t [units of Monte Carlo steps (MCS}] for
different values of I; I.=20 (circles), L =50 (squares), I.=100
(triangles), and I. =1000 {diamonds). The length of the lattice
is 10 in the units of the lattice constant and there are 50 traps
distributed randomly. The data for L =20 demonstrate the
"stretched" exponential decay expressed by Eq. (19) whereas for
I. =1000 the particle density decays (exponentially) fast to a
fraction 10 of the initial density for reasons explained in the
text.
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diffusion constant, we get the i dependence as well as the
R dependence in the expression (16'). Using (16'), instead
of (16), we get

n~(r, t)-exp[ —constXK(L)t ~' + '] . (20)

~/
/

/
/

I
1

I

0,000
I

0.026
I

0.050
1/L

0.075 0.100

FIG. 2. K(L) in the decay law exp[ —const)&K(L)t'~'],
computed from the slope of the corresponding curves in Fig,
1(a), plotted against 1fL. For not-too-large L the E(I.) data
are consistent with the form (19) whereas an apparent deviation
from (19) for large I. is observed.

purely exponential decay dominates for a long time.
Moreover, Weiss and Havhn argued that for L =1 in one
dimension the magnitude of the correction terms to the
asymptotic form (19) increases with decreasing n„and
the asymptotic form (19) is followed after a longer t.
However, such corrections become less significant for
L ~~1, because the trap density gets augmented by the
factor exp( —1/L).

If the dimensionality of the space is d, the expression
(16) is generalized to the form

In other words, the exponent of t in nz(r, t) in d dimen-
sions is expected to be the same as that in the case of
nearest-neighbor hoppings, so long as L is finite. Thus,
the difference between the long-range and the nearest-
neighbor hoppings appears in the L-dependent multiplica-
tive prefactor of the t + term.

IV. CONCLUSIONS

In summary, two classes of random-walk models are
proposed in this paper as models for "hopping"-controlled
reactions. In the first model each of the random walkers
is allowed to hop up to a maximum distance L at every
step at a medium with randomly distributed traps. Its
properties are studied by (heuristic) analytical methods
and by Monte Carlo computer simulations. In the second
model the lengths of the hoppings are Gaussian-
distributed random variables with mean I.. In the third
model, the hopping lengths are assumed to be random
variables with exponential distribution. In all three cases
we find a long-time tail in the decay of the particle densi-

ty in agreement with an earlier work of Donsker and
Varadhan. We have mainly focused our attention on
determining the L-dependent prefactor of t'~3 in one di-
mension, as given by Eq. (19). Finally, we would like to
emphasize that the result (19) should hold for any type of
walk for which the kth moments mk of the conditional
jump probability W behave hke L" where L is the associ-
ated characteristic length scale determining the jump
sizes.
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