
VOLUME 34, NUMBER 5

Theory of infrared and anisotropic Raman band profiles of pure liquids:
Product approximation and its extensions

G. Tarjus and S. Sratos
I.aboratoire de Physique Theorique des Liquides, Universite Pierre et Marie Curie, 4 place Jussieu,

75252 Paris Cedex Q5, France
I,'Received 21 March 1986)

The theory of infrared and anisotropic Raman spectra of pure van der Waals liquids is developed

without introducing any a priori factorization of the rotational-vibrational correlation functions.
Extensive use is made of the fact that the Hamiltonian of a pure liquid sample is invariant, both
under permutations of the molecules and under rotations of the liquid sample as a whole. The total
and self-correlation functions are expanded into series. Their leading term corresponds to the prod-
uct approximation and higher-order terms provide successive corrections. These corrections are
shown to be small. Moreover, in spite of the presence of molecular interactions, infrared absorption
and anisotropic Raman scattering in pure liquids exhibit mainly monomolecular characteristics of
vibrational and rotational motions.

I. INTRODUCTION

Infrared absorption and Raman spectroscopies have
bow widely used in the last decade to investigate vibra-
tional and rotational motions in molecular liquids. In
most theories, infrared or anisotropic Rarnan correlation
functions are assumed to be factorizable into ~ibrational
and rotational contributions. In spite of its success, ' this
assumption merits a careful study since vibrations are
coupled to rotations and translations through the angle-
and position-dependent intermolecular forces and through
the angular-momentum-dependent intramolecular forces.

This problem was recently examined for dilute van der
Waals solutions by Tarjus and Bratos. 3 The theory em-
ploys a special form of expansion of the total infrared or
anisotropic Raman correlation function info a series. Its
leading term represents the product approximation and its
higher-order terms represent the successive corrections.
The latter were calculated by employing the Langevin
equation. In weakly interacting van der Waals solutions
at least, they prove to be quite small.

As far as pure liquids are concerned, the investigation is
complicated by the presence of resonant vibrational and
rotational interactions, even if the factorization of
rotational-vibrational correlation functions is assumed.
Nevertheless several theories were published and may be
presented as follows.

(i) The first paper in which the factorization of the in-
frared correlation function into its vibrational and rota-
tional components was questioned is that by van Woer-
kom et al. In this theory, the generalized cumulant ex-
pansion theorem for noncommuting operators is applied
to describe vibrational motions whereas rotational
motions are pictured by the monomolecular rotational dif-
fusion model. Moreover, the correlation between resonant
and nonresonant vibrational interactions is neglected. The
theory then shoves that the product approximation intro-
duces errors arising from the fact that the successive time

points are not correctly intercorrelated. See also Ref. 7.
(ii) Later on, Lynden Bell presented another theory and

calculated vibrational relaxation times for infrared, isotro-
pic, and anisotropic Raman spectra of pure liquids. This
theory, in which any a priori separation of the rotational-
vibrational dynamics is avoided, is based on the Redfield
theory well known in NMR. Then, supposing rotational
motions to be slow as compared with translational
motions, it was shown that the three relaxation times are
different from each other.

(iii) More recently, Wang and McHale and McHale'
calculated the lowest two spectral moments of the in-
frared, isotropic, and anisotropic Raman spectra of pure
liquids. No particular form was imposed on the
rotational-vibrational correlation functions. Only the
resonant vibrational transfer mechanisms were systemati-
cally investigated. The main prediction of this theory is
that the first moments of the three spectra differ from
each other, an effect termed the noncoincidence effect.
However, as shown recently by Bratos and Tarjus, " the
major part of this effect is obtained even if separability is
assumed.

(iv) Finally, Levesque, Weis, and Oxtoby' presented a
molecular dynamics simulation of liquid HC1 testing the
validity of the product approximation directly. It results
from their calculation that the total and the product
correlation functions of both infrared spectra and aniso-
tropic Raman spectra coincide within the accuracy of the
molecular dynamics simulation.

The purpose of the present paper is to extend the dis-
cussion of the product approximation contained in the
Tarjus-Bratos theory of Ref. 4 from dilute solutions to
pure liquids. Extensive use is made of the fact that the
Hamiltonian of a pure liquid sample is invariant under
the operations of two groups: the full X-symmetric and
the three-dimensional rotation group. The total- and the
self-correlation functions are expanded into series; their
leading term corresponds to the product approximation
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and the higher-order terms to successive corrections. The
latter prove to be small in spite of the presence of resonant
vibrational and rotational interactions. The product ap-
proximation thus remains valid, not only in dilute van der
Waals solutions, but also in pure liquids of this class.

