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Inter-iiiediate-coupling calculation of atomic spectra from hot plasma
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An algorithm is presented for the detailed computation of the spectral lines in hot, partially ion-

ized plasmas in local thermodynamic equilibrium. The procedure uses the wave functions and state
probabilities determined from the average atom model for microscopic configuration accounting.
%e use intermediate coupling to include the detailed structure of the bound-bound transition arrays.
The model is applied to bromine plasma under such temperature and density conditions that partial-

ly filled I. sheBs occur.

I. INTRODUCTION

The proper accounting of the large number of spectral
lines in hot, partially ionized matter is important for opa-
cities and also for plasma diagnostics. Teller' first recog-
nized the importance of line opacities in hot matter, sub-
sequently rediscovered by many other researchers. The
strong effect of dispersed line clusters on the Rosseland
mean opacity of partially ionized gold was demonstrated
by Nardi and Zinamon. ~ A brief quantitative illustration
of the relative importance of line and continuum opacities
for iron plasma was also given by Rozsnyai. Theoretical
estimates for the degree of dispersion of line clusters due
to the different angular momentum states of the many-
electron system were given by Moszkowski, " and more re-
cently in a series of reports by Bauche et al. '

Although the estimate of the degree of dispersion of
lines due to the different angular momentum states is im-
portant, a detailed accounting of lines is necessary for ac-
curate opacity calculations and also to predict expected
spectral patterns. Whether or not the line clusters actual-
ly merge into continuous profiles depends on the physical
line-broadening characteristics of the plasma, so that line
broadening is an integral part of the spectroscopic model.
The main objective of this paper is to describe a computa-
tional procedure for the accounting of the large number of
spectral lines in medium-Z plasmas at temperatures such
that partial ionization occurs. Since the computation
problem is enormous, approximations are a practical
necessity. Presently we use first-order perturbation theory
for the computation of spectroscopic terms. The spin-
orbit interaction is taken into account in our model Ham-
iltonian and we use the intermediate coupling scheme, so
that our model is applicable for high-Z elements. We
present some calculations for bromine plasma at tempera-
tures and densities corresponding to partially filled L
shells. For the present, we limit our inodel to conditions
of local thermodynamic equilibrium (LTE). In Sec. II we
present the theoretical basis of our model and in Sec. III
we present some computational results.

II. THEORY

The theoretical basis of our model is the utilization of
the "average atom" (AA) wave functions to compute the

R„'t+2R„'ilr+I2[s„t—V(r)] 1(1+1—)!r fR« ——0 .

In Eq. (2) the electronic potential is given by

(2)

V(r)= Ze /r—+e f d r', + „V[p(r)],i ~ C(r')
/r —r'/

where Z stands for the charge of the nucleus and the elec-
tron density is given by

p(r)= ge« I
R«(r) I'. (4)

The last term in Eq. (3) stands for the exchange-
correlation part, approximated by a local potential which
is a unique functional of the electron density. In our
model for V„, we adopt the formula of Hedin and
r.undqvist. '

It should be noted that in Eq. (4) the summation goes
over all states, including the continuum. Because of that,
our model includes the screening effect by the continuum
electrons also. The actual computational technique to ac-
count for the free electrons is described in Ref. 8.

For a given temperature the Fermi level p, is determined
by the condition of charge neutrality

Fof p(r)r dr =Z,
where ro stands for the ion sphere radius determined by

expectation values of our model Hamiltonian. These ex-
pectation values are computed for eigenstates of the J
operator of the many-electron system. The AA model,
which is the starting point of our computational pro-
cedure, is described by Rozsnyai, and in references given
there; here we merely recall the rudiments of that model.

The AA model assumes that the electronic levels in the
plasma are populated according to the Fermi statistics

q« =g„,I exp[ —(s„i—p)/kT]+1I

where q«and g„iare the population and statistical weight
of a single particle level s«with quantum numbers n and
I, p is the Fermi level, and kT is the temperature in ener-

gy units. The electronic potential is assumed to be spheri-
cally symmetry and the radial part of the single particle
wave functions satisfy Schrodinger's equation (in atomic
units)
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the matter density.
Equations (1)—(5) give a complete self-consistent set of

equations for the AA model. The model's shortcoming is
that at finite temperature it predicts noninteger occupa-
tion numbers for the electronic levels, making the physical
state of the AA fictitious. The usefulness of the AA
model extends to the degree of its usefulness as a statisti-
cal average.

