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The phase diagram of an externally modulated Rayleigh-Benard system of' binary mixtures near
the codimension-two (CT) point is analyzed. The amphtude equation associated vrith this system is

considered and the dynamical behavior is obtained by numerical integration of the equations of
emotion. %e find that close to the CT point the system exhibits chaotic behavior, which in some re-

gion of the phase diagram coexists with the conductive state. It is suggested that these features may

be observed experimentally even for small amplitude of the modulation as compared with the criti-

cal temperature difference hT, of the unmodulated system.

I. INTRODUCTION

Considerable progress has been made in recent years in
understanding phenomena occurring in hydrodynamic
systems in the weakly nonlinear regime, where an approx-
imation of just a few modes is very often sufficient. Close
to the onset of the convective instability the behavior of
the nonlinear system may be described by the equations of
motion of just one or a few modes, derivable from the full
set of hydrodynamic equations. ' One of the examples of
such a description is the amplitude-equation formalism.
This formalism has been extensively used for studying
various hydrodynamic systems in confined geometries
such as Rayleigh-Benard or Taylor instabilities. The criti-
cal behavior near the threshold predicted for these sys-
tems has then been tested experimentally. The
amplitude-equation formalism has also been applied to
Rayleigh-Benard systems of binary mixtures. ~ In these
systems one finds two kinds of instabihties: stationary
and oscillatory. The instability lines intersect at a so-
called codimension-two (CT) point. As one proceeds
into the convective phase, further bifurcations take place
leading to a weak-turbulence regime, where several modes
strongly interact with each other. However, far from
threshold the amplitude equation may no longer be valid.
It would be of interest to consider hydrodynamic systems
in which the weakly turbulent regime exists sufficiently
close to the first convective instability, where the ampli-
tude equation formalism may be applied. It has recently
been suggested' that Rayleigh-Benard systems of binary
mixtures, in which the temperature gradient is periodical-
ly modulated, exhibit chaoitc behavior close to the first
instability threshold. To describe the behavior of such a
hydrodynamic system close to a CT point vnth modulated
temperature gradient we employ a modified amplitude
equation which accounts for the presence of time periodic
modulation. Because of its relative simplicity this equa-
tion can be readily analyzed for chaotic properties.

Consider a Rayleigh-Benard system, which consists of a
fluid layer between two plates in a vertical temperature
gradient Is, T. For small values of hT the system is in a
steady state characterized by the absence of motion. For
sufficiently large hT a motion of the fluid sets in and an
instability develops. In the case of a simple fluid this in-

stability is stationary and the behavior of the fiuid close to
the instability threshold may be described by a one-mode
Landau-type equation, namely the amplitude equation.
In this description it is assumed that close enough to the
instabihty threshold the behavior of the fluid will be dom-
inated by the mode which becomes unstable first. This in-

stability is called stationary since after some equilibration
time the velocity at any point in the fiuid stays constant.
More complicated hydrodynamic systems, such as binary
mixtures" or viscoelastic fluids, ' display two kinds of
flow patterns: stationary and oscillatory, depending on
the values of external parameters. In the case of binary
mixtures the external parameters are the gradient of the
temperature b T and the gradient of the concentration hC,
while for the viscoelastic fiuid they are hT and the relaxa-
tion time of the stress tensor. In the oscillatory instability
the velocity at any point in the fiuid changes periodically
with some characteristic frequency.

For certain values of the external parameters the sta-
tionary and oscillatory bifurcation lines intersect and con-
sequently the two flow patterns intersect at onset. Such
an intersection point of two instability lines results in a
multicritical point which is of the CT type. Recently ex-
tensive theoretical as mell as experimental activity eras
focused on analysis of amplitude equations describing the
fluid near a CT point and their phase diagrams. ' At
the CT bifurcation point two modes become unstable
simultaneously. Consequently the amplitude equation
describing the behavior of the fluid near such a point is
two dimensional. Depending on whether the linear part
of this amplitude equation is diagonalizable at the mul-

ticriticality, one can distinguish between two kinds of CT
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II. THE AMPLITUDE EQUATION
IN THE PRESENCE

OF THE MODUI A'&ON

A binary mixture of miscible fluids in a porous medium
placed between infinite plates is considered. We allow for
a periodic modulation of the temperature difference be-
tween the lower and the upper plates. In this case the in-
stantaneous Rayleigh number is

Pig/E
R(t) =[T'(t)—T"(t)] —=R,+R,cos(cot), (2.1)

points namely those belonging to the (00) Jordan normal
form (nondiagonalizable can) or (00) Jordan normal form
(diagonalizable case}.' The binary mixture is an example
of a CT point of the first kind while the viscoelastic fiuid
is an example of a CT point of the second kind. ' In what
follows we concentrate on the CT point of the first kind.
We believe, however, that some results of this paper, such
as the existence of chaotic trajectories when the tempera-
ture gradient is periodically modulated, will also be valid
for the CT point of the second kind.

