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%e present two learning mechanisms for networks of formal neurons analogous to Ising spin sys-

tems. The "projection rule" guarantees the errorless storage and retrieval of a set of information

patterns: In other words, it allows us to compute the magnetic interactions so as to make a given set

of states the ground states of the spin system (in zero external field). Several analytical results are

derived for this rule; computer simulations and examples of applications to error correction are

presented. Another learning mechanism, termed the "associating rule, " is also described; going

beyond the memorization process, it allows us to design networks satisfying a set of dynamical con-

straints such as a given set of stable states and/or transitions and/or cycles. It provides a new tool

to perform such functions as associations between information and concepts.

INTRODUCTION

The quest for parallel computing devices as alternatives
to von Neumann computers has long been a very active
field of research. The first attempt to use neuronlike
structures in this context was due to Rosenblatt' (percept-
rons); these investigations came to a halt with the realiza-
tion that such systems had limited computing capabili-
ties. This subject gained a renewed interest when it was
shown that nonlinear feedback, achieved in fully connect-
ed networks and absent in perceptrons, was an essential
ingredient for performing high-order functions, and that
the tools of statistical physics could be used efficiently to
understand the behavior of such highly complex systems.
A first decisive step towards a more comprehensive
understanding occurred when Little' recognized the
temperature-noise analogy. Another important element
was brought by Hopfield„who showed that fully connect-
ed networks of formal neurons exhibited computational
and information-processing abihties. From this stand-
point, the behavior of a network can be viewed as a
decision-making process which is distributed both in

space (each neuron takes its own decision) and in time (the
decision is taken in one or more steps). This is in sharp
contrast to one-step information processing systems such
as, for instance, linear associative memories or "percep-
trons. "

During the last four years, a growing number of investi-
gations were inspired by the analogy between spin systems
and neural networks. The statistical mechanical proper-
ties of the Hopfield networks have been analyzed in de-
tail and several phase transitions between paramagnet-
ic, ferromagnetic, and spin-glass phases have been predict-
ed. Pattern-recognition properties have been discussed
and a modified model, involving a non-Hebbian learning
rule, has been proposed; the finite-temperature behavior
of the latter model, and the resulting phase diagram, have
also been analyzed. ' Models of learning and informa-
tion encoding, which might be relevant to the biological
nature of memory, have been proposed recently. "

In the present paper we investigate the behavior of
neural networks designed with a learning rule (projection
rule) which, in contrast to the classical Hebb's rule,
guarantees the memorization and retrieval of a given in-
formation: This rule allows one to dig holes in the energy
landscape at predetermined points; we explain the "de-
cision" mechanism of one parallel iteration of the net-
work, we examine the nature of the stable states of the
system, we determine the minimum size of the basins of
attraction of the memorized states, and we show that no
cycles can occur. Moreover, this rule can easily be gen-
erahzed; we prove that it is possible to design networks
which comply with various sets of transition constraints
in state space, as, for instance, transient sequences leading
to an attractor, cycles, etc. Therefore, such networks have
the ability of performing associations between informa-
tions (associating rule). These rules are illustrated by vari-
ous examples of automatic error correction and classifica-
tion.

I. PRESENTATION Op THE NET%'ORK

A. The network of formal neurons

The formal neurons investigated in this work are deter-
ministic threshold elements with several binary inputs and
one binary output. The state of any such neuron i, which
is its output value, is represented by a variable cr;, the
value of which can be either 1, if the neuron is "active, "
or —1 if the neuron is "inactive. "

We consider fully connected networks of n such neu-
rons operating in parallel vvith period ~, without sensory
inputs. Therefore, the formal neuron i has n binary in-
puts oj, j =1,2, . . . , n, which are the outputs of the n

neurons of the network; the strength of the "synaptic"
junction of neuron i receiving information from neuron j
is represented by a coupling coefficient C;J (without any a
priori constraints such as C;; =0 and/or C~ =CJ; ).

The state of the formal neuron i at time t+w depends
on the states of its inputs at time t in the following way:
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the neuron first computes its "membrane potential" u;(t)
by performing the sum of its inputs oJ(t) weighted by the
coupling coefficients CJ,

u;(t)= g C,Jo'J.(t} .

Then it compares u;(t) to a threshold value 8; and
determines its next state cr;(t +~) according to the follow-

ing dec1sion rule:

u;(t) 8;+—0 =- o; (—t +r) =sgn[u;(t) —8;],
u;(t) —8;=0 ==cr;(t+r)=o;(t) .

