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Dynamic ensemble theory is tested numerically for an ensemble of 1000 classical one-dimensional
oscillators obeying canonical "Nose-Hoover" dynamics. This dynamics couples each osciBator to a
canonical heat bath characterized by a temperature and a relaxation time. Some initial oscillator
conditions correspond to regular phase-space orbits of the Kolmogorov-Arnol'd-Moser torus type
while others generate wider-ranging chaotic trajectories. Among the regular oscillator orbits is a set
of trajectories resembling "double bedsprings, "with "quantized" values of the oscillator energy and
mean-square displacement. The number which indexes these orbits corresponds to the number of
coils between turning points. Despite the existence of this relatively complex mixture of regular and
chaotic trajectories, the Liouville equation correctly describes phase-space flows, in both the steady
equilibrium canonical-ensemble case as well as in the nonsteady cases which evolve from strongly
nonequilibrium initial conditions. The source of apparent irreversibility seen in the nonsteady evolu-

tion of the oscillator ensemble is identified as a "second-law" attractor, usually characteristic of
large thermodynamic systems. The attractor is that relatively small but highly probable portion of
phase space for which observation times exceed recurrence times.

I. INTRODUCTION

The Liouville equation, which describes the fiow of
probability density in phase space, is the dynamical basis
of classical statistical mechanics, both at and away from
equilibrium. The existence of highly irregular structures
in phase space —strange attractors —which are neither
smooth nor continuous, calls into question the usefulness
of smooth probability densities which obey continuity
equations such as Liouville's. Although these structures
are typically associated with dissipative sets of equations,
such as those developed by Lorenz, ' there is no reason to
rule out the existence of similar structures in systems
described by Hamiltonian dynamics. i The complex and
irregular structure of such attractors, present even on the
smallest length scales, suggested that Liouville's theorem
might be invalid for dealing with the dynamics of chaotic
systems. ' We report here the results of the first numeri-
cal test of ensemble theory for an ensemble of dynamical
systems.

The test addressed three fundainental questions. Is the
Liouville equation valid as it stands for chaotic systems?
Does the Liouville equation properly describe the irrever-
sible behavior typified by the Boltzmann equation and the
second law of thermodynamics, or must it be supplement-
ed with stochastic terms, or by coarse graining7 Is it
necessary that a system behave in a chaotic way in order
for ensemble theory to be applied correctly~

We begin by reviewing the basic concepts of ensemble
theory. ' The goal of this theory is to describe the result
of a measurement on a dynamical system of particles
which interact with specified interparticle and boundary

forces. It is assumed that such measurements are suffi-
ciently reproducible and insensitive to the initial condi-
tions, even if the underlying dynamics are Lyapunov un-
stable ("sensitive" or "chaotic"). The ensemble approach
is introduced with the hope of simplifying the averaging
process, making it unnecessary to follow the detailed
dynamics of the many degrees of freedom present in a
macroscopic thermodynamic system.

To simulate the ensemble approach with molecular
dynamics we follow the motion of each of the X systems
in the ensemble. Each system is allowed to evolve under
the influence of identical equations of motion with equili-
brium or nonequilibrium boundary conditions until equili-
brium or a nonequilibrium steady state is attained. Usual-
ly the ensemble viewpoint is macroscopic, with the goal of
describing results of measurements on thermodynamic
systems with many degrees of freedom. Computer storage
and speed impose strict limits on computer simulation.
Because only a few many-body systems can be followed,
the many-body few-system results would require extrapo-
lation in order to compare them to theoretical infinite-
system predictions.

Here we will not be concerned with this interesting
large system limit, but rather the opposite extreme, a one-
body system, the one-dimensional Nose-Hoover oscilla-
tor. ' By choosing such a simple system it is possible
to consider a relatively large ensemble. %e use up to 1000
members, all with slightly different initial conditions, but
all evolving under the same equations of motion and with
the same boundary conditions.