The influence of modulation on the stationary instabili-
ty in the Rayleight-Benard convection has recently been
studied theoretically and experimentally. " ' In the case
of pure liquids riew nonlinear phenomena occur for modu-
lation amplitudes which are comparable to the critical
temperature difference of the unmodulated system. '

Such amplitudes are not easily achievable in experiment.
On the other hand, we find that in binary mixtures in the
vicinity of the CT point, interesting nonlinear phenomena
occur even for small modulation amplitudes as compared
to the critical temperature difference. Therefore experi-
mental observation of these phenomena is expected to be
much easier.

In the present work we introduce an amphtude equation
for periodically modulated Rayleigh-Benard system of
binary mixtures near the CT point. The phase diagram
associated with this equation has then been studied by nu-
merical integration of the equations of motion. The nu-
merical analysis shows that, for the model considered, the
presence of modulation close to a CT point results in rich
variety of new bifurcations and in particular in regions in
parameter space of chaotic behavior. This numerical
analysis was carried out for a physically realistic range of
parameters for binary mixtures. The most striking new
feature is the presence of chaotic trajectories in a region of
parameter space in which the conductive phase of the un-
modulated system is stable. Moreover, we find that in
certain regions the conductive phase loses its stability and
becomes chaotic via intermittency.

The paper is organized as follows. In Sec. II we derive
the amplitude equation for periodically modulated binary
mixtures close to the CT point. In Sec. III the phase dia-

gram of this model is analyzed. The linear stability
analysis of the conductive phase is presented in Sec. III A.
Results of numerical analysis of the nonlinear phenomena
are given in Sec. III B.

where T (t) and T"(t) are the temperatures of the lower
and the upper plate respectively, Pi ———p '(Bp/BT)», is
the thermal expansion coefficient at constant pressure P
and concentration c, while g is the gravitational accelera-
tion, 1 is the height of the fluid layer, E is the permeabili-

ty, v is the kinematic viscosity, and « is the thermodif-
fusivity. R0 is the Rayleigh number in the absence of the
modulation, Ri is the amplitude of the modulation and
we assume that Ri/RD«1. The nonlinear equations
describing the deviations from the conductive state are, in
dimensionless units,

(yB, +1)hw 628—+62—c=0,
R(t)w+( —a, +~—v V)8=0,

R(t)w+(Wh d, v—V—)c Wb—8=0 .

(2.2b)

(2.2c)

Here w is the z component of the velocity field v, 8 is the
deviation of the temperature from the conduction profile,
and c is the concentration of one component. The param-
eters in these equations are y =K«/l ev, K is the permea-
bility, e is the porosity, '0= kzP2/T—Pi is the separation
ratio, Pz ———p '(Bp/Bc)p r, kz is the thermodiffusion ra-
tio, W =8/« is the Lewis number, and D is the diffusion
coefficient. The horizontal part of the Laplace operator is
bz ——t)„+8». In the above equations time is scaled with
l /«, velocity with «/l, temperature with v«/PiglK, and
concentration with v«kT/TP—igEl. We assume that the
fiuid is contained in a rectangular box with sides l.„, I.»,
and l = l. The boundary conditions for the velocity field
v=(u, u, w), temperature and concentration are taken to
b 11

arid

u=0 at @=0and x=L,„,
U=O aty=0 and y=L~,
ta =0 at z =0 and z =1,

8„8=8„c=0 at x =0 and x =I...
8»8=8»c=0 aty=0 and x =1.»,
8=c=O at z=O and z=1 .

(2.3a)

(2.3b)

co(x,z, t )

8(x,z, t) = 8i e 'cos(nx )sin(nz),
c(x,z, t)

(2.4)

where the critical wave vector in the horizontal direction
is taken to be n. Inserting (2.4) in Eqs. (2.2) one finds sta-
tionary instability (o =0) with the critical Rayleigh num-
ber

These highly idealized boundary conditions are expected
to result in qualitatively similar features to those obtained
from physically more realistic rigid boundary conditions
for velocity and "no-mass-flux" boundary condition for
the concentration field.

Let us first review the results of the linear analysis of
Eqs. (2.2) in the absence of modulation, namely for
R i ——0. Consider a perturbation of the form
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R„=4m (2.6)

The frequency at the onset of the instability is

aio ——— (1+4+%W ' 4W ) (2.7}

4n W
(2.5)

and the oscillatory instability (tr=icoo) with the critical
Rayleigh number

This is an example of a codimension-two point of the first
kind (nondiagonalizable case). For %&Vcr the first in-
stability is expected to be stationary and for 4 & VCT it is
expected to be oscillatory.