The n coupling coefficients C~J can be organized in a
square matrix C, which is often called the "synaptic" ma-
trix. The n threshold values define a column vector 8.
At time t, the state of the network will be represented by a
column vector o(t}, the n components of which are the
states of the n neurons. The next state n(t+v ) of the net-
work is fully determined by the computation of the vector
v(t), the components of which are the potentials of the n

neurons: v(t)=Co(t), followed by the decision rule (1);
vector tr(t +r) is the vector v(t) "thresholded. "

(a)

(b)

B. Associative properties of the network

We are interested in the computational properties of the
networks, which arise from their spontaneous evolution:
a network being set into an initial state, it will evolve step
by step after decision rule (1); since the number of states is
finite, and since rule (1) is deterministic, the evolution will
end up in a limit cycle with a maximum length of 2".
Several cases can arise„' they are illustrated in Fig. 1, in
which various possible evolutions in state space are
represented: attractor or nonattractor fixed points and cy-
cles. Obviously, a given network exhibits several fixed
points or cycles, thus performing a partition of state
space.

The case of Fig 1(a) is. certainly the most interesting
since it exhibits typical associative properties. The state
of a network of n neurons at a given instant of time can
be considered as a pattern of n bits of information. As-
sume that the pattern corresponding to the fixed point 30
is an information which has been memorized, and that
state 23 is an unknown pattern; if the network is set in
state 23 it will evolve, by its own dynamics, to state 30,
thus performing an association between informations 23
and 30. From a practical standpoint, it is much easier to
detect that a system has reached a fixed point than to
detect that it has entered a cycle.

Note that, since we consider parallel iterations, the
fixed points (time-invariant states) are not necessarily
stable states since the term "stability" refers strictly to
single spin fiips; therefore, the stability stricto sensu is not
relevant in the present case. However, in the following,
we shall refer to stable states in a somewhat loose way, as
equivalent to fixed points.

The dynamics of the network represented by the above
graph of state space depends on the parameters of the sys-
tem, namely, the coupling coefficients and the thresholds.
Therefore, the problem of designing an associative

FIG. 1. Evolution in state space. A state cr of the network is
represented by a labeled circle. An arrow represents a parallel
iteration. Stable states are characterized by heavy circles. (a)
Stable attractor state. (b) Stable nonattractor state. (c) Attrac-
tor cycle. (d) Nonattractor cycle.

memory with a neural network can be stated as follows:
how to determine the coupling coefficients and the thresh-
olds so as to impose on the system a given set of attrac-
tors, which are the states to be memorized, or, more gen-
erally, so as to impose a set of dynamic behavior con-
straints. This problem will be addressed in the following.

II. A LEARNING RULE FOR RELIABLE
INFORMATION RETRIEVAL

A. Presentation of the problem

In this section, we address the problem of designing a
neural network which, by a proper choice of the parame-
ters, actually memorizes a given set of prototype vectors
by making them stable states of the network.

%e shall see that such a network exhibits information-
retrieval properties: given a distorted version of a memor-
ized prototype vector as the initial state of the network,
the latter wiH generally converge to the prototype vector,
thus retrieving the complete correct information. But we
shall further see that, in addition to the prototype states,
other stable states arise too. These nonprototype stable
states can be useful or undesirable, depending on the ap-
plication which is considered. If the initial state is too
confused with respect to the prototype states, the network
converges to one of the nonprototype stable states, thereby
indicating that it is not able to "recognize*' anything. In
some cases, however, if the basin of attraction of such
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states is too large, they can introduce undesirable de-

cisions. Therefore, it is important to be able to predict
them, possibly in order to suppress them.

We can summarize the desirable features for a network
to perform information retrieval efficiently: (i) the proto-
type states, which are to be memorized, should be stable
and act as attractors, (ii) the nonprototype stable states, if
any, should be predictable, (iii) no cycles should be al-
lowed to occur. In Sec. II C we show that these three con-
ditions can be met if the parameters of the network are
determined by an appropriate method.

where n is the number of neurons and p is the number of
prototype states to be memorized I cr"I.

Numerical simulations" and theoretical considerations
have shown that, in most cases, this rule does not meet the
first of the three conditions which we have shown to be
mandatory for a neural network to operate properly.
Therefore, it is not satisfactory as far as information re-
trieval properties are concerned. In Sec. IIC we shall
derive a generalization of Hebb's rule which allows the
above three conditions to be met.

Relation (2) can be written in matrix form as

k=1

where (cr } denotes the transpose of vector cr", X is the
( n,p) matrix whose columns are the vectors crk,

X=(cr',o, . . . , H),
and X is the transpose of matrix X.

In the very particular case in which the prototype states
are mutually orthogonal, the couphng matrix C, comput-
ed from relation (3}, is the orthogonal projection matrix
(in Euclidean space) into the subspace spanned by the pro-
totype vectors. This particular property has an important
impact on the dynamical behavior of the network which is
determined by the components of vector Ccr —8: if each
component of this vector is zero or has the same sign as
the corresponding component of cr, the state cr is stable.
In the present particular case (orthogonal prototype states)
each vector cr is invariant in the projection operation, so
that one has

Ccr"=o" for all k . (4)

Since cr" belongs to I
—1,+1I", it follows from relation

(1) that, if one has

—1 & 8; & 1, for all i

B. Hebb'8 learning rule

Experimental data on biological systems have led Hebb
to propose a learning mechanism' whereby the synaptic
coupling between two neurons is enhanced if both neurons
are active at the same time; the simplest rule for comput-
ing the coupling coefficients following the above idea has
been proposed by Cooper et ctl. ,

'

all the prototype states are certainly stable states of the
system; this property guarantees a perfect retrieval of the
stored information.