As the number of systems X in the ensemble ap-
proaches infinity we can imagine describing the time
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development of the trajectories by a continuous probabili-
ty density or ensemble distribution function f(I', t) in the
phase space (I space contains the coordinates and mo-
menta of the particles as well as the time-dependent fric-
tion coefficient z described in Sec. II). A smooth density
function f(I,t) must satisfy the continuity equation
known as the I.iouville equation:

af/at+(a/ar) ~(fr) =0. (1)

Provided that the equations of motion, which give I as a
function of I' and t, are reversible in the time, then
Liouville's equation is likewise time reversible.

The I.angevin and Boltzmann equations, as well as the
hydrodynamic equations incorporating diffusion, viscosi-
ty, and conductivity, are all irreversible. The solutions of
these approximate equations approach equilibrium only in
the direction of increasing time, in agreement with our ob-
servations of the real world. One of the main tasks of our
numerical work is to reconcile the apparent paradox, em-
phasized by Boltzmann, that irreversible behavior can be
described by reversible dynamics without invoking numer-
ical or external causes for the irreversibility. Some sys-
tems, such as those composed of hard disks or spheres, are
inherently unstable, without even a finite neighborhood of
stability in the vicinity of reentrant phase-space trajec-
tories. " To avoid such an unstable model we choose a
relatively stable system, the harmonic oscillator, which
does have finite KAM-hke tori (Kolmogorov-Arnol'd-
Moser}, regions of stability in phase space which enclose
reentrant periodic trajectories.

A second task is to understand the usefulness of the
Liouville equation at equilibrium. If we start with an en-
semble of systems distributed according to the equilibrium
distribution function f(I, t =0}=fo(r}, is this distribu-
tion stationary? This can be tested by studying the time
dependence of any observable 8(r) which depends on the
phase variables I . At equilibrium the ensemble average
(8) should be a constant of the motion. Away from
equilibrium (8) varies with time:

( B(t) )= J dl f(r, t)8(I )

I I,OB I t

—=—g &(r;(t)) . (2)
i=1

The first line of Eq. (2) expresses the Schrodinger or Eu-
lerian picture, where the probability flows into fixed cells
in phase space, while the second line expresses the Heisen-
berg or Lagrangian equivalence, where trajectories of en-

semble members are followed through phase space; the
last line is the finite ensemble approximation, having
chosen elements with initial weights f(I;,0)dI'; =1/X.
We will study the time development of the potential and
kinetic energies as well as two functions which reduce, at

equilibrium, to the thermodynamic entropy.
Finally, we wish to understand the relationship between

ensemble averages and time averages along individual tra-
jectories. With 8;=8(r;(t)), we define the latter to be

t
~i llm s~i s

I;

Must (8) and 8; be equivalent for ensemble theory to
hold'? If the dynamical system of particles is quasiergod-
ic, then each trajectory (1,2, . . . , X) covers the relevant
part of phase space and 8;=(8), except for a possible
subset of trajectories of measure zero

%'e emphasize that quasiergodicity is not required in
order for the Liouville equation to hold. Quasiergodicity
is often assumed to be essential, so that only a single time
average is required, but in fact ensemble theory can be
used as a method for insuring that averages do not depend
on initial conditions. Thus here we investigate a system
which is patently nonergodic. This Nose-Hoover oscilla-
tor system is described in Sec. II. The nonergodicity is
demonstrated in Sec. III. In Sec. IV we then study the
question "Does the I iouville equation, and ensemble
theory, describe the nonequilibrium time development of
such a system?" The characteristic feature responsible for
the irreversible behavior of the Nose-Hoover oscillator is a
"second-law attractor. " This feature of the phase-space is
described in Sec. V.

II. NOSE-HOOVER OSCILLATOR
{REPS.6—10)

Consider first a single oscillator maintained at constant
temperature by an integral control (feedback) mechanism.
The control mechanism is characterized by a relaxation
time ~. The oscillator coordinate is x. The oscillator tem-
perature is proportional to the time-averaged mean-
squared momentum y . The control variable, or "friction
coefficient" is z. For convenience we choose the oscillator
mass and force constant, as well as Boltzmann's constant,
equal to unity. Thus the fundamental frequency is unity
and the period is 2m.