The linear analysis in the presence of a periodic modu-
lation of the temperature gradient is slightly more compli-
cated. We assume that the amplitude of the modulation is
small, namely Ri/Ro«1, and derive the amplitude
equation to lowest order in R &. %e expect the correction
to the horizontal critical wave vector to be of 0(Ri).
These corrections may therefore be neglected in the
present analysis. Consequently we insert the ansatz

R cT ——4m ( 1+W+ W ) . (2.8a)

The multicritical point is defined by Rcr R=——R„, im-

plying w(x, z, t } W(t)
e(x,z, t) = e(t) cos(irx)sin(irz)

c(x,z, t) C(t)
(2.9)

Since cocT ——0, Eq. (2.7) yields

2
in the linear part of Eqs. (2.2). Taking twice the time
derivative of Eq. (2.2a) using Eqs. (2.2b) and (2.2c) one
finds

2&y W(t)+26[1+2rr'y(M+1)]W(t) —[ir'R(t)(1+qI) 4m'(W—+1+2m-'My)] W(t)

—2~' R(t)(% W+W+iP) 4''W+— (1+q )R(t) W(t)=0. (2.10)
282

For typical porous medium the parameter y is small, and

may be neglected. Consequently W satisfies

W= [a+eicos(tot)) W+ [b+e2cos(cot+/)] W

+f, w'+f, w'w . (2.12}

W( t) [a +e—icos(~t )]W(t)

—[b+e2cos(cot+ /)] W(t) =0, (2.11)
For binary mixture in a porous medium f ~

n. /4 and-—
f2 ————,'(~-'+1).

III. PHASE DIAGRAM

a =2m (W+ 1)[(R—R„)/R„],
ei ———,(1+%)Ri, b=4n W[(R —R~)/R, g],
e2 ,'Ri[4m (g——W—+W+P) +co (/+1) ]'

A. Linear stability analysis

The phase diagram of an unmodulated Rayleigh-
Benard system of binary mixtures has previously been
analyzed. Within the amplitude equation approach this
system may be described by the model

(1+4')co
tan

2m (%W+W++)

x'= [a+eicos(cot))x+ [b+e2cos(cot+P))x

+fix +fix x (3.1)

The nonlinear part of the amplitude equation has previ-
ously been derived for the unmodulated case. In this
derivation one obtains the nonlinear terms at the mul-
ticritical point a=b=0. Since the coefficients of the
nonlinear terms are O(1}, their a and b dependence may
be neglected for small a and b. The nonlinear terms may
also depend on the modulating amplitude 8 &. Since A

&
is

assumed to be small one may neglect the dependence of
the nonlinear terms on Ri for similar reasons. We there-
fore consider the following nonlinear amphtude equa-
tion:"

with e, =@2——0. Taking fz &0 and fi & 0 as expected for
binary mixtures, one finds that the phase diagram is given
by Fig. 1. In this case there are two transition lines asso-
ciated with the instabilities of the convective phase: a
second-order (forward bifurcation} line I, leading to an
oscillatory phase, and a first-order (inverse bifurcation)
line I, leading to a stationary phase. The two phases are
separated by line I„, on which a heteroclinic connection
occurs. The frequency of oscillation vanishes when this
line is approached from the oscillatory phase. The phase
diagram of the model (3.1) with R, ~O is expected to be
rather complicated. In this case the model is equivalent to
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FIG. 1. Phase diagram of Eq. (2.1) for f~ &D, fz~O, and
e~ ——e2 ——0. Io is a second-order line separating the conductive
phase from the oscillatory one. I, is a first-order line separating
the conductive and the stationary phases. The oscillatory and
stationary phases are separated by a nonlinear second-order line
I„. As this line is approached from the oscillatory phase, the
frequency of the periodic motion goes to zero.

QJ 0 b
4

FIG. 2. Stability limits of the conductive phase for small 5&

and il,z following from the stability analysis of Eq. (2.2) for fixed
h, ~, h,2, and co. The shaded area corresponds to the stability re-

gion of the conductive phase. Along the line S the relevant
eigenvalue is zero, while along lines H and 8 the relevant eigen-
value is purely imaginary. Along 8 (the resonance tongue) the
frequency at the onset is locked to ar/2, vvhere ~ is the modulat-

ing frequency.

an autonomous map with three variables: x, x, and r, and
therefore it may (and in fact it does} exhibit chaotic trajec-
tories. ' These trajectories introduce drastic changes in
the phase diagram. In this section we consider the phase
diagram of the model (3.1) with small nonzero Ri. We
first apply linear stability analysis to study the instability
lines associated with the conductive phase x =0. The re-
sults of this analysis are summarized in Fig. 2. We also
determine the region in the a bplane in w—hich hetero-
clinic orbits exist, when modulation is present. Details of
this calculation are given in the Appendix. In Sec. III 8
we apply numerical methods to study some of the non-
linear features of this phase diagram. However, since the
phase diagram is very complicated, this analysis is re-
stricted only to a small region of the parameter space
close to the CT point.