If the prototype states are not orthogonal, the above

property (4) is no longer true. The stabihty of the proto-
type states could be obt:ained by a proper choice of the
threshold vector 8; however, the determination of such a
vector requires solving a system of n Xp inequalities,

(Ccr —8);cr,". &0, 1&i &n, 1&k &p,

whose unknowns are the n components 8; of vector 8.
This system cannot be solved easily and does not always
have a solution.

To summarize, Hebb's rule is suitable for the design of
an associative memory guaranteeing a perfect retrieval of
the stored information if the prototype vectors are orthog-
onal. The orthogonality condition can be met in several
situations such as, for instance, (i) if n is finite, the
columns of a Hadamard matrix'6 provide a complete set
of orthogonal vectors, the components of which are +1
or —1; (ii) in the thermodynamic limit ( n ~ Do ) with p fi-
nite, if the prototype vectors are taken randomly (com-
ponents +1 or —1 with probability —, };this case has been

studied in detail by other authors.
For all practical purposes, however, one has to deal

with finite systems, and the informations to be stored are
neither random in nature nor orthogonal; the prototype
states will, in general, be correlated, causing a low storage
capacity. Therefore, it is natural to attempt to find a cou-

pling matrix exhibiting the same basic property [relation
(4)] for any set of vectors.

C. The projection lea.ming rule

In this section we show that there exists a coupling ma-
trix which guarantees the stability of a set of prototype
vectors, whether correlated or not, and we analyze to what
extent neural networks designed with such matrices can be
useful as associative memories.

A nontrivial solution of the system of equations (4),

Ccr"=cr", for all k

which can be written equivalently as

will be the orthogonal projection matrix into the subspace
spanned by the prototype vectors family t cr I,

C =XX

where X is the Moore-Penrose pseudoinverse' of X.
Therefore, it will guarantee the stability of the proto-

type states if one has

—1&HI &1.
Relation (6}will be termed the projection rule. The cou-

pling matrix C, being an orthogonal projection matrix, is
symmetrical. In Sec. III, we shaH investigate a still more
general case, in which the coupling matrix is not symme-
trical.
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One should note that apparently with the projection
rule there is no storage-capacity limit, up to the total
number of possible states of the system. Nevertheless,
this property does not mean that the network will always
achieve the desired associative memory function. As a
matter of fact, the memory capacity can be expressed
directly in terms of the rank r of the family of the p pro-
totype vectors. If r =n (p &n), the projection matrix is
the identity matrix and the 2" states of the network are
stable; the memory is degenerate. If r g n, the associative
memory function is possible; the retrieval efficiency of a
prototype (attractivity) will fall sharply as r/n becomes of
the order of 0.5.

Therefore, it is possible to memorize more than n pro-
totypes without complete memory degeneracy, the only
condition being r ~ n Am. ong the p prototypes, p rare-
therefore linear combinations of r linearly independent
prototypes.

In the general case, the coupling matrix C can be com-
puted conveniently, without matrix inversion, by an itera-
tive algorithm. ' It yields the exact solution of system (5)
after a finite number of iterations, which is equal to the
number of prototype vectors. This kind of computation is
typical of a learning process: once the synaptic matrix
has been computed from a given set of prototype vectors,
the addition of one extra item of knowledge does not re-
quire that the whole computation be performed again; one
just has to run one iteration, starting from the previous
matrix. Therefore, memorization through the projection
rule retains the same iterative nature as the classical
Hebb's rule.

The following three points should be mentioned.
(i) In the particular case where the prototype vectors cr

are linearly independent, the synaptic matrix C takes the
orm

c=x(x'x)-'x'.
If the prototype vectors are orthogonal, the projection rule
reduces exactly to the classical Hebb's rule (3) since one
has

(Xrx) '=(I/n)I,
where I is the identity matrix.

(ii) In analogy to magnetic systems, zero diagonal ma-
trices have beni used by several authors. ' Since the
diagonal coefficients of the projection matrix are smaller
than or equal to one, the stabihty of the prototype states
after canceling the diagonal terms is preserved, but their
attractivity is altered.

(iii) Finally, one can guarantee the stability of the pro-
totype states with the projection rule without any restric-
tion on the thresholds: the scaling of the thresholds is
directly related to the scaling of the matrix. If one has
—A, (8; & +A. for all i one can just take C =A,xx .