The time development of such an oscillator takes place
in three-dimensional phase-space I =(x,y, z) and is
governed by three first-order ordinary differential equa-
tions:

x=y,
y = —x —zy/1

z=(y —1)/v .

(4)

From the standpoint of dynamical systems theory the set
of equations (4) has no fixed point. Because the diver-
gence of the phase-space velocity,

n=(a/ar). r =ax/ax+a&/ay+a' /az = z/. , —

is nonzero, the probability density varies along any system
trajectory: The Liouville equation (1) can be written in
the Lagrangian form —d lnf/dt =0, where d /dt
=a/at+I (a/aI ).

The integral feedback thermostat works as follows. If
the time-averaged kinetic energy exceeds the equilibrium
value —,, the friction coefficient z increases, tending to
reduce the momentum y. If the time-averaged kinetic en-
ergy is too low, less than —,', then z decreases, so that the
friction coefficient z can become negative, leading to an
increase in the magnitude of y.

An alternative control mechanism, differential control,
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results if Gauss's principle of least constraint' is applied
to keep the kinetic energy constant. This form of dif-
ferential control is not useful for a single degree of free-
dom. The resulting oscillator, with constant kinetic ener-

gy, can have no turning point. Proportional control'3 is
ruled out on different grounds. If the momentum
response is proportional to the deviation from the mean
kinetic energy, as in the Rayleigh and van der Pol equa-
tions, the resulting equations of motion are not time rever-
sible.

The internal energy of the oscillator, kinetic plus poten-
tial, ls

Ho (x +——y )/2. (6)

It is useful to define the total energy, including a contri-
bution from the feedback thermostat, to be

H =(x +y +z )/2,
and we note from (4) that its rate of change is

H =I" aH/al'=xx+yy+~= —z/r .

(We shall reserve the symbol E = (H) for the ensemble
average of the total energy. ) The equations of motion (4)
are not Hamiltonian; that is, they can not be derived from
the energy function H. Indeed, comparing (5) and (8) we
see that H =0 is not identically zero, as it must be for
Hamiltonian dynamics.

The equations of motion (4) can be derived from the re-
quirement that the canomcal distribution function

fo =(2m) i exp( —PH)

111. EQUILIBRIUM RESULTS

We choose 1000 initial conditions from a Gaussian dis-
tribution in x, y, and z by using the Box-Muller transfor-
mation. ' A pair of random numbers g', g distributed uni-
formly on the unit interval generates a pair of Gaussian
distributed numbers X and 7;.

X~—2 lng) '~~ cosf 2n.rl ),
F=(—21ng)'/2sin(2mrI) .

It is straightforward to show that in the infinite-
ensemble-size limit the odd moments of X and F vanish
and that the even moments correspond exactly to those
from a Gaussian distribution, with &X' &o——(1)(3)
(5) (2k —1). Choosing 1500 uniformly distributed gq
pairs leads to 1$)0 x-y-z triples with a Gaussian distribu-
tion. In our numerical work, we replace the equations of
motion with a centered difference approximation, where
the error is of order ht ~:

(x+ —2xo+x )/(5, t) = —xo —zo(x+ —x )I(2r ht),

(z+ zo)l—hi = I [(x+—xo)/Lki]z —11/i, (12)

where the time step h, t is very small relative to unity (typi-
cally 0.01 or less). We have checked the moments of the
x-y-z distribution dynamically, from the first through the
eighth. The calculation was carried out for a time for
10000 corresponding to nearly 1600 oscillator periods.
This was doge for three values of the thermostat's relaxa-
tion time: v=0. 1, 1, and 10. Apart from the expected
fluctuations the ensemble moments remain Gaussian, as
shown in Fig. 1, where the first four moments are
displayed in the case r= l. The fluctuations increase with