We proceed by separating the electronic levels of the
AA into core and valence states. Core states are those for
which q„i-g„l,which is the case for energy levels well
below the Fermi level. Valence states are those with frac-
tional or near zero occupational numbers. We create con-
crete physical electronic states involving the valence states
in the following manner.

First, we truncate the AA occupational numbers to
their nearest integer values creating the "most probable
atom. " In contrast to the AA, the most probable atom is
not fictitious but a physically permissible specimen. Next,
we create different electronic configurations from the
most probable atom by promoting and demoting electrons
in the valence levels. We also create different charge
states by increasing or decreasing the number of valence
electrons and repeating the same procedure. For each
configuration we create all the possible combinations for
the lowest value of J,. We use this set to simultaneously
diagonalize the J2 operator and the Hamiltonian for the
valence electrons. Since we are faced with an enormous
number of possible states we restrict ourselves to those
with appreciable probability. The procedure described
above is carried out for the "parent" and "daughter" con-
figurations. Parent and daughter configurations are dis-
tinguished by promoting an electron from an nl state to
an upper n'l' state due to photoabsorption. A somewhat
similar calculational method has been given by Argo and
Huebner, '0 where the energies of the angular momentum
states were not resolved, and also the configurational ener-

gies utilized Slater integrals Z scaled for isolated ions.
More recently Goldberg and Rozsnyai" gave results from
a simplified version of the model described in this paper
where only the lower parent configurations were energy
resolved.

Our model Hamiltonian used for the computation of
term energies and for the probabilities of the parent states
is given by

2 1 dna(r;)
j,j I ri rj I 4ni c i rg drg

with i and j covering the valence electrons only, and

2 pled p'g

The term V, in Eq. (7) stands for the "core" potential due
to the charge distribution of the core electrons, and is
giveIl by

2

V, (r)= f d'r'p, (r'), + V„,[p,(r)],r—r'

with

and the summation goes over the core states. The spin-
orbit interaction in Eq. (6) is taken into account in the AA
approximation to the degree that VAA(r;) stands for the
AA one-electron potential. We compute the expectation
values of the Hamiltonian (6) for all parent and daughter
states which are eigenstates of the J operator. Since the
Hamiltonian (6) involves the valence electrons only, the
self-energy of the core is unaccounted for. For the com-
putation of transition energies between parent and
daughter states due to photoabsorption the core self-
energy cancels out to the extent that core polarization and
relaxation are negligible.

We thus construct linear combinations of Slater deter-
minental wave functions, the determinants comprised of
the single-particle orbitals for the valence electrons.
These linear combinations are chosen to simultaneously
diagonalize J =( g J), and 0 [Eq. (6)], within the sub-

space of one configuration, where of course the sums are
taken over the valence electrons only. This diagonaliza-
tion is performed directly and does not utilize tables of
fractional parentage coefficients.

If we label the expectation value of the Hamiltonian (6)
for a J state in a certain configuration a by E(J,a), then
the probability of that state under LTE condition is given

P(J,a) =KG(J)expI [E(J,a) —IjN„]/kTI—,

where N„is the number of valence electrons in the config-
uration a. In Eq. (9}, G(J) is the statistical weight
(2J +1) and the constant E is determined by the normali-
zation condition

QP(J,a)=1 .

Our aim is to account for all the absorption lines of a
cluster associated with a single-electron transition of the
type nl n'l' ( n &—n' and l = l'+ 1) where the members of
a cluster differ by belonging to different parent configura-
tions and/or J states. The transition energy of a particu-
lar line is

b,E =E(J',a') E(J,a), —

with the selection rule M =0, +1, (no 0-0 transitions) and
where the configurations differ by one in the occupation
number of the one-electron states nl, n'l' To obtain th. e
desired spectra we have computed all the relevant term
energies and oscillator strengths for all the transitions of
the type in Eq. (10), together with the probabilities of the
parent states as given by Eq. (9).