D. Properties of the networks designed
~ith the projection learning rule

In the following, me give a simple geometrical interpre-
tation of the dynamics of the network, which allows us to
establish several results: first, we derive the nature of the

nonprototype stable states; second, we show that it is pos-
sible to define an energy which is always decreasing dur-
ing the free evolution of the network, so that no cycles
can occur; next, me show that the prototype states are the
states of lowest possible energy; finally, we derive the size
of the basins of attraction of the prototype states if the
latter are orthogonal.

The thresholds are taken equal to zero (or, equivalently,
in terms of magnetic systems, the external field is zero);
this choice is natural since it leaves the largest possible
stability margin.

I. Geometrical interpretation of the dynamics
of the netuerk; nature of the stable states

Let us summarize the steps occurring during a single
parallel iteration of duration r: the potential vector
v(r)=Ccr(t) is evaluated; subsequently, the next state
cr(t +r) is obtained by the thresholding operation (1).

In the following, we denote o(t) by o and rs(t +~) by
cr. A geometrical interpretation is given on Fig. 2(a).

(c)

FIG. 2. Projection rule: Evolution in Euclidean space. (a)
Evolution from state cr to state cr' in one parallel iteration.
v=Ccr is the orthogonal projection of cr into the subspace I.~
spanned by the p prototype vectors. cr', obtained after thresh-
olding, is the vector belonging to I

—1, + 1I which is closest io
v. (b) The vector cr is stable but does not belong to I.~. It is cer-
tainly not a prototype. (c) The vector cr is stable and belongs to
I.~ {Ccr =cr; cr is, for instance, a prototype}. (d) After t~o itera-
tions from state cr, the network reaches a stable state belonging
to I.~.
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FIG. 3. Projection rule: Graphs of evolution in state space. The labeled circles are the prototypes states: the label is the decimal

value of the vectors considered as binary numbers (+ 1 is 1 and —1 is 0). The vertical scale shows the energy of the attractors. (a)

Five linearly dependent prototype vectors are memorized. Matrix X,
—1 1 1 —1 1 —1 1 1

—1 —1 —1 1 1 —1 1 —1

—1 —1 —1 —1 —1 1 1 1

—1 —1 1 —1 —1 —1 1 1

1 —1 —1 1 1 1 1 1

(107)
(26)
(7)

(&5)

(79) .

The rank of the fanuly of the prototype vectors is 4. (b) Three orthogonal prototype vectors are memorized. Matrix X,
—1 —1 —1 —1 1 1 1 1 (15)
—1 1 —1 1 1 —1 1 —1 (90)
—1 —1 1 1 1 1 —1 —1 (60) .
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Vector v=Cn is the orthogonal projection of a into the
subspace L~ spanned by the prototype vectors; therefore,
v is the hnear combination of the prototype states which
is closest to the initial vector cr {Euclidean distance). We
show in Appendix A that o' (the thresholded vector v) is
the vector belonging to I

—1,+1I"which is closest to v.
Consequently, if cr itself is the vector of t

—1,+ 1)"which
is closest to v, cr is stable [Fig. 2(b}];Fig. 2(c) illustrates a
particular case where cr belongs to Ly {for instance, cr is a
prototype). Figure 2(d) shows a sequence of iterations
ending in a prototype state.

An immediate consequence of the above interpretation
is the following: since v is a linear combination of the
prototype states and cr' the thresholded vector v, the
stable states are thresholded linear combinations of the pro
totype states. If undesirable stable states appear, they may
be eliminated according to the method suggested in Sec.
III A 3.

2. Dynanlics of rhe netuerk: absence of cycles,

energy of the prototype states

For further studies of the dynamical properties of the
network, we use the following Lyapunov function of state
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It should be noticed that, in contrast to the usual situation
in investigations of magnetic systems or of neural net-
works, the diagonal terms of the coupling matrix being
nonzero, this Lyapunov function is not strictly an energy
function. Since C is an orthogonal projection matrix, one
has

the "energy" is proportional to the square of the synaptic
p«ential vector (or of the magnetization). We show 1n

Appendix 8 that if a network evolves from a state o to a
state o'+cr, one has E(p') &E(o}.

Thus, during the free evolution of the system perform-
ing parallel iterations, the energy is an ever decreasing
function. Therefore, no cycles can occur; a similar result
has been derived by other authors ' for the evolution of
a network in which one neuron only reevaluates its state
at each time step (sequential operation); for practical pur-
poses, however, parallel operation is more efficient as far
as computation times are concerned.

The energy of a prototype state a and its negative
—e is givenby

Cgy = ——o crkT & & kT k
2

— 2

Thus, E = nj2. Therefore, a—ll the prototype states have
the same energy, which is the lowest possible energy.

3. Artractiuity of orthogonal prototype states

If the prototype states are orthogonal, their attractivity
can be evaluated: we show in Appendix C that any state
lying within a Hamming distance of n/2p from a proto-
type state will converge to this state in one step. There-
fore, the minimum number of states attracted by a given
prototype state is given by
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FIG. 4. Projection rule: Histograms of attractivity. Network
of 16 neurons. The orthogonal prototype vectors are from the

columns of the Hadamard matrix. The stable states are gath-
ered in classes of equal attractivity. Histograms of attractivity
are presented for the first attractors. Class I: states belonging
to L~; prototypes, their negatives and possibly states which are
linear combinations of prototypes. Class II: second attractors
which are symmetric states. Class III: other attractors. (a) Ma-
trix X,

(3855) (13107) (21845) .