be a stationary solution of the Liouville equation (1)
(P= 1 lkT =1). This can be checked by inserting (9) into
(1) with the equations of motion (4). The original Nose
approach, as discussed in Refs. 6—8, is more complicated
and will not be explained in detail here. Suffice it to say
that Nose dynamics is derived from a Hamiltonian in a
four-dimensional phase space which includes a time-
scaling "coordinate" s and its conjugate momentum. In
the Nose-Hoover dynamics (three-dimensional phase
space), the constant of the motion becomes
0+ sz s

From the equilibrium distribution function we can see
that the linear and quadratic moments of the phase vari-
ables are

(x"(t))

I I I I
/

I I I I
i

I I I I

n*4

tl& 2

&x &o
——&y)o=(z&o=0,

(10)
& x'&o= &Z')o= &z') o= 1 .

Throughout this paper we use the angular brackets to in-
dicate an average over an ensemble of systems, a finite en-
semble in the case of our numerical work. The theoretical
infinite ensemble at equilibrium is indicated by a subscript
zero.

The equations of motion provide less information. The
stationarity of the time averages dx; Idi =dy; Idt
=dz;/dt=o, gives y;=0, y;=I, and x;= —z;y;/v for
every system in the ensemble. It is therefore possible to
detect nonergodicity of a trajectory if x;+(x )o=0.

I I I I I I I

0 50 100 450 200
t

FIG. 1. Ensemble-averaged Nose-Hoover oscillator coordi-
nate moments (x") for a 1000-member ensemble. The equili-
brium values are 0, 1, 0, and 3 for n =1, 2, 3, and 4. Note the
increasing Auctuation size with n: (1/X)', (2/N)'
(15/%)', and (96/X)'/ . In our tcme units, the Newtonian
pcAod 1S 2&.
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FIG. 2. Stereo projections of the Nose-Hoover oscillator trajectory, accumulated at integral times 1,2, . . . , 10000. (a} v =0.1, 15-
coil "double-bedspring" (KAM-like) orbit looking down the z axis onto the xy plane. (b) ~=0.1, chaotic trajectory from the same
viewpoint as in (a). {c) v =1, regular KAM-like orbit with x &0. (d) ~=10, KAM-like orbit looking down the x axis onto the yz
plane. Flow is clockwise and down the z axis through the "doughnut" hole, and up around the outside.

the order of the moment, as expected.
Thus the canonical distribution is preserved by the

equations of motion, just as was predicted by the Liouville
equation. The Newtonian equations of motion share this
property. But in the Newtonian case the motion of the
swarm of points resembles that of a rigid body circling
the origin at a constant state-independent frequency, with
all of the moments repeating at integral multiples of the
oscillator period 2m. It is easy to show that in the
Newtonian case the second moments fluctuate as sin(2t)
with an average amplitude of order 1/¹

The Newtonian dynamics, although it preserves the dis-
tribution, would likewise preserve any distribution which
was a function of energy and in a completely nonergodic
manner, never deviating from the original circular orbits
in x,y space. On the other hand, the nonlinearities which

appear in the Nose-Hoover thermostatted equations with
finite r provide at least the possibility of quasiergodic
consistency. That is, there may be nontrivial orbits for
which time and ensemble averages coincide.

To address the questions of ergodicity for finite r con-
sider a swann (phase-space cloud) of ensemble members.
These might coalesce into inhomogeneous patterns while
still preserving the canonical moments. This possibility is
suggested by the many incredible KAM-like orbits of the
type shown in Fig. 2(a), a 15-coil "double-bedspring" reg-
ular orbit. Figure 2(b) shows an irregular chaotic orbit.
[A computer movie of this particular trajectory demon-
strates that the nature of the chaos is revealed only after
very long times, such as the accumulation time in Fig.
2(b). On a smaller time scale, such as that between turn-

ing points, the chaotic trajectory is indistinguishable from
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I)C )I

FIG. 2. (Continued}

an ordered "double-bedspring" orbit, typified by Fig. 2(a).
Chaos is thus characterized by gradual transitions in the
number of coils between turning points. ] But computer
movies of the motion of a swarm of a thousand ensemble
elements show no tendency for localization or segregation
of the points according to their regular or chaotic nature.