II. GENERAL CONSIDERATIONS

A. Description of the system

j. Definition of the model

The system under investigation is a liquid sample con-
taining N identical, diatomic molecules. The basic as-
sumptions of the present model are similar to those em-
ployed in Ref. 5. (i) The molecules are executing anhar-
monic vibration described by the free molecule internal
coordinates n =(ni, n2, . . . , nest) Th. ey are perturbed by a
stochastic potential V(n, t) expressing molecular interac-
tions. The corresponding semiclassical Hamiltonian can
be written

H(n, t}= —, g p;+ —,
' g kn; + —, g fn;+

N

+ g V)(t)n) + —,
' g V)j(t)n;nj.

Vtjk(t)n; njnk+

The terms V;(t), V;;(t), V;;;(t), etc. give rise to environ-
mental fluctuations of the vibrational frequency whereas
the terms Vj(t), Vjk(t), etc , .generate the resonant inter-
molecular coupling. (ii) The molecules of the liquid are
executing stochastic reorientations and translations. They
are described by the ensemble of polar angles
8=(8i,82, . . . , 8&) and the ensemble of center-of-gravity
coordinates R = (R i,R2, . . . , Rz). (iii) There is no
collision-induced scattering. Constructed in this way, the
model can account for rotational-vibrational correlations
arising from intermolecular forces but not from in-
tramolecular forces. This latter effect is shortly discussed
at the end of Sec. V.

2. Symmetry properties of the system

The exact Hamiltonian of a liquid sample is invariant
under the operations of two different symmetry groups:
the permutations of two, three, or several molecules, i.e.,
the operations of the full N-symmetric group and the ro-
tations of the reference frame, i.e., the operations of the
three-dimensional rotation group. This property is also
shared with the model Hamiltonian given by Eq. (1) as
well as with various probability densities

{1) (1) (1) (1) (1) (1)p(Ri )81 )R2 )82 ) ~ )RQ )8' )ti)
(1) (1) (1) (1)p(R i, ,8, R2 )8i .). . ,R~, ~8t)i,
(2) (2) (2) (2) (2) (2)Ri, 8i )R2 )82 ). . . )Ry )8g)t2) )

etc. As shown in previous papers, the existence of
these symmetry elements permits a considerable simplifi-
cation of the calculation; here again, it makes the problem
accessible to an analytical treatment.

B. Description of the absorption and scattering processes

It is convenient to start the calculation by expressing
the infrared and anisotropic Raman spectral densities in
terms of Fourier transforms of the following two correla-
tion functions:

N BMi
6;,(t)= g (M;(0) M, (t))=4m g (n;(0)Fio(8;(0))n, (t)Y'io(8;(t))),

,j=i & ',j=l

SnG, (t)= g Tr(P;(0) P;(t))= g (n;(0)F»(8, (0))n, (t)I'»(8, (t))) .
i 1 =1 i,j=i

In these equations M;, p;, and I't (8;) represent the tran-
sition dipole moment, the anisotropic component of the
Raman polarizability tensor, and the spherical harmonics
associated with the molecule i, respectively These eq. ua-
tions only apply if local-field effects are sufficiently small;
this assumption, as well as assumption (iii) of Sec. IA,
may be restrictive for strongly polar or strongly polariz-
able systems.

The correlation function 6;,(t) and 6, (t) given by
Eqs. (2a) and (2b) can be expressed in a compact form by
designating F&0(8;) and Fzo(8; ) by a unique symbol
F„o(8;),where u=1 for infrared and u=2 for anisotropic
Raman spectra. The normalized correlation functions
may also be denoted by a unique symbol 6„(t},u=1

referring to an infrared, and u=2 to an anisotropic Ra-
man spectrum. This convention will be respected in what
follows.