(b) Matrix X,

(3855) (13107) (21845) (39321) .
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where m is the largest integer smaller than n/2p.
Thus, the attractivity of the prototype states falls

sharply if p becomes of the order of n/2; correlatively, the
number of stable nonprototype states increases.

If the prototype states are not orthogonal, no general re-
sult can be stated but an order of magnitude of the aver-
age mimmum attractivity is given by n/Z, r, where r is the
rank of the prototype vector family.

E. Illustration of the projection rule properties

In the following examples we use a small number of
neurons, which allows us to study exhaustively the evolu-
tions in state space. This restriction is not a loss of gen-

erality since the efficiency of the projection rule (relation
6} is independent of the number of neurons. The thresh-
old vector 8 is taken equal to zero.

The first two examples (Fig. 3) aim at visualizing all
possible evolutions in state space; for this reason, we con-
sider eight neurons only. The following examples (Fig. 4)
illustrate the results obtained in the previous paragraph
about the attractivity of the prototype states, for a net-
work of 16 neurons.

In Fig. 3(a) five linearly dependent prototype vectors
are memorized. The rank of matrix X is 4. As a basic
property of the projection rule the prototype states are all
stable and attractors. Several nonprototype stable states
arise. It should be noticed that the same network (with
obviously the same graph of evolution in state space}
would have been obtained with only the first four in-
dependent prototypes, since the projection matrix is the
same.

TABLE I. (a) Projection rule: Error correction, journal titles. Number of neurons, n=180; number
of prototypes, p=60. The meaning of the two line groups on the right column is the following: the
first line of each group is the initial state in which the network is set and the second line is the stable
state which it reaches. (b) Projection rule: information retrieval, telephone book. Number of neurons,
n =240; number of prototypes, p=24.

60 PRQTQTYPE STATES

PHYSICA
JOURNAL DE PHYSIQUE
PHYSICAL REVIEW LETTERS
INORG. CHIM. ACTA ARTIC. LETT.
JOURNAL OF STATISTICAL PHYSICS
SCIENCE
BUlLETIN OF MATH. BIOPHYSICS
BIOLOGICAL CYBERNETICS

ERROR CQRRECTIQN

JOURNEL DE PHISIQUE
JOURNAL DE PHYSIQUE

INORG. CHIM. ACTA ARTISTIC
INQRG. CHIM. ACTA ARTIG. LETT.

BELLETIN QF MITH. BQIPHISIYCS
BELLETIN QF MITH. BKOPHYSICS

24 PROTOTYPE STATES

ARQNDEL
BOUCHER
BOUCHER
ISALISE
JEANNOT
LAROSE

FRANCIS
JULIEN
ANNIE
ALFRED
CORINNE
JEANNOT

36, RUE DES EGOLES PARIS 5 3362550
5, AV. DULAC PARIS 4 9243189
33, RUE, LOUP IDELOUP E PARIS 7 0456?91
68, BD. MASSENA PARIS 7 5002736
13, RUE DE LA GAITE PARIS 6 3789720
97, RUE LORIENT PARIS 5 1236785

INFQRINATIQN RETRIEVAL

BOUCHER JULIEN
BOUCHER JULIEN 5, AV. DU LAC

ISALISE
ISALISE

LARQSE
LAROSE

FRANCIS
ALFRED 68, BD. MASSENA

97, RUE LORIENT
JEANNOT 97, RUE LORIENT

PARIS 4
PARIS 4 9243189

PARIS 7 5002736
PARIS 7 5002736

PARIS 5
PARIS 5 1236785
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In Fig. 3(b) thrm orthogonal prototype states are
memorized. The prototype states are obviously stable and
in this case they have the highest attractivity. The state
space is regularly partitioned. The second attractors are
the thresh olded columns of the matrix ("symmetric
states" mentioned by Amit et al; a symmetric state or' is
such that the absolute values of all the inner products
(tr') o are equal or zero for all k).

Figure 4 illustrates the case in which orthogonal proto-
type vectors are memorized. The stable states can be
gathered in a small number of classes of equal attractivity.
The prototypes and their negatives always belong to the
classes of highest attractivity. Histograms of the percen-
tage of attracted states versus the Hamming distance to
the attractors show that, as expected, all the states lying
within a distance of tt/2p of a prototype are attracted (see
Sec. IID3).

F. Examples of applications

The examples presented below illustrate potential appli-
cations of neural networks designed after the projection
rule. The family of prototype states is a set of p sen-
tences; each of the m alphabetic characters is coded on six
bits so that the total number of neurons is n =6m.