Is there an algebraic way to disti. nguish between ordered
and chaotic orbits'7 One might expect that ihe time aver-
age of the total energy H;, would help. However, H; has
a smooth distribution with a somewhat greater density
near the ensemble average value of —', , so that this func-
tion is not useful for characterizing the nature of a partic-

ular solution. But the mean square displacement x; or

the internal energy of the oscillator (1+x; )/2 does pro-
vide an amazingly useful discriminant (reinember

y; = (y ) = 1). Provided that the thermostatting response
time is sufficiently small, less than about ~, the ensemble
members can be sorted into discrete quantized levels, im-
mersed in a continuum background composed of chaotic

trajectories, as shown in Fig. 3. It appears that the time
averages for the chaotic trajectories eventually converge in
an ergodic fashion to a common value, slightly greater
than unity, in a time much greater than 100000.

The "quantum number" n associated with each level
corresponds to the number of coils around y =+1 or —1

betw'een the turning points in x. The population is
Poisson-like with a peak just below the ensemble average,
as shown in Fig. 4(b). As ~ is increased the number of
levels is reduced, and, for w greater than n there appear to
be only KAM-like tori, as shown in Fig. 2(d). Near ~=1
we see [Fig. 2(c)] a dramatic demonstration of the noner-

godicity of the oscillator: there are tori for which x; is
not zero. There tori exist in pairs, one with positive x;
and one with negative, both immersed in a common
chaotic sea.

In spite of these tremendous inborn ogeneities and
nonergodicities in the individual trajectories, it is amazing
to see that Liouville's equation accurately describes the
equilibrium dynamics of this dynamical system, at least
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T = 0.1 0.2 0.5 i.0 2.0 5.0 10.0
t t t t t t

n 15

(a}

i 1, ... , N 1, . .. , N 1, ..., N 1, ..., N ), ... , N 1, . .. , N 1, ..., N

FIG. 3. Distribution of mean-squared displacements x;
time-averaged over a time of 10000 for the classical thermostat-
ted oscillator ensemble. The mdividual trajectory values are
plotted as 1000 dots for each value of v". 0.1, 0.2, 0.5, 1, 2, 5,
and 10. Note that the "quantum" nature of the coalescence into
ordered levels occurs as the coupling to the thermo-
stat becomes stronger, as the relaxation time decreases. The
quantized level numbers, corresponding to coils in the "double
bedsprings" [see Fig. 2(a)], are indicated for x=0 1. For ~ .less
than about m there is also a continuous spectrum, at least for
early times, due to chaotic trajectories. In aH cases the ensemble
average (xi), is 1, as shown in Fig. 1.

100

80—
(b)

0 5 )0 15 20

for ordinary observables like the energy. The moments re-
tain their Gaussian values and the Gaussian appearance of
the distribution remains unchanged.

S,~.= (Zinyydr) =(O.) = (z—)r~, —(14)

where integration by parts is used to convert derivatives of
f into integrals weighted by f and where it has been as-
sumed that f vanishes as the phase variables approach in-
finity. ' The information-theory entropy production (14)
has little to do with the true nonequilibrium entropy as

IV. NONEQUILIBRIUM RESULTS

The most demanding test of the Liouville equation is its
ability to describe far-from-equilibrium dynamics and the
approach to equilibrium. We have accordingly studied
experiments with initial temperatures To &~1 and experi-
ments with TO~~1., beginning with Gaussian distribu-
tions which are spherically symmetric in xyz space:

1/T0f(0)-fo . Qualitatively these two kinds of experi-
ments correspond to rapid cooling (contraction of phase
space, or the "Big Shrink" ) and heating (phase-space ex-
pansion, or "Big Bang" ). To relate the time dependence
to the predictions of Liouville's equations we consider the
development of the information-theory entropy

S;~,= —f d I f lnI = —( lnf ),
for which the Liouville equation predicts

20—
~-

0
0 2

X

~ I
~

has been noted previously. '

Zubarev suggested an alternative definition of entropy,
based on the equilibrium distribution function'

S,„,= —(1 y, )n.