C. Series expansion of correlation functions

1. Frequency matrix Q(t) and its properties

The central part of the problem is to analyze the
motions of a set of X-coupled vibrating rotators evolving
in a spatially and temporally disordered medium. The
basic equations describing the time evolution of the nor-
mal coordinates n;(t), i =1,2, . . . , X, can be obtained by
(i} choosing a basic set composed of nonexcited and
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monoexcited vibrational wave functions of Ho, (ii) defin-

ing an EX l(( frequency matrix Q(t), where
A'Q„(t)=V„(t) 5„—V~(t}, s, t =1,2, . . . , N, and (iii)
suppressing in the Hamiltonian matrix all elements which
connect vibrational states of different degrees of excita-
tion. The formal resolution of the Heisenberg equation
then leads to the following expressions:

& n;(0) F„o(8((0))nj(t)F„o(81(t))&

= ((o, )tt, ('e' "(X„o(e;(O))p.o(()t(t))

expel f dt) Q(t)); (3)
L

1 8 V

2pcoo Bn; d3nj.
(4a)

1

2pGpo

f BV
k Bn;

8 V

, n=o
(4b)

where too is the vibrational frequency of the free molecule.
The presence in Eq. (3) of a time-ordered exponential
makes the subsequent calculation comparatively difficult.

2. Matrix X„(t)and its properties

The potential V(n, t)=—V(n, R (t),8(t)) depends on the translational and rotational variables R, 8. A glance at Eqs. (3)
and (4) then shows that the variables I F„o(8;(t})j and In;(t) j, i =1, . . . , N„arecoupled to each other through the angle-
and position-dependent frequency matrix Q(t)=Q(R(t), 8(t)). Infrared and anisotropic Raman correlation functions
thus cannot be factorized rigorously into their rotational and vibrational components. However, generalizing the pro-
cedure developed in Ref. 4, it is legal to write

t
[P (t0)] „expo i f dtt()(tt) X„(t) ex=pe t f dot i)(tt) (5a)

G„(t)=dote 'Tt X (t) ex„Po i f dt, ()(t )t (5b)

where [P„(t0)]J= F„o(8(t))F„p(8J(0)). The N XN matrix X„(t)is chosen as to transform Eq. (5a) to an identity. This
matrix can be found be expanding the time-ordered exponential and by collecting the terms of the same power in Q(t).
The results are as follows:

CO tN f r„
X„(t)=g X„'"(t)=g i f, dt, f, dt, . f, dt„IP„(t0)Q(t, )Q(t, ) Q(t„)j„,

n=0 n=0

IP„(t,O) j„=&P„(t,O) &,

IP„(t,o)y j„=&P„(t,o)y &
—&P„(t,o) & &y &,

tP„(t,O)yz j„=&P„(t,o)yz &
—(&P„(t,o) & &yz &+&P„(t„o)y& &z &+ &P„(t,0)z & &y &)

+&P.(t,o}&(&y&&z&+&z&&y&), e«. ,

(7a)

(7c)

where y,z, . . . represent any relevant scalar or matrix
dynamical variable of the system. The problem thus
reduces to that of calculating the trace of the matrix

X„(t) exptt i J dt, t)(tt) )
with u=1 or 2.

The correlation function G„(t)appears in the form of a
power series of the frequency matrix Q(t). Its leading
term is proportional to the trace of

t
& P„(t,O) & exp() i f dt ) Q(t ) )

which is the product of the rotational correlation matrix
associated with F„o(8)and the vibrational correlation ma-
trix. This term constitutes the product approximation
and will be said, for economy of language, to represent the

zero-order theory. The next terms of the series provide
successive corrections of this product theory and the cor-
responding approximations will be designated as first-,
second-order, etc., theories.

3. Total and self correla-tio-n functions G„(t)and G,„(t)

The expressions (5)—(7) for G„(t)are matrix expres-
sions of a very high order; thus they cannot be employed
such as they stand. Fortunately, the permutational sym-
rnetry imposes on all ensemble-averaged products built
from P„(t,O) and Q(t) a special form such that their diag-
onal elements are equal to each other as are their nondiag-
onal elements. These matrices are known to admit a non-
degenerate and a (n —1}-fold degenerate root where n is
their order. Four quantities thus appear in subsequent
calculations: x„~(t),x„2(t),and )(,&(t), )(,2(t), representing
the roots of matrices X„(t)and



34 THEORY OP INPRARBD AND ANISOTROPIC RAMAN BAND. . .

ln expo i t&O t&

~=T X X UI'J'= X X UI'i I

i j {)i)

Then, supposing the potential energy V be painvise addi-
tive,

the following results may be derived, valid in the large X
limit:

Gg(t) =4nre xg 2(t)e '

X2(r)=aV f «, &~»(r, )& —X f «, f «2[&bc@12(tl)hco12(t2))+&he@12(tl)bc@12(t2))

+N & bco12(tl )bco13(t2) )]+
&g,2(r) —[Pg, ll(r o)!~+1&f, «1 l [P. 11(r 0)a312(r1 ) j ~+ [P. 12(i 0)co12(r 1 ) j ~]

+ f d 1 f «2(t [Pg, ll( IO)12(il)~12(r2) !A+ [Pg, 11(iIO)co12(il)a312(i2)!A

+ [Pg, 12(rIO)a312(rl )co12(i2)!+ [Pg, 12(rIO)12(il )a312(i2) j A 1

+N [[Pg 11(rIO)312(il )co13(i2) j g + [Pg 12(rIO}&23(il )a312(i2)!8 + [Pg 12(iIO)col2(rl )&13(r2)j g

(9)

lg a3I'j=
j {Qi) j {+&)

c} UJ
2 ..