Consider now the stability of the x =0 conductive

phase for small b, i=—ei/a, b,z=ezlb, and /=0. The
linear part of Eq. (3.1) is then given by

x =Q[1+kicos(ror)]x+b[1+Lhzcos(rlzt)]x . (3.2)

Using Floquet theorem, we consider a solution of Eq. (3.2)
of the form

x=ef with f=At+F(cot), (3.3)

where F(rot) is a periodic function with period 2m. Ex-
panding F(cot) in the small parameters b, i and hz we find

f=At+ A cos(rot+ad&)+O(h„b, z), (3.4)

where A is assumed to be O(di, hz). Inserting (3.3) with
(3.4) into (3.2) and keeping terms of order hi and hz we
find the following expressions for p, A, and A, :

tang= (3.5a)

Aab i+bizA= ——
[ra +(2A.—a) ]

4ASaA+, A—[re +, a (, 5 —,'Lki) ——4b] —hz[r0 +a (1—, bi} 4b] b(rIz—+a—)+ —,b—bz(biz+a bi)=0.

(3.5b)

(3.5c)

The conductive phase is stable as long as Rek,;~0,
i =1, . . . , 4, where A,; are the four roots of Eq. (3.5c). An
instability takes place when one of the eigenvalues A,; sat-
isfies Rek, ; =0 while Rel, ; ~0, i&io Therefore at. thresh-

old A,; may either be zero or purely imaginary. Consider
first the possibility A,;,=0. In this case Eq. (3.5c) takes

the form

g(g+o. )(gz+pA+y) =0 with a,p, y ~0 . (3.6)

Comparing Eq. (3.5}with Eq. (3.6) we conclude that b =0
stays the instability surface as long as b i and hz are suffi-
ciently small so that the higher-order corrections are
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negligible. The case of purely imaginary A, is more com-
plicated. In particular if the modulating frequency ttt and
the frequency of the oscillatory phase Q are related via
nt0=2Q where n is an integer, one expects resonance ef-
fects to take place. The nth-order resonance is obtained
by collsidcflng pcrtlli'batloll cxpails1011 to ordcl
Here we restrict ourselves to leading nontrivial order in 6&
and b,z. The only resonance frequency which can be ob-
tained to this order is to =2Q. We will consider this effect
later in this section.

When the resonance condition is not satisfied the stabil-
ity surface in the case of imaginary A, is determined by the
solutions of Eq. (3.5c). It is easy to see that the Hne tz =0
is an instability line even for b, i,h z+0, provided b is large
and negative. In order to verify that this indeed is the
case note that for tz =0 Eq. (3.5c}becomes

A,"+ ,' A, (co —4b)——4b(co —,
' bh—z) =0 . (3.7)

The line tz =0 is an instability line provided Eq. (3.7) has
only negative solutions for Az. This is the case for
b & b = —ttz /4(1+ d z/4 2). One should note that the ex-
pansion (3.3) is valid as long as the amplitude A is smail,

l

namely O(hi, hz). This restriction is satisfied provided
ttt +(2A, —tz) is O(1) [see Eq. (3.51)]. For b =b one finds
that co +(2A, —tz) ~O(kz) && 1. This leads to
A =0(l/~b, z), indicating that the expansion (3.3}, and
hence (3.7) are not valid at this point. In fact one can
easily verify that Eq. (3.7) is valid for b «b. The diver-
gence of A for b=b is a manifestation of resonance ef-
fects which take place in the vicinity of b F.or b «b,
and hence for

~

b
~

&&co, the frequency Q= i—Rat, the
threshold can be calculated from Eq. (3.7). The result
Q=v' b i—s similar to the one found for the unmodulated
case.

In order to calculate the instability line near b =b we
consider the transition with the resonance frequency
Q=co/2. In general the solution of Eq. (3.2) in the case
of resonance has the form

x( t) e it(ge int+ gee
—lnt) (3.g)

where A, is assumed to be real. Equation (3.8) together
with Eq. (3.2) yield a polynomial in A,:

N 2

A,
~—2tzA, z+A, z 2 b+tz (1———,'4i) —M 2 b+b—&i&z

+ b+ ——,b,zb + 4tz co (1——,hi)=0. (3.9)

tz (1——,'dpi)=- [—,'b hz (4' +b)z] —.
Q7

(3.10)

In what follows we refer to this curve as a resonance
tongue. A typical resonance tongue is shown in Fig. 2,
where the stability boundaries of the conductive phase re-
sulting from the linear analysis presented in this section
are shown. This curve intersects the tz =0 axis at

CO
b =bi = — (1+—,

'
bz)

4

The stability boundary occurs at A, =O. This yields the
following expression for the resonance curve:

ing a positive solution for A, . Thus the conductive phase
loses its stability along the edge of the resonance tongue
and is unstable inside the tongue. For higher resonances,
i.e., for nat =+2Q, similar resonance tongues may be cal-
culated. These higher resonances show up in higher order
in b, i and tt),z.