This definition produces exactly the same "entropy" for
the Nose-Hoover oscillator, as the m.ore-usual

FIG. 4. "Quantization" of the x; for the classical thermo-

statted oscillator with ~=0.1. {a) x vs level number {coils in
the bedspring between turning points), An analysis of the
motion for ~&&1 with y =1+5cos{~t),where 5 is small, gives

co=2' /v, so that x approaches {nmv)2/6 for large n. (b)

Population of levels at equilibrium for ~=0.1. There are 422
ordered trajectories out of 1000 chosen from the equilibrium
Gaussian distribution.
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+ —,', To(To —

1)(tlat)4+

(17}

%ith To ——100 and v=1 the series 1 —0.33t +5.5t de-
scribes the time development of the "Big Shrink" within
0.1% up to t =0.1, as expected (see Table I). After that
the decay toward equilibrium appears to be approximately
exponential, with a decay time of roughly ten times r, as
shown in Fig. 5. Similar results were found for v=0.3,
0.6, and 5. From (15) and (16}we see that S;~, and Sz„b
both decay from a large initial value toward a smaller
equilibrium value, contrary to our expectations of the
behavior of the entropy. The resolution of this apparent
paradox is likely to be found in the assumption that a
given Lagrangian phase-space trajectory can be followed
indefinitely in time, without worrying about the difficul-
ties associated with distortions of the volume element and
phase-space ITl1xlng.

200 .
10
&000

150

100

information-theory definition. From the equilibrium dis-
tribution Zubarev's entropy gives

(16)

which is consistent with a constant value of the free ener-

gy. In the general case Sz„bcannot be correct. In an
isokinetic (constant kinetic energy) system of two hard
spheres undergoing shear flow, ' for instance, Sz„bhas
the same value far from equilibrium as in the equilibrium
case.

The time dependence of the energy for the Nose-Hoover
oscillator can be developed in a Taylor series:

E = —,
'

To ——,
' (ro —1)(t/r)'

TABLE I. Early-time behavior of the energy of the Nose-
Hoover oscillator ensemble (X=1000, ~=1, T =1) for the "Big
Shrink'* experiment and with an initially spherically symmetric
Gaussian distribution in the phase space, corresponding to
To ——100. The calculated value is the Taylor series (17) of the
text.

0.00
0.01
0.02
0.05
0.10

E (calculated)

150.0000
149.9951
149.9803
149.8814
149.5875

E (observed)

150.0000
149.9950
149.9803
149.8811
149.5687

The dynamical approach to the equilibrium distribution
is imperfect. Although x and y2 approach 1, z con-
verges to a larger value because y greatly exceeds the
equilibrium value of 3. This is because the initial distri-
bution greatly emphasizes the chaotic trajectories relative
to the regular ones. On the other hand, when r is very
large, z is enhanced by the overabundance of large-radius
tori.

Similar disparities result from "Big Bang" simulations.
The final dynamical phase-space distribution is not homo-
geneous and isotropic. These nonequilibrium distributions
are not failures of the Liouville equation but rather stem
from the nonergodicity of the Nose-Hoover oscillator.
Apart from these discrepancies the approach to equilibri-
um is apparently irreversible, at least on the time-scale
reasonably accessible to computer simulation.