2}jscoo Bn;c}n,

+ [P„12(t,0)co23(t, )co»(t2) j z ])+

f c}UIi 8 U,J
2..

'

+E dn;
(1 la)

(1 lb)

where b,co;, =a3,i &3a3}, b,oT—;J =re;J &a3,i &. Th—e physi-
cal meaning of Eqs. (8)—(11) is as follows. In spite of the
presence of resonant molecular interactions, the zero-
order correlation function G„' '(t) still is equal to the sim-

ple product of the monomolecular rotational correlation
function & I'„11(81(t)}I'gll(81(0)))and the monomolecular

-~2{t)
vibrational function &nl(0}n 1(t))-e; compare with

Ref. 5. The cross correlation functions vanish in this level

of approximation. Infrared and anisotropic Raman spec-
t

G,„(t)=4rre x~ 2(t)e '

I

tra of pure liquids thus exhibit, basically, monomolecular
characteristics of vibrational-rotational motions.

The question may be raised, however, whether the
higher-order terms modify this conclusion. The following
statement can be proven. The infrared and anisotropic
Raman self-correlation functions G,„(r),u=1,2, may be
written, as Gg(t), in the form of series. Their expressions
are obtained by eliminating in Eqs. (8)—(10) all terms in-
volving P„,(tJ, O) with i&j. The results are as follows:

(12)

xsg, 2(r) [Pg, ll(rIO) j & +1+f «1 [P,, ll(rIO)a312(rl )!&

fl

ll
«1 fo «2[[Pg, ll(rIO)a312(rl)a312(r2) jg+ [Pg 11(t 0)o312(tl)co12(t2)!

„

+X[Pg 11(t,0)co12(tl)ci)13(t2) j~]+
Comparing Eqs (g}—(11) to Eqs (12)—(13) then shows that the total- and self-correlation functions coincide in the zero-
order but not in the higher-order thmri~. Infra~ ab oq tion md animtropic Raman scattering pr~essm in pure
liqmds me not rigorously monomol~~m. However, m shown in what follows, the com~tlon te~s remain quite small
in van der %'aals liquids.

III. CALCULATION OF CORRELATION FUNCTIONS

A. Dynamic variables and their equation of motion

Choice of dynamic Uariabies

Accordin. g to the preceding sections, the calculation of
infrared and anisotropic 5 unan correlation functions re-

quires the determination of one-, two-, three-time, etc.,
correlation functions involving the spherical harmonics
I'go(8;) and the elements Q;;(t}=g.+,. coj(t) and
0;~(t)=co;~(t), i,j =1, . . . ,N of the frequency matrix Q.
It is convenient to express the angular dependence of
roj(r) and co;~(t) by developing them into a series of prod-
ucts of spherical harmonics I' „(8;)F„„(8J). Considering
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UI=X X X
m, n, l=jm —n j ~= —I

n I
hmnt(ni~nI~RIJ )

the translational and rotational invariance of u;j, one
finds'3

monomolecular and him olecular dynamic variables

I YII (8I)
jingo, Igloo"

(RI ),g II,"(Rij)j over several time
points. The difficulty may be overcome, at least in princi-
ple, by collecting all the dynamic variables in one column
matrix U(t) and assuming U(t) to obey the simple
I angevin equation

x Yg(R;j)Y „(8;)Y„„(8I),(14)
dU(t)

dt
I —U(t)+F (I), (18)

h „I(n;,nI, R;I)=h „I(n,, n;, RJ )

hmnl(nl tnjtRIJ ) (15a)

(15b)

where R,I and R,I represent the length and the polar an-

gles of the vector R;I=R;—R, . Truncated at an ap-

propriate level, this expansion provides a convenient

description of two-body forces. The quantities to,l and to;j
may then be written,

m+» I In il l
tO,I= g g g g gII."(«I)

m, n, l=jm —n j A, =—l p v

where I is a constant transport matrix and F(t) a Gauss-
ian random force. U(t) is thus a Gaussian process, ' as
are all the various variables YII„I+o(8; ), g,z"(RI ),
gm"(R,I). As a consequence, the three-time, four-time,
etc., correlation functions involved in the calculation are
all expressible in terms of products of one- and two-time
correlation functions. The use of a simple Langevin equa-
tion to describe the time evolution of coupled rotational
and translational variables was discussed earlier.