In Table I(a), an example of error correction is present-
ed, showing that the correction is always successful unless
the initial vector is too different from all the prototype
states: the titles of 60 scientific journals have been chosen
as prototype patterns; if the network is initially given a
distorted version of a title it will generally evolve in a few
iterations (three on the average} until it reaches the correct
title; thus the correction process is successful except if the
data is too distorted. The last lines show an example of
such a situation, in which the network evolves to a
nonprototype stable state.

Table I(b) shows another application in which we use
the ability of the network to retrieve information from
truncated data: each prototype pattern is an item in a
telephone book; it contains the name of a person, his ad-
dress and his phone number; if the neural network is given
a part of this information such as, for instance, the name
and district number, the system retrieves the complete in-
formation

It should be mentioned that it is possible to use such a
network to perform associations, by using a particular
construction of the prototype vectors suggested by
Kohonen'9 for linear associative memories; during the
learning phase, each pattern vector e" of a particular class
r is presented together with the vector code c' of this
class. The state vectors cr include two distinct fields, one
of which is devoted to the pattern vector to be classified e
and the other to the code vector c of the dass. Starting
froin a vector cr=(', ) where e is a distorted version of a
mexnorized vector e and c any vector, the network will

hopefully evolve to vector tr"=(', ) thus performing the
association of e to c'. This procedure has been proved
very successful for applications such as pattern recogni-
tion, since it allows an effective use of the non-
pratotype-stable states and greatly enhances the associa-
tive properties of the network.

III. A GENERALIZED LEARNING RULE
FOR ASSOCIATION

A. Designing a neural network satisfying a given set
of dynamic behavior constraints

The problem which is addressed in the present section
goes beyond the mere stability of the prototype states: we
show that it is possible to design neural networks which
satisfy a given set of constraints; for instance, one may
wish to design a neural network exhibiting a given set of
stable states, a given set of transitions, and/or a given set
of cycles.

I Form. ulation of the problem

g C; tr" 8; (—o'),"g0, 1&i &n and 1&k &p (10)

from which the elements C;, of matrix C should be com-
puted. In terms of magnetic systems, these inequalities
express simply the fact that spin o," will fhp into the
direction of its local field,

QC, ~"—8, 1&i&a,
j=1

to give spin (u'};. Instead of trying to solve system (10),
we transform it into a linear problem,

g C,j.trj 8; =A; (tr');, —for all i and k
j=1

where A; is an arbitrary positive coefficient. This system
of equations can be reduced to a matrix system,

Ca" 8=A (o')", —for all k

where A is a positive diagonal matrix. It may be further
reduced to a single matrix equation

(12)

where

&=(o',o', . . . , cr'),

F=(f', f', . . . , f~),

with f"=3 "(o')"+8.

According to relation (1), the dynamics of the network
is governed by

u;(t) —8;&0 = o; (t+r) =-sgn[u;(t} —8;j,
u;(t) -8;=0 — = o; (t +-r) =o;(t),

with u;(t) = gj, CJ tr, (t)
Suppose that we want to compute matrix C so as to im-

pose p one-step transitions in state space,

o"~(tr')", k =1,2, . . . ,p .

Notice that if (o') =tr for all k, the problem reduces to
imposing the stability of the prototype states. The prob-
lem can be expressed as a system of np inequalities,

P
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C =FX +8(I—XX ), (13)

where X is the Moore-Penrose pseudoinverse, and 8 is an
arbitrary (n, n} matrix. In the present paper we take
8=0, so that we have the following learning rule:

C=FX .

However, in some cases, 8 provides a degree of freedom
which has already proved fruitful for the modeling of bio-
logical mechanisms. ' Since X X is the orthogonal projec-
tion matrix into the subspace spanned by the rows of X,
the above condition FX X=F, which can be written
equivalently X XF =Fr, means that the rows of F are
linear combinations of the rows of X.

In the particular case where the vectors tr are linearly
independent, as mentioned in Sec. II, the pseudoinverse
takes the form

2. Solution ofEq. (I2): the associating rule

Equation (12) does not always have an exact solution.
(i) If FX X=F, Eq. (12) has an exact solution, the gen-

eral form of which is

X =(X X) 'X and X X=I

(ii) If FX X&F there is no exact solution but C =FX
is the matrix which minimizes the Euclidean norm of the
error matrix CX—I'.

In the first case, when an exact solution exists, there is
still an infinity of possible matrices C, satisfying the re-
quired set of constraints (9), depending on F. The compu-
tation of the coupling matrix C may be further simplified
by the following argument: for a given e, it is possible to
find A, such that

—A, & 8; & A, , for all i .