The large-relaxation-time limit, with r &y 1, leads to in-
teresting behavior for the large-scale tori, such as is shown
in Fig. 2(d). There are extremely short periods of large-
amplitude oscillations in the oscillator variables x and y,
followed by periods of quiescence with x and y executing
very small spirals as z progresses at speed I/r down its
axis. This "flushing" process, from large z to negative z,
takes a characteristic time 2xo~ where xo ~~1 is the am-
plitude of the torus. It is easy to show that
x =y =3z =1.

V. IRREVERSIBILITY

50

30

FIG. S. Time dependence of the ensemble-averaged second
moments for the "Big Shrink" initial condition, To ——100
(X=1000, T =1, v =1). The momentum y converges in a time
of order 1, the thermostatting coefficient z expands and then
both x and z decay toward equilibrium on a characteristic time
scale of —19r. The continuous curves for an ensemble of 1000
members can be distinguished from the discrete symbols which
describe the case N =10.

How is it that irreversibility comes from these reversi-
ble equations? This can be understood by considering the
relative probability of volume elements in the phase-space
dx dydz. If we use the abbreviation r for the distance
from the origin in this space, then the relative probability
at equilibrium is proportional to exp( —r /2).
Equivalently the recurrence time for such a state is of or-
der exp(+r /2}, exceeding the age of the universe if the
simulation is carried out on the Cray, with 10 states per
second, for r ~ 11.

%e suggest c@ling the phase-space object traced out by
a dynamical trajectory in a finite amount of computer
time a second-law attractor. Such an attractor has four
characteristics:

(1) The equations of motion are deterministic and re-
versible.
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E(t) 0

phenomenon appears for the smaller ensembles of 2, 5,
and 10 members, but takes too long to be seen for the
large ones. This means that the cycle times are relatively
incommensurate for the various tori, making it highly im-
probable for the elements of the ensemble to regroup as
they were at the initial time. For smaller values of ~ the
cycle time is increased. This view of cycle time and Pain-
care recurrence in its relation to ensemble size is analo-
gous to the dependence predicted for one-dimensional har-
monic chains as the number of masses increases. Because
the elements of an ensemble are strictly noninteracting the
analysis is simplified. The approach to equilibrium is
only apparent, not mathematically rigorous. Nevertheless,
it appears very probable that as E becomes infinite the re-
currence time rapidly diverges too. For the Nose-Hoover
ensemble, the final state is not the equilibrium state. This
is an artifact of the nonergodicity of the system.

0
0 $00 200 300 400 500 VI. CONCLUSIONS

FIG. 6. Approximate Poincare recurrence of the energy E
for the Nose-Hoover oscillator ensembles with T =1, ~=5, and
To ——4. For X greater than ten members the energy appears to
approach a steady value near 3 rather than the canonical value

of 2. %ith five members in the ensemble an approximate re-

currence appears at time t =350. A two-member ensemble has
an approximate recurrence time of 40.

(2) The phase space occupied by the attractor is infinite
in extent.

(3) The probability distribution converges rapidly.
(4) (lnf) is finite.
It differs from the usual strange attractors of dynami-

cal systems' ' in the first two properties. This is a direct
consequence of the logarithmic form of Nose's thermo-
statting potential, which makes it possible for the other
variables to range over an infinite portion of the phase
space.

It seems possible that the irreversible behavior stems
from the presence of chaotic trajectories. To test this idea
we examined the case with r= 5, too large for chaotic tra-
jectories to appear. In Fig. 6 we display the number
dependence of the time history of the energy for ensem-
bles of 2, 5, 10, 20, 50, and 100 members. The recurrence

A numerical test of ensemble theory for the patently
nonergodic Nose-Hoover oscillator shows that the Liou-
ville equation describes the equilibrium distribution, as
characterized by its moments and its shape. The Liouville
equation also describes the relaxation of mechanical ob-
servables from a nonequilibrium initial state, but gives
paradoxical results for the entropy. ' The nature of the
irreversibility found in this finite and relatively stable os-
cillator ensemble stems from the incommensurability of
cycle times. The latter greatly exceed the Newtonian
value as the thermostat time becomes smaller than m.
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