B. Symmetry arguments

J. Rotationa1 inuariance

XY „(8;)Y„„(8j),

m+n I nl il l„ggE«Ij)
m, n, I= jm-n j A, =-l

(16a)

Considering the rotational symmetry of the system
under study, one shows readily that the functions f Y

& j,
(gm~„j, (gg„j,p= —m, . . . , m, form bases for the same
irreducible representation, usually designated by &' ', of
the three-dimensional rotation group. Applying standard
arguments of group theory then leads to the following
equations:

p, v

N!5
gII «;, )=

2pctlp

X Y „(8;)Y„„(8;), (16b)

f Bh „I
(n =n =0, R")T an t

5 hm„i
2+, (n;=nj 0, R,,——) Yii(Rj),
Bni

(19b)

(19c)

& Y „(8;(t,))g..(R (t )) &

& Y.„(8,) & =5.y„,(~4~)-', (19a)

&g~„(R,g) &=5 o5,o&gI(Rij) &

=5 o5„o5 &gI(R; )&,
& Ymu(8I(ti ))Yn„(8j(t2))&

=5„5&~)( —1)& Y&o(8;(ti))Y o(8j(t&))&,

2ah „,
gii, (R(j)= (n;=ni 0, RI)Y——g(RI) .

2IuCoo ill nj

(17a)

(17b)

=5„5gp)( —1)"&Y o(8;(ti))g o(Rkl(t2))&,

(19d)

This analysis allows a proper selection of dynamic vari-
ables of the problem. According to Eqs. (8)—(ll) and
(16), these variables are the spherical harmonics

[ YII(8I)}„=—I. , I including Y„,(8, ), i =1,2, . . . , N,
and the functions

IgQ, (Rij)~g lk (Rij ) jm &n;I =n —m, . . . , n+m;i, = —I, . . . , I ~

i,j =1,2, . . . , N. The former describe the reorientations
of the molecules, whereas the latter contains information
about their translations.

2. Equation of motion

A major difficulty of the present investigation is to
study correlation functions involving the many correlated

=5. 5~-I )( —1)"&g o«I(ti»gmo«ki(t2»&

(19e)

where 5
„

is the Kronecker symbol. Similar formulas ap-
ply, mutatis mutandis, to g~„.According to these for-
mulas, the system of coupled equations (18) reduces to a
number of independent simple I angevin equations associ-
ated with the sets of variables [ I gI(R,I ),gI(R;I ) j~ j;&I
and, for m&0, I I Y o(8;) j;, I Ig~p(Rj),
gmo(RI)jz«j;&I j. However, contrary to what is true
for dilute solutions, the complexity of the calculation still
keeps the problem out of handling. This is due to the ex-
istence of a large number of coupled variables. Their
number varies as N, where X is the number of molecules
in the liquid sample.
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2. Permutational inmriance

The decisive step of the calculation consists in using

symmetry arguments resulting from the invariance of the
system under permutations, as described in Scc. IIA2.
The following procedure may be employed. (i) For given

m, i, and j ~i, the variables Igloo(R,J),ggp(R;J)fz&, are
collected into a column matrix G~p(R,J). (ii} These
[N(N —1)/2] column matrices 6 p(Riz), G p(R&3), . . . ,
GDIO(RIN) 6 0(R23) . 6 o(RXN) . 6 o(WN —i)N)
are collected together with the N variables F o(8i),
F o(82), . . . , F~p(8~ }, into a single-column matrix. This
latter matrix obeys a simple Langevin equation. (iii) The
symmetry imposes severe restriction on the form of the
friction and correlation matrices denoted by I' ' and
R'™(t),respectively; see Figs. 1(a) and 1(b). The ( F F)—
part of these matrices contains two different elements, the
( F—6) or (6 F) —part contains two different subma-

trices, and the (6 —6) part contains three different sub-
matrices; the ( Y—6), (G —F), and (G —6) matrices
have a different structure for odd and even values of m.
Their symmetry is high enough to permit an exact,
analytical block diagonalization for all N. (iv} Three dif-
ferent blocks, noted y'i ', yz ', yi ', are found for the fric-
tion matrix: y'i ' occurs once, y'i ' occurs (N —1) times,
whereas y3