In order to complete the linear stability analysis of the
conductive phase we consider the intermediate values of
b, namely for b &bi and b & bz (see Fig. 2). In these re-
gions one expects the frequency Q at threshold to deviate
considerably from v' b(the valu—e for large negative
values of b) and approach continuously the locked fre-
quency co/2 as b approaches b, and bz For this pur.pose
we assume that Q to —Q, and consider x (t) of the form

( 1) ezt(geint+Cei(cy Q)t+ )— (3.11)

Outside the resonance tongue all the coefficients in the
polynomial (3.9) are positive, implying that all solutions
for A, are negative. Consequently this is the region of
stable conductive (x =0) phase. Inside the resonance
tongue the free term in polynomial (3.9) is negative, yield-

where the two almost degenerate frequencies Q and to —Q
have been included. Higher harmonics of c0 and Q may
also contribute to x (t), however, they are of higher order
in hi and b z and may be neglected. In Eq. (3.11) A, is tak-
en to be real. Inserting Eq. (3.11) into Eq. (3.2) one finds
the following solvability conditions

A, —2aA, —A, [2b+2Q(Q ttt)+(2Q co—) tz (1———,'hi)]—+Aa[2b(1 ——,bibz)+2Q(Q —co)+(2Q —ttt) ]
+b (1—, hz)+b[Q +—(Q ttt) ]+Q (Q—co) aQ(Q—to)(—1 ——,bi)—=0, (3.12a)
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and

I2A, —3aA, +A[a (1—,' 6—i) 2—b —Q(Q co)]+—,
' a[Q(Q —a))+2b ——,'aikido 2] I(2Q —co) =0 . (3.12b)

The two equations yield expressions for the critical line
and the critical frequency Q. For A. =O, Eq. (3.12b) is
solved by either a =0 or

Q(Q co—)+2b ——,
' abhib, 2

——0 .

The second possibility is not physical since it leads to neg-
ative values of a 2, when inserted into Eq. (3.12a). Conse-
quently the critical line is given by a =0, even in the in-
termediate regime b &bi, 0) b )b2. The critical frequen-

cy Q is given by Eq. (3.12a) with a =A, =0. It can be easi-

ly seen, that Q approaches the resonance frequency c0/2
for b approaching b, from below and b2 from above. For
negative values of a all the coefficients in the polynomial
(3.12b) are positive, which as previously ensures only neg-
ative solution for A, . This means that if the resonance
condition is not satisfied the conductive x =0 phase is
stable in the region of negative a. Conversely for positive
a the free term in polynomial (3.12b) is negative, which
allows for positive solution for A, .

The results of this section are presented in Fig. 2. This
6gure corresponds to a cut in parameter space for con-
stant b, i, h2, and ai. Only the tongue resulting from the
first resonance (i.e., for co =2Q) is shown in this figure. In
principle there exist in6nitely many smaller resonance
tongues corresponding to rational values of Q/co. They
are not shown in Fig. 2 since the analysis presented in this
section is restricted to the lowest nontrivial order in 6&
and di. The shaded area represents the region in which
the conductive phase is stable. This phase becomes unsta-
ble along the three lines denoted by S, H, and R in Fig. 2.
Along S the relevant eigenvalue does not have an imagi-
nary part, as is the case of a stationary instability in the
absence of modulation. Here, however, the phase on the
right-hand side of the line S can not be stationary, since
nonzero h2 does not allow for fixed pcmnt solutions.
Along H and 8 the relevant eigenvalue is purely imagi-
nary. The frequency Q at the onset of the instability
varies continuously along the line H and is locked to c0/2
along R.

Consider now the line I„ in Fig. 1. In the unmodulated
case one finds heteroclinic orbit along this line. However
as one introduces modulation, one expects heterochnic or-
bits to exist in a finite region in the a bplane. The b-oun-

daries of this region may be calculated by the Melnikov
method. ' In the Appendix we apply this method to the
case hi&0, b.i——0 and find the two lines I„' and I„ in the
a-b plane which bound this region.