The oscillator strengths and term energies are calculat-
ed using the AA wave functions as the basis single-
particle set for our many-body representation. In this
sense our model is a first-order perturbation calculation
using the self-consistent AA model as a start.

In order to obtain a meaningful spectroscopic result the
bound-bound oscillator strengths have to be supplied with
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reasonable line-shape profiles to compute frequency-
dependent absorption cross sections. In a real plasma the
bound-bound cross sections are superimposed on the
bound-free and free-free, which also have to be taken into
account. The computation of spectrum profiles, bound-
free and free-free processes is described by Rozsnyai'
and the reader is referred to the quoted references. In the
next section we illustrate our model by presenting some
calculations for bromine plasma

5-A

3 I-

III. NUMERICAL CALCULATIONS

We apply the procedure described in Sec. II to the par-
tially filled L shell for the bromine plasma. At present no
experimental data for LTE plasmas are known to the au-
thors. In the case of laser or electron-beam-produced
plasmas only the free electrons, which are usually
Maxwellian, have the property of a temperature, and the
bound electrons over the ions are distributed according to
the collision-radiative rate equations. Therefore, it is
rather difficult to correlate our LTE model with the avail-
able experimental data. Nevertheless, we attempt to do
that by choosing the temperature-density conditions so
that the LTE distribution of the different ionic species is
close to those of the non-LTE experimental conditions.
In Fig. 1 we show the experimental measurements of Bai-
ley et al. 's for laser-produced bromine plasma. The free-
electron density and temperature were estimated as
5 X 102' cm 3 and 480 eV, respectively, and the plasma is
mainly neon- and fluorine-like and optically thin. In or-
der to check the accuracy of our computed transition en-
ergies, we have marked in Fig. 1 some of the prominent
nixon and fluorinelike lines, and we have also listed them
in Table I. To mimic the experimental conditions with
our LTE model, we chose the same electron density, cor-
responding to 2.6X 10 matter density, and to make the
plasma mainly nmn- and fiuorine-like, we had to take the
temperature as 270 eV. In this case the AA model
predicts an almost filled 1. shell corresponding to
fluorinelike configurations. In our detailed configuratio
accounting we include 12 parent configuration, with the
neon-, fluorine-, and oxygen-like states having the largest
probability, giving rise to 54 initial J states. For these 54
parent states we accounted for all the n =2-3, 2-4, and 2-5
transitions in the intermediate-coupling approximation,

2 I-

p.

Photon Energy (eV)

FIG. 1. Experimental measurement of photoemission (in ar-
bitrary units) from a bromine plasma with 5X10 ' cm free-
electron density and 480 eV free-electron temperature. Details
are given in Ref. 17. The lines marked by the capital letters are
listed in Table I.

which yielded 10632 spectral lines. We list the parent
configurations together with the number of J states and
parent-state probabilities gz P(J,u) in Table II, and show
the oscillator strengths multiplied by the probabilities of
the parent states leading to the nl n'I' tra—nsition arrays
in Figs. 2 and 3. We supply the lines with reasonable
line-shape profiles and, having computed the bound-free
and free-free absorption cross sections as described in
Refs. 11—14, we then compute the total photoabsorption
cross section for the plasma. We predict the emission
spectrum from the plasma by taking the simplest solution
of the radiative-transfer equation

I (v) =8 (v) I 1 —exp[ o(v)pJ ]I, —

where I(v) is the intensity of the emerging radiation,
8 (v) is the Planck function, o(v) the frequency-
dependent photoabsorption cross section, p is the matter
density and I. is the average distance inside of the plasma

TABLE I. Some of the outstanding lines of Figs. 1 and 6. The parent configurations, single-electron
j —j' and many-electron J—J' transitions are listed in columns 2, 3, and 4. The transition energies are
given in electron volts. The numbers in square brackets are exponents of 10.

Line Par. Conf'.