' occurs (N —2)(N —1)/2 times for odd
values of m and N(N —3}/2 times for even values of m;
see Figs. 2(a) and 2(b). The case m=O belongs to this
latter class. (v) The block diagonalization of the correla-
tion matrix leads to the following one-, two-, three-, and
four-particle correlation functions:

'f« ~ i B«f 9« ~ ~ «O'

fg

I ~ I~t
dIl.t g

)

N-2

o fW, O, ~Oada
f0-'1 el OC &SOC

~ if&'I e &~ e~',
~ 2

N N-1 N-2
«

I I l
I

II
~ ~ ~ ~ « f p« ~ ~ «Q

f'f, y 'C.

y ffl g CICI1 g, CICI
f'i3'I 414~ = deCI

Q' )IP'I Il lge I ICICI

I Ql~
f f
u)~

I @ I

C d

SIT

C:dCl
Cl CCI
Cldc

ew w)

ww e

'N-2

FIG. 1. General form of the friction matrix I' ': (a) odd
values of m; (1}even values of m.

& F p(8i(t))F o(8i(0))&=—
Ry, '(t)+ Ry', '(t), m~O

&F o{8(t))F,(8(0))&=—R„','(t) ——R„' '(t}, ~0 (21)

&G ~o(Ri2(t))Q ~p(Ri2(0)) & = /st, '(t)+-Rs, '(t)—+ R s', '(t), m even (22a)

(22b)

&Gmo(Ru(t))QI„p(Ri3(0)) &= Rg '(t)+ R' '(t) — R' '(t), m evenN(N —1) g' N {N—2) s' (N —1}(N—2}= s'

=—R ', '(t) ——R ', '(t}, m odd

& 6 DIo(Ri2(t))G NIp(R34(0)) &
= R s (t)— R (t)+ R (t), m even

2
N(N —1) = ' N(N —2) = ' (N —1){N—2) =

(23b)

(24a)

&F o(8( ))6 o(R (0))&=—R', '( )+ R,', '( ), (25a)

=R» '(t}, m odd (25b)

& F~p(8i(t))6 ~p(Rq3(0)) &=—R ' '(t) ——R „','(t), m even+0 (26a)
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(b)

(m)

2

x'
2

) ym))

(m) ~)
~)' +)

gm) ~)
2 2

~)' +)
2 2

f Q~)1

1 }(,= I' g', '1
teristics of various dynamic variables are considered in
this calculation as are the symmetry properties described
by Eqs. (19)—(26). The correlation functions G,„(t)and
G„(t)can then be expressed in terms of elements of the
matrices Rz '(t),R~m} (t),R„' '(t). Finally the matrices

y'i ', yz ', yi are diagonalized and the large-E limit of
the resulting expressions is determined. In their final
form, G~(t} and G„(t)involve only exponential and poly-
nomial functions of time. Unfortunately, they are too
long to be reproduced here.

On the other hand, it can easily be shown that
x'"'2(t),x„'"2(t),n &1, and the corrections to the product
approximation are different from zero only if the expan-
sion (14) of the pair potential U,1 contains at least one
spherical harinonic of rank u: y„i(8;), y„i(8J), or

y„i(k;~). This is a consequence of the Gaussian character
of the dynamic variables as well as of the rotational in-
variance of the system under consideration. As in the
case of dilute van der W~ls solutions ' the convergence
of the series for G„(t),u=1,2 depends on the product
g„w„,where v„is the characteristic time of the experiment
and g„the order of magnitude of these components of the
resonant transfer and of the environmental fluctuation
terms which contain at least one spherical harmonic of
rank tt. If g„r„~~1, a reduced number of terms of the
series will suffice to reproduce G„(t):if g„w„&1,the
series will diverge and the present theory will no longer
remain appHcable. For discussion of the particular form
of the series expansion employed in this work, see Ref. 4.

FIG. 2. Matrices y~"', y2 ', y3
' deduced from I' " by block

diagonalization: (a} odd values of m, y& ——a +(N —1 }b,
yi —p —b, gi —&+(Q —2}d, g3=e —2d, z'i' —f'; (b}
values of m, y& ——a+{%—l)b, yz ——a —b, g~ ——c+2{E—2}d
+[(1)t'—2}(N 3)!2Je—, gq e+(X ——4}d —(X——3}e, g3 ——c
—2d+e, x~)' ——2f"+(1))'—2)g", x~2' ——f"—g".