8. Numerical results

In this section we report the results of numerical studies
of some nonlinear features of modulated Rayleigh-Benard
system of binary mixture. Within the amplitude equation
formalism this system may be described by model (3.1)

with f» 0 and f2 &0. In this case one has to add higher
order terms to Eq. (3.1) to ensure stability. We therefore
consider the model

x = [a +Eicos( for ) ]x + [b +Eicos( ci)r +P )]x

+fix +fzxx +fix (3.13)

where a fifth-order term f&x,f3 & 0, is added. In the un-
modulated system Eq. (3.13) yields two stable fixed
points. These fixed points coexist in some part of the pa-
rameter space (in particular in the neighborhood of line I„
in Fig. 1) with a stable limit cycle. If the distance between
these fixed points and the limit cycle in the phase space is
small enough the presence of the modulation may result
in a "merging" of their respective regions of attraction.
This in turn may result in chaotic behavior, sphere a single
trajectory wanders randomly between the remnants of the
basins of attraction of the stable fixed points and the limit
cycle of the unmodulated system. These interesting phe-
nomena will occur if the coefficient of the fifth-order
term will be large enough compared to other coefficients
in Eq. (3.13) in order to bring the 6xed points and the
limit cycle of the unmodulated system sufficiently close to
each other. Later in this section we will discuss the physi-
cally relevant values of the coefficient f, and compare it
with other coefficients of Eq. (3.13).

The number of parameters in our model is 9. Scanning
this nine-dimensional space is a formidable task. We
therefore restrict ourselves to the case in which the pa-
rameters ei, e2, fi, f2, f3, co, and P are fixed at physically
accessible values and consider the two-dimensional phase
diagram in the a-b plane. Moreover, since this study is
carried out by performing numerical integration of Eq.
(3.13) one is not guaranteed, that one will grasp all the
important features of the phase diagram, even in this lim-
ited range of the parameter space. We hope, however,
that in the analysis presented below the gross features of
the phase diagram have been elucidated.

Two physical systems have been studied recently, in
which the effects of modulation described in this work
could be observed. These are the He- He mixtures at low
temperatures, and binary mixtures of, say, ethanol and
water at room temperatures. In both cases the experi-
mentally controlled parameters are the temperature gra-
dient b T, the concentration gradient b C across the fiuid
layer, the amplitude R i and the frequency co of the modu-
lation. By varying AT and hC one controls the changes
in the Rayleigh number Ito [see Eq. (2.1)]. The Lewis
number W =D /a. and the separation ratio

kz.P2/TPi [see Eq. (2—.2)] are determined by the
mean temperature and concentration. 4 changes from
negative to positive values very close to the CT point and
is very small in the region relevant to the phenomena that
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are studied in the present work. In the He- He experi-
ment 4' is of the order of 10 and in the room-
temperature experiment it is of the order of 10 —10
On the other hand the Lewis number W changes only
slightly across the relevant region of hT and hC. Typi-
cally it values range from W=4X 10 in the helium ex-
periment to 2'=10 in the room-temperature experi-
ment. The coefficient f3 was recently calculated for the
binary mixture in porous medium. Applying this result
to the He- He and the water-ethanol mixture one finds
that the ratio f&/fi varies considerably with W and 4,
typically from below unity to over a hundred. In the nu-
merical results presented below we take fi ——1, f2 ———1,
and f3 ———7. The integration of the equation of motion
for different values of f& shows that the qualitative
features of the phase diagram are unchanged as long as
the ratios

~ fi ~
/f i and f&/f2 are not below unity.

We have performed numerical integration of Eq. (3.13)
for two choices of ei, ei, r0, and (() corresponding to the
He- He mixture and to the ethanol-water mixture,

respectively. Since the interesting phenomena take place
for e& and e2 comparable to or larger than a and b (or for
b, i, hi )1), they lay in a region of the parameter space far
from the domain of validity of the expansions presented
in Sec. II A. For large b, i and b,i higher-order corrections
are not negligable, and therefore the stability lines present-
ed in Fig. 3, and in particular the shape of stabihty tongue
differ from these of Fig. 2. In the following analysis of
Eq. (3.13) the stability boundaries of all phases are deter-
mined numerically.

0, 1—

0

-005 0.05

FIG. 3. The phase diagram of Eq. (2.13}for f&

——1, f2 ———1,
f3 ———7, e~ ——0.009, eq ——0.08, co=0.273, and /=0. The shaded
area is the stability region of the conductive phase. The heavily
shaded areas denote approximately the regions of chaotic trajec-
tories. The insets show schematic trajectories in the correspond-
ing regions (for details see text).

First we choose e~ ——0.09, e2 ——0.08, and ~=0.273. At
resonance (i.e., Q=v' —b =co/2) these modulation pa-
rameters correspond to the values of the Lewis number
W =4.3 X 10 and the separation ratio ql = —0.48
X10 which are realistic values for He- He mixtures.
The corresponding amplitude of the modulation is
R, =0.18, which gives a ratio R i/Ro-0. 005 (Ro ——4H in
dimensionless units). Our numerical studies show that
such a small amplitude of the modulation already yields
interesting nonlinear behavior. This is contrary to the
case of pure fiuids, ' ' where modulation driven bifurca-
tions occur only for Ri/Ro of 0(1). The above values of
4 and W imply a small phase /=18' as defined in Eq.
(2.11). We have checked several other values of P and
concluded, that small P does not change the qualitative re-
sults. Therefore in the phase diagram described below the
phase P was taken equal to zero.