It can be easily shown that a set of positive diagonal ma-
trices A exists if we impose

F=A,X', X'=[tr', cr', . . . , o's],

so that matrix C reduces to

C =A,X'X

This rule will be referred to in the following as the associ
ating learning rule, because it allows us to impose that
the network perform the associations o»~(o')» for

FIG. 5. Associating rule: Evolution in state space. These two examples show the evolution in state space of a network of eight
neurons. Heavy lines represent the imposed one step transitions. (a) Classification. Attractors (248) and (26) code classes. The states
(172), (28), etc. are given as examples of elements of these classes. Matrix X,

(28) (172) (220) (248) (14) (62) (107) (26) .

Matrix X',

(220) (220) (248) (248) (26) (26) (26) (26) .
(b) Cycles. Two cycles,

(248) —(220)—(62)—(172)—(248)

(14)—(107)—(227)—(14)

and the transition (26)—(14) are imposed during the learning phase. Matrix X,

(248) (220) (62) (172) (26) (14) (107) (227) .

Matrix X',

(220) (62) (172) (248) (14) (107) (227) (14) .

It should be noticed that nonimposed cycles of length two appear.
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TABLE II. Associating rule: Classification. Books classified by editor s names. Number of neu-

rons, n =240; number of imposed constraints, @=66.

60 TITLE8

CONTENT ADDRESSABLE MEMORIES
PROBABILITY AND STATISTICAL PHYSICS
MATHEMATICAL METHODS IN TECHNOLOGY
BASES DE DONNEES METHODES PRATIQUES
TELEINFORMATIQUE
TECHNIQUES STATISTIQUES
APPLIQUEES

SPRINGER SERIES IN INFORMATION SCIENCES
NORTH HOLLAND SERIES IN APPLIED MATH

DUNOD INFORMATIQUE PHASE SPECIALISEE
WILEY SERIES IN MATHEMATICAL STATISTICS
ADDISON WESLEY MICROBOOKS SERIES
DUNOD TECHNIQUE MATHEMATIQUES

CLASSIFICATION

PROFABILIGY AND STATDSTIGAL PHYSICS
SPRINGER SERIES IN INFQRMATION SCIENCES

TECHNICAL STATISTICS
DUNQD INFQRMATIQUE PHASE SPECIALISEE

BASIS QF DATAS METHQDS PRACTICAL
DUNOD YECHKHQOEEPATPELA AQPEB APHTIDU ES

k =1,2, . . . ,p. If X'=X, disregarding the scaling factor
A, , relation (16) reduces to the projection rule.

9. Examples of networks designed after
the associating learning nile

Here we present several examples obtained when the
network is designed after the associating rule C=X'Xt
with 8=0 which leaves the largest margin between —A,

and +A, . By imposing the evolution in one step of a given
set of states, this rule allows us to impose specific evolu-
tions in state space such as a transient sequence of states
leading to an attractor ox a cycle.

Transient sequences of states leading to an attractor
These kinds of associations may be useful in two cases.

(i) Classification. In Fig. 5(a) we present an example in
which several steps have been imposed; after the learning
period the network will associate state (172) to state (220)
and state (220) to the stable attractor state (248), etc. Sup-
posing that states (14), (28), (62), (107), (172), and (220) are
prototype patterns and that states (26) and (248) code the
classes, this allows us to make pattern recognition or clas-
sification.

(ii) Suppression of undesired non-prototype attractor
states. A network designed after either the projection or

the associating rule may exhibit undesired attractors
which can be eliminated by imposing extra transitions
from these undesired attractors to proper attractors (see,
for instance, an example of application in Sec. III B).

Cycles. In Fig. 5(b) we present an example in which
two cycles have been imposed. Interestingly, simulations
indicate that if cycles of at most m steps are imposed, no
secondary cycles of length larger than m appear.

S. Application: use of the network for classification

In this section we want the neural network to behave as
an associative memory which, after learning several exam-
ples of each class of information, is able to classify faith-
fully an incomplete or distorted information. As men-
tioned in Sec. IIIA, this is possible with the associating
rule. An example of classification of books by editor
name is given in Table II. During the learning phase each
book title was associated with the name of its editor
which is itself made stable. After learning, the network is
able to retrieve the name of the editor, even if it is given a
distorted version of the title of a book. One can notice
that the last example leads to a nonimposed attractor
which may be considered undesirable. By adding the fol-
lowing imposed transition,

~ DUNOD INFORMATIQUE PHASE SPECIAI.ISEE,

we eliminate it successfully while the other results remain
unchanged.

CONCLUSION

In this paper, we have presented a general formulation
of the design of neural networks. Starting from an

analysis of the behavior of the network, we have derived
an associating rule which allows us to impose a given set
of dynamic properties: stable states and/or valleys and/or
cycles. The associating rule has been used for classifica-
tion purposes. In the particular case where only stable
states are imposed, the associating rule reduces to the pro-
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jection rule, which allows us to memorize and retrieve
faithfully a set of prototype patterns. Several analytical
results related to the decision mechanism, the nonproto-
type attractors, the absence of cycles, and the attractivity
of the prototype states have been derived. These new

design rules provide flexible tools for performing high-
level information-processing functions, such as memoriza-
tion and association.