[Ne]
[Ne]
[Ne]
[Ne]
[Ne]
[Ne]
[Fj
[Fj

J —J
transitions

2@3m-» I/z

2@1/2 3$1/2
2f73/p-3 d5/2

2+I/2 3d3/2
2+3/2-4d 5/2

2+1/2 4d3/2

2+3/2 4d5/2

2P I/2 4d3/2

J—J'
transitions

0-1
0-1
0-1
0-1
0-1
0-1
3 5
2 2
I 3
2 2

AE (calc.)

1.536[3]
1.563[3]
1.685[3]
1.716[3]
2.143[3]
2.167[3]
2.240[3]
2.249[3]

~ (meas. )

1.543[3]
1.591[3]
1.685[3]
1.728[3]
2.145[3]
2.191[3]
2.234[3]
2.243[3]
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Configuration No. of J states QP(J, a)

[Na]
[He]2s 22p '3s '

[Ne]
[He]2s '2p'
[He]2s~2p~3s '

[Fl
[He]2s '2p '
[4
[He]2s '2p'
[N]
[He]2s '2p'

[c]

1

1

8

2
4
5

8

5

10
5

8.504[ —3]
9.011[—3]
3.095[—1]
6.086[—2]
3.951[—3]
3.269[—1]
6.427[ —2]
1.438[—1]
2.828[—2]
3.375[—2]
6.635[—3]
4.455[ —3]

TABLE II. Parent configurations, number of J states and

probabilities for bromine plasma at kT=270 eV and at
p=2.6)(10 g/cm . The numbers in square brackets are ex-

ponents of 10.

material through which the photons must pass before em-
erging and reaching the detector. We show our computed
photoabsorption cross sections in Figs. 4 and 5, and the
calculated emission spectrum using Eq. (11) in Fig. 6.
The emission intensity in Fig. 6 is on the linear scale to
compare our data with experimental measurements. We
choose the sample thickness I. to be 2.5X 10 cm, corre-
sponding to the experimental conditions.

A comparison of Figs. 1 and 6, as well as inspection of
Table I shows that the calculated strong lines have about
the same transition energies as those of the experiment.
However, the strength ratios seem to be different. We
have no explanation for this difference beyond the suspi-
cion that it is due to the difference between the LTE
model and non-LTE experimental conditions. Presently
we have no experimental data to compare our calculations
with experiments where LTE conditions exist.

In Table III we compare briefly the data predicted by
the AA model with those of our detailed spectroscopic ac-

10 1

2s-3p
1421 lines

Z = 35, kT = 270 eV

2s-4p
-I - 1421 lines

10 3.

'- 10-4
CL,

X- 10-'-
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2s-sp

i 1421 lines

2p-3$
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10-4

Photon Energy feV)
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FIG. 2. Computer output for the 2s-3p, 2s-4p, 2s-5p, and 2p-3s transition arrays vs photon energy in eV for bromine plasma at
kT=270 eV and at p=2. 6&(10 g/cm . The vertical scale is for the oscillator strengths multiplied by the probability of the parent
state.
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FIG. 3. Same as Fig. 2 for the 2p-3d, 2p-4s, 2p-4d, and 2p-5s arrays.
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FIG. 4. Calculated total photoabsorption cross section in
units of cm /g versus photon energy for bromine at kT=270 eV
and at p =2.6X 10 2 g/cm.

FIG. 5. Same as Fig. 4 over the smaller photon energy range
of 1500—2800 eV corresponding to experixnental measurements.
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FIG. 6. Calculated emission spectrum in units of the Plancki-
an function B(v) for bromine plasma using the photoabsorption
cross section of Fig. 5 (kT=270 eV and p=2.6X10 ~ g/cm')
and a sample thickness of 2.5X10 ' cm. The letters indicate
the lines listed in Table I.