The phase diagram of Eq. (3.13) for the above chosen
values of ei, e2, ai, and (|) is shown in Fig. 3. The shaded
area corresponds to the region in which the conductive
phase is stable. The boundary of this phase consists of
three lines denoted by 0, R, and S corresponding to a
Hopf transition, resonance line, and stationary line,
respectively. As in Fig. 2, the line S corresponds to a
transition with real eigenvalue, while H and R correspond
to a transition with purely imaginary eigenvalue at thresh-
old. However, the phase on the right hand side of S is not
stationary, since nonzero eq does not allow for fixed point
solutions. We will terin this phase the asymmetric phase,
since the limit cycles found typically in this region are

asymmetric with respect to the x=x=0 point. Note,
that ei and e2 are no longer small compared to a and b,
and therefore the stability region of the conductive phase
in Fig. 3 is not in the domain of validity of the analysis
presented in Sec. III A and shown in Fig. 2. The case of
binary mixture corresponds to fi &0 in Eq. (3.13), which
implies that the transition along S to the asymmetric
phase is first order. Therefore one finds locally stable
asymmetric trajectories also to the left of line S. As one
moves away from the line S to the left, one finds that the
asymmetric trajectories seem to disappear along the line
8', where they either become chaotic (see Fig. 3) or their
region of stability shrinks to zero. So, for example, the
asymmetric limit cycle for a= —0.24 and b=0.02 be-
comes weakly chaotic for o= —0.24 and b=0. To the
left of the line 8' one still finds periodic and chaotic tra-
jectories. These trajectories disappear along the line C.
To the left of this line the only stable solution is the con-
ductive one, namely x =0 phase.

%e consider the resonance line 8 and describe the tra-
jectories in the vicinity of this line. At the tip of the
tongue (a =—0.23, b = —0.01) the transition is second or-
der to a symmetric limit cycle with locked frequency
Q =r0/2. Since Eq. (3.13) contains only odd powers of x,
the power spectrum of the time signal of the locked cycle
exhibits only the odd harmonics of Q, i.e., (2n+1)Q.
Above the point A in Fig. 3 the transition is first order,
and again to a symmetric limit cycle and locked frequen-
cy. Around the point a = —0.148 and b =—0.039 (denot-
ed by 8 in Fig. 3) this cycle bifurcates into two coexisting
slightly asymmetric limit cycles with more complicated
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harmonic content. In addition to the locked frequency
Q=ro/2 and its odd harmonics (2n+1)Q, one also finds
even harmonics at frequencies 2n Q. Moving up along the
edge of the resonance tongue one finds that both cycles
undergo a cascade of period doublings and result in weak-

ly chaotic orbits at a = —0.09, b =—0.043. For smaIIer
values of ~a

~

the regions of attraction of these two orbits
merge and the resulting orbit has a fully chaotic power
spectrum and Lyapunov exponent equal to 0.40+0.02 for
a =—0.07, b = —0.043. For values of a between —0.08
and zero there is chaos on the edge of the resonance
tongue. The transition between the conductive and chaot-
ic state is intermittent and does not show hysteresis (as in
the case of bimodal maps). In Fig. 4 a typical intermit-
tent trajectory in this region is shown. Note that this in-
termittent transition is a direct transition between the con-
ductive and chaotic state. Going from the tip of the
tongue to the right along the edge the transition to the
locked state is second order all the way up to a chaotic re-
gion denoted by heavy shading in Fig. 3. The chaotic tra-
jectories in this region have their origin in the merging of
the basins of attraction of two orbits from the asymmetric
phase.

Between the left edge of the resonance tongue and the C
line there is a region of coexistence of the conductive and
chaotic state. The region of chaotic trajectories extends
for negative as well as positive values of a (see Fig. 3).
The transition to chaos from the side of the negative
values of a is mainly through a period doubhng cascade,
while from the side of the positive values of a mainly
through intermittency. For large positive values of a the
limit cycles are usually symmetric. For smaller values of
a they undergo a transition (mainly through a chaotic
state) to a pair of coexisting asymmetric limit cycles along
time T. These asymmetric hmit cycles in turn become
chaotic via an intermittent transition along the upper
boundary of the chaotic region (the heavily shaded region
in Fig. 3).

I I i
l

I I I I

l
I i I

0 4-.

0.2-.