In these expressions, R„'.'(t), Rs '(t), and R,' '(t) ar. e

calculable from exp( —y; 't), i=1,2,3. This calculation
requires the dia~onalization, for each value of m, of three
matrices y'i™,y2 ', y~i ', the order of which is independent
of the number of molecules N. In this way, the complexi-
ty of the calculation is reduced by a factor on the order of
N.

The physical meaning of the three matrices y i, y2, y3 is
as follows In the I.arge-N limit and the absence of an ac-
cidental cancellation, yi describes coupled collective rota-
tions and translations of molecules; yi describes coupled
monomc;ecular rotations and bimolecular and trimolecu-
lar translations; finally, y3 describes translations of a
given pair in pure liquids.

C. Final expressions for G,„(t}and G„(t)
The final expressions for the infrared and anisotropic

Raman self- and total-correlation functions G (t) and
G„(t)may now be deduced from the two-time correlation
functions calculated in Sec. III8. The Gaussian charac-

IV. ORDER OF MAGNITUDE ESTIMATION
OF CORRECTIVE TERMS

A. Method of estimation

The purpose of this section is to present an order of
magnitude estimation of terms neglected by the product
approximation and accounted for by the present thtxiry.
The method includes the following steps. (i) The pair in-
teraction potential is written as a superposition of
I.ennard-Jones, dipole-dipole, dipole-induced dipole, etc.,
potentials; site-site potentials are not employed. (ii) The
contributions to IgtT" I &„and Ig ti,"I &„,associated
with different types of molecular interactions, are as-
sumed to be statistically independent from each other; for
example, for 1=0, the short-range repulsion and the
long-range dispersion contributions are assumed to be un-
correlated. (iii) The correlations between rotational
motions of different molecules are considered explicitly,
as are the correlations between their translational motions.
On the contrary, correlations between rotational and
translational motions are neglected. (iv) The various mo-
ments of gt, ",gi, " are estimated with the help of the
lattice-gas model. '5 (v) Finally, the correlation times of
the rotational and translational two-time correlation func-
tions are estimated by using a method described in Ref.
16. This method, in which the inverse of the correlation
time is expressed in terms of an integral going through a
plateau region, is justified if molecular motions are dif-
fusionlike as tacitly assumed in Eq. (18).
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8. Choice of the system

The choice of the system to be studied is dictated by
two conflicting conditions. The intermolecular couplings
must be large enough to generate nonnegligible
rotational-vibrational correlations. On the other hand,
they should not be as strong as those produced by medium

strong or strong hydrogen bonds which cannot be ac-
counted for by the present theory. Finally, liquid HC1
was selected. Infrared and Raman spectra were recorded
at different temperatures by Wang and Fleury, ' Perchard
et al. ,

' Chesnoy et ttl. , ' and Andreani et ul. More-
over, Levesque, Weis, and Oxtoby'2 performed a molecu-
lar dynamics simulation of liquid HCI at temperature
T=196 K. To make the comparison easier, this latter
temperature was used in the present estimation. For sim-
plification, only the long-range dispersion and the dipole-
dipole interaction forces were assumed to contribute to the
environmental fluctuation and to the resonant transfer
processes. The contribution of the short-range forces was
found to be small in similar circumstances. ' The parain-
eters entering into the calculation were chosen as follows.
The Lennard-Jones parameters were taken from Ref. 21
and the rotational and translational diffusion constants
from Refs. 12 and 22, respectively. The spectroscopic pa-
rameter l„,defined by Levesque, Weis, and Oxtoby'~ was
obtained from the value of [Bp, /t)p, ] in pure HCl liquid 9

the corresponding parameter lD was detnznined by fitting
the isotropic Raman spectra. ' Finally the lattice-gas pa-
rameter po was chosen equal to the close-packed density
for HCl. The conclusions resulting from this estimation
are discussed in Sec. V.

V. RESULTS AND DISCUSSION

A. Results

The infrared and anisotropic Raman spectra may be
calculated by Fourier transforming the correlation func-
tions G„(t),u = 1,2, obtained in Secs. II and Ill. The fol-
lowing conclusions may then be drawn from the present
theory.

(i) The zero-order theory coincides with the product
theory. This theory, in which the infrared and anisotropic
Raman functions are factorized into their rotational and
vibrational components, is thus a correct lowest-order
theory. Moreover, it gives an exact integrated intensity.