FIG. 7. Same as Fig. 6 for 3&10~' free-electron density and
710 eV free-electron temperature. The asterisk indicates the re-
gion of the F-like 2p-3s transitions.

counting. In column 2 the transition energy &&(aa) is

simply the difference of the single particle energy levels as
predicted by the self-consistent AA model. In column 3

bE (a) is the average transition energy of a nl n'l' —array
given by

b Eni n'I (a)= g-P(k)f (A~A, ')bE(A~A')f 7' „lla),

where the summation goes over all the parent J states la-

beled by A, and over all the daughter J' states labeled by A,
'

which differ from the parent states by changing one elec-
tron from an nl to an n'l' single-particle state. In Eq. (12)
P(A, ) is the probability of the parent state, f (A,~A.') is the
oscillator strength of the transition, and bE is the energy
difference. The last term in Eq. (12) is the average oscilla-
tor strength for an nl n'l' transition array —given by

f„I„)(a)=Q P(A, )f(A~A, '),

1)
I
D(nl~n'l')

I2l+1
(14)

where q„~ is the occupation number of the shell nl as
given by Eq. (1) and D stands for the dipole radial in-
tegral. The AA oscillator strengths are shown in column
6 in Table III. It should be noted that we use the same di-
pole radial integrals needed for the AA and the detailed
J —J' oscillator strengths by using the AA radial wave
functions, so the difference between the f(aa) and f(a)
quantities is due only to the statistical distribution of the
parent states and to the transition energies. In columns 4
and 5 we also give the second and third moments of the
distribution of lines within an array given by the formula
for the kth moments

the values of which are shown in column 7 in Table III.
The oscillator strength for an nl —n'l' transition predict-
ed by the AA model is given by

f I I(«)= 3b+ I r(aa)g i

TABLE III. Energies, variances in eV and oscillator strengths for transition arrays in bromine plas-
ma at kT=270 eV and at p=2. 6X10 g/cm . The numbers in square brackets are exponents of 10.

2$-3p
2$-4p
2$-5p
2p-3$
2p-3 d
2p-4s
2p-4d
2p-5s
2p-5d

1.834[3]
2.363[3]
2.600[3]
1.627[3]
1.744[3]
2.185[3]
2.231[3]
2.433[3]
2.456[3]

1.831[3]
2.375[3]
2.621[3]
1.623[3]
1.768[3]
2.195[3]
2.249[3]
2.451[3]
2.477[3]

[g2]1/2

5.051[1]
7.256[1]
8.379[1]
6.463[1]
5.346[1]
8.562[1]
8.107[1]
9.625[1]
9.376[1]

[b3]1/3

4.769[1]
6.309[1]
7.090[1]
5.440[1]
4.507[1]
7.000[1]
6.623[1]
7.784[1]
7.573[1]

5.780[ —1]
1.557[—1]
6.459[—2]
8.300[—2]
2.937
1.866[—2]
6.345[—1]
7.199[—3]
2.447[ —1]

6.145[—1]
1.639[—1]
6.787[—2]
8 "-"-"-[—2]
3.095
1.911[—2]
6.548[ —1]
7.380[—3]
2.516[—1]
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FIG. 8. Same as Fig. 6 at kT=250 eV and p=1.667)(10 '
/gcm .iThe X indicates the region of the F-like 2p-3s transi-

tions.

hk(nl +n'l') -= g P(A, )f(l~tA, ')

shown in Fig. 7. This density corresponds to 1.667 &(10
g/cm and to obtain mainly neon- and fluorine-like states
our LTE model had to assume 250 eV temperature. Our
computed emission spectrum for this case is shown in Fig.
8. Again, the transition energies of the prominent neon-
like lines show reasonable agreement between theory and
experiment, but the line intensities are noticeably dif-
ferent. Also, in the region of 1700—1900 eV photon ener-

gy our LTE calculation shows more strong lines than the
experiment. We attribute this difference again to the
difference between the LTE model and non-LTE experi-
mental conditions.

In summary, the algorithm described in this paper is
applicable to the computation of LTE spectra for partially
filled I. shells (and, of course, K shells). Further improve-
ments in the physics of the model, such as configuration
interaction may perturb the relative strengths and position
of the spectral lines, but does not change their number.
The same principle could be appli& to the case of partial-
ly filled M or higher shells, but in those cases the number
of spectral lines could very well become astronomical.
For this reason we believe that our model provides suffi-
ciently accurate predictions for LTE E- and L-shell spec-
tra. We are aware that LTE conditions are difficult to
achieve in laboratory conditions; nevertheless, we hope
that spectra from LTE plasmas will be available in the not
too distant future.
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