ACKNO%LEDGMENT

We wish to thank J. L. Zorer for numerical simulations
performed on the CIRCE computers (Orsay).

APPENDIX A

cr'=cr(t +r) in one parallel iteration. We shall show that
the energy defined by

E(cr)= —( —,)cr Ccr

is an ever-decreasing function, that is

E(o'}&E(cr), if cr'&o' .

Since Ccr' is the orthogonal projection of cr' on the sub-
space L~ spanned by the prototype vectors, it is the vector
belonging to Lr which is closest to cr' .Therefore
[~cr' Co—'[[ &

~

~cr' —Ccr~~ if o'~cr Moreover, relation
(Al) gives

We consider the free evolution of a network, designed
after the projection rule, from a state cr=cr(t) to a state
cr'=o(t+r) in one parallel iteration: first, the network
computes the potential vector v by the relation

v=Co;
then, decision rule (1), with 8=0, sets the network into
the state a' such that

o''; =sgn(u;), if u;&0

o,'=o;, if u;=0.
One has

(o') v=g ~u;j .

Consider a vector cr'&o', the difference between them
arising from at least one component j (with uj~0). One
has

(o") v= g ) u; ( cr,'cr,' .

Since at least the jth term of the sum is equal to —
~ uj ~,

one has

so that (cr')"v&(o'} v. Since cr and cr' have the same
norm (~n ), the latter relation is equivalent to

(Al)

Therefore
(i) let us consider a state o(t); if all the components of

v =Co(c) are nonzero, the next state o(t+r) will be the
vector of I

—1,+ 1 I" which is closest to v (with respect to
the Euclidean distance).

(ii} If q of the components of v are zero, cr(t +a) will
be one of the 2~ vectors of I

—1,+ 1)"which are closest to
v, the components of o(t+~) corresponding to com-
ponents of v equal to zero being the same as those of o (t)

(iii} Consequently, if o is among the vectors I
—1, + 1 I

which are closest to Co, then u is stable.

APPENDIX 8

thus

Since cr and cr' have the same norm (Mn ), the latter rela-
tion is equivalent to (cr') "Co' ~ o Ccr; therefore
E(o') &E(o).

APPENDIX C

Let I
o"

I be a family of p orthogonal prototype vectors.
Matrix C is calculated after the projection rule which, in
this case, reduces to Hebb's rule (3). Let cr be a state vec-
tor different from the prototype ones. We investigate the
evolution of the system when started in state o. We apply
Ctoo,

Crr=()/o) $ o"(o") rr .
k=1

Thus Ccr is a linear combination of the prototype states,
the coefficients of which are the inner products of o and
o Since th. e components of these vectors are —1's and
+1's, one has

(cr ) cr=n —2H(cr, o),
where H(o",o) is the Hamming distance between states
o' and cr In the . following we denote H(cr",cr) by Hk.
Therefore one has

P
C o(1 )//ng (n 2Hk)o" . —

To investigate the attractivity of the prototype state cr,
we try to find a sufficient condition for the system to
evolve from state o to state cr in one iteration.

It results from the evolution rule (1) of the network
that, if each component of Co has the same sign as the
corresponding component of a, the network evolves
from state cr to state o in one iteration,

(Ccr);o; =(1/ )(n—n 2H )

~(1/o) f (o —2H„)o,"o; &0, for a() i .

We consider the free evolution of a network, designed
after the projection rule, from a state cr=cr(t) to a state This condition is satisfied if
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,
k, m=1
k~m

(n 2Hk—)cr cr &2H (p —1) .

Consequently, if the condition 2H~(p —1) &n 2H is-
satisfied, relation (Cl) will be verified, thus the network

(n —2Hk)cr,"o; &n 2H— , for all i .
k=1
k~m

An upper limit of the left-hand term can be found,

(n 2H~—)~,"rr; ( $ ~In 2ek—)
~

.
k=1 k=1
k~m k+m

After the triangular inequality, cr and cr~ being two
orthogonal vectors, one has

Hk (H~+n/2,
n/2 &Hk+H

which imply

~

n 2Hk (
—&2H~ .

Therefore

will certainly evolve from state o to state cr . The last re-
lation imphes that

H~ ~n/2p . (C3)

Hk pn/2p .

In summary, we have shown that, if a state cr lies within a
distance of n/2p of a prototype state cr: (i) cr is the
nearest prototype state, (ii) the network will evolve from
state cr to state o in one iteration. It should be noticed
that n/2p is a lower limit of the size of basin of attraction
of a prototype state; starting states lying at larger dis-
tances may lead the network to that prototype state. it
can be shown similarly that any state lying within a dis-
tance of n/2p of a state —o will converge to that state
in one iteration.

It can be checked from relation (C2) that if a state lies
within a distance of n/2p from a given prototype state, its
distance from any other prototype state is larger than
n/2p,

n 2Hk—&2H &n/p, Vk&rn
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