(ii) Superposed to the spectral density given by the
zero-order theory, the spectral density produced by the
first-order correction generates, in essence, a small fre-
quency shift; in turn, the spectral density produced by the
second-order correction generates a small broadening of
the band. The combined effect of these two corrections is
illustrated in Fig. 3.

(iii) The magnitude of the successive corrections, as well
as the convergence of their series, vary when going, for a
given liquid sample, from its infrared to its anisotropic
Raman spectra. The components of the interaction poten-
tial V(n, t) contributing to Xi(t) are different from those
contributing to Xi(t). This result is related, within the
Gaussian property expression by Eq. (18), to the rotational
invariance of the liquid sample.

G (cu]~G (cu}+G (cu]
—--G (cu}

Ggcu}
»»»» ~ ~ » ~ »» GlP

~ »»» ~ ~ ~ »» ~ ~ » ~ ~ ~ ~ ~
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~~ »Oat ~ » «»

FIG. 3. Combined effect of the first two corrections for an
infrared spectrum of a representative van der %'aals liquid. Re-
sults are similar for an anisotropic Raman spectrum.

Q, (~}.G, f~}+G,H
———6 Qcu}

.4
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FIG. 4. Spectral effect of corrections to the product approxi-

mation for the infrared spectrum of pure HC1 at T= 196 K.

(iv) The difference between the complete and the prod-
uct theory is illustrated, for the infrared spectrum of pure
HCI, in Fig. 4. The half-width of the HCI stretching
band calculated by the complete theory exceeds that ob-
tained from the product theory by -6%%uo whereas the
band center remains unchanged. Ho~ever, one may note
that decorrelating rotations from translations and attri-
buting the Gaussian characteristics to various dynamic
variables of the problem leads to a relatively poor approxi-
mation for the absolute value of the first spectral mo-
ments. In this case, the angle averaging of the dipole-
dipole interaction potential is not correctly executed (see,
e.g., Ref. 21, pp. 985—988). Nevertheless, the statement
that the spectral effects missing in the product approxi-
mation are comparatively small, even for relatively large
intermolecular forces, still holds true.

(v) In the zero-order theory, the self- and total-
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correlation functions coincide. This is no longer exact in
the complete theory but difference remains unexpectedly
small. The effect is illustrated for the infrared spectrum
of a pure HCl liquid sample at T=196 K: in the com-
plete theory, the half-width calculated from the self-
correlation function differs from that calculated from the
total-correlation function by less than one percent; the
band centers are equal too. One concludes that the
rotational-vibrational effects missing in the product ap-
proximation are small, not only in dilute van der Waals
solutions, but also in pure van der Waals liquids. More-
over, in spite of the presence of resonant vibrational and
rotational couplings, infrared and anisotropic Raman
spectra remain mainly monomolecular.

This section may be concluded by briefly mentioning
the effect of the intramolecular rotational-vibrational cou-
pling. For a diatomic molecule, it arises from centrifugal
effects. The corresponding contribution to the resonant
transfer terms 0;J vanishes whereas its contribution to the
environmental fluctuation terms 0;; is invariant under ro-
tations of the reference frame. This latter contribution
may thus be incorporated into the invariant term Goo(R;, )

of Eqs. (22)—(24). It results that the intramolecular cou-
pling contributes to the vibrational relaxation factor
expire(t) but not to x„z(t)=1,2; it does not introduce any
correction to the product approximation. This conclusion
is similar to that reached, in similar circumstances, for
van der Waals solutions. "'

B. Comparison with hterature

The early papers by van %'oerkom et al. and Bell ' do
not lend themselves to an easy comparison. Various as-
sumptions present in these theories do not allow a proper
characterization of spectral effects missing in the product
approximation. Moreover, one may note that the general-
ized cumulant expansion applied by van %oerkom et al.
may be poorly convergent in some cases. The compar-
ison is easier with the papers of Wang and McHale. '
The theoretical expressions for the two lowest infrared
and anisotropic Raman spectral moments given by these
authors are essentially similar to those derived here.
However, the most significant comparison is that with the
molecular dynamics simulation performed by Levesque,
Weis, and Oxtoby' for pure HC1. Their calculation
shows that the total rotational-vibrational correlation
functions are indistinguishable from those given by the
product approximation, within the uncertainty of the
simulation. This conclusion certainly is compatible with
those reached in this ~paper. Finally the comparison with
our previous papers '4 on dilute van der Waals solutions
shows that the quality of the product approximation is
similar in solutions and pure liquids.
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