X 0-0

We have analyzed the phase diagram of Eq. (3.13) for
values of ai, e2, co, and (() corresponding to a binary mix-
ture (for example the ethanol-water mixture) at room tem-
perature. We choose the foHowing values for the modula-
tion parameters: e&

——0.25, e2 ——0.14, ~=0.395, a,nd
((i=26.6, which correspond to the Lewis number
W =0.02 and the separation ratio 4=—0.5)& 10 . The
numerical analysis in this case gives results which are
qualitatively similar to those shown in Fig. 3. In particu-
lar one also finds chaotic trajectories for negative values
of a and the intermittent transition between the conduc-
tive and chaotic state at the edge of the resonance tongue.
In general the chaotic region for negative values of a can
be found in cases where ai and a2 are larger than or com-
parable to a and b as long as the phase ((i does not ap-
proach 90'. If these conditions are not met the chaotic re-
gion shrinks and one finds small chaotic regions mainly
located in the positive values of a.

IV. CONCLUSIONS

We have analyzed the phase diagram of externally
modulated Rayleigh-Benard system of binary mixtures
near the CT point. Numerical integration of the equa-
tions of motion shows that in a large part of the physical-
ly relevant parameter space this system exhibits chaotic
trajectories. The results of the numerical integration for a
given choice of the parameters is summarized in Fig. 3.
In particular, in some region of the phase diagram chaotic
trajectories coexist with the convective phase. Further-
more we show, that the transition between the chaotic and
conductive phase is intermittent.

APPENDIX

In the unmodulated case, the phase diagram (see Fig. 1)
exhibits a line I„along which one finds heteroclinic orbit.
In the unmodulated case one expects a region in the a-b
plane in which such orbits exist. In this appendix we em-

ploy the method of Melnikov, in order to calculate the
boundaries of this region, for @i+0 and ez ——0. This
method enables one to study the stability of planar homo-
clinic (or heteroclinic) orbits under small perturbation.
For further details we refer to Ref. 14, Chap. 4. In order
to study the stability of the heteroclinic orbit occurring at
I„under small perturbation due to nonzero b,

&

——mila we
set ez ——0 in Eq. (2.1) and rescale it as follows:

X=Ehf~ X=6 U, 6= —6 V&~ Q=E V2,

-0 2 ".

-0 4 "--

e, =e e&, 5i ——mila =e&lv2,

N~E co, E~ct .

One obtains the following equations:

(Al)

l & i i i l

5000 6000 7000
l r

8000
(A2)

U= —viu+fiu +&[v2U(1+~icos(~&)) —f2" UI .
FIG. 4. Intermittent trajectory associated vnth the transition

between the conductive and chaotic state. The so1ution of Eq.
(2.13) is shown as a function of time for a = —0.05, b = —0.045,
f, =l, f2 —1, f3= —7, e|——0.09, ei ————0.08, co=0.273, and

=0.

To the zeroth order in e Eq. (A2) describes a Hamiltonian
system with the Hamiltonian

Pl'(u, u)= —,vlu + —,U —,' f&u—
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The phase portrait of this Hamiltonian contains a heteroclinic orbit with energy vi/4f &
belonging to the heterochnic

points

(u, u)=(+Qvi/f&, 0) .

The parameterization of this orbit is given by
' 1/2

0 V)
u+ ——+Qvi/f itanh

' ]/2

(A4)

(A5)
vi V)

u+(t) =+ cosh — t
2fi

We calculate the Melnikov function M(vi, v2, b, „co,to) (see Ref. 14, p. 191) belonging to u+ and u+ (the calculation for
u and u is identical). This function is given by

M( v,ivied ,icot o)= f dt(u+) (vpI1+hicos[co(t+to)]I+f2(it+) ), (A6)

where t E[0,2n/co]. In the absence of modulation the Melnikov function is time independent and can be evaluated

directly, yielding

3
' 't/2 '

f dt(u+) [vz —fz(u+) ]=— 2 z 1 fz
~fi vi » 5fi (A7)

A zero of M(vi, v2, b, &,co, to) determines a line in parameter space along which a heteroclinic orbit occurs. From Eq. (A7)
we obtain a/b =f2/5fi for this heteroclinic orbit. This result for the line I„was obtained previously by various au-

thors. 6'

The integral containing cos[co(t+ t, )] can be evaluated by the method of residues yielding:

+ 00 ],V& V2
vib, , dt(u+ ) cos[co(t+to)]= neo

00

CO Vt
2

N+—cos(toto ) sinh m.

12 5 2v)
(A8)

The final result for the time dependent Melnikov function
M(v„v2, hi, co, to} is obtained by combining the results
given in (A7) and (A8). The occurrence of heteroclinic or-
bits is determined by zeros of M(vi, v2, bi, co, to}. Simple
zeros indicate an occurrence of a transversal heteroclinic
orbit and double zeros indicate the occurrence of quadra-
tic heterochnic tangencies. For to E [0,2m /co] one finds
double zeros for to=0 and m/co and simple zeros for in-

termediate values of to The regi. on in the a bplane in-
which heteroclinic orbits exist is therefore bounded by the

two lines I„' defined by M(v„v2, hi, co, to=0}=0 and I„
defined by M(vi, vi, b i,to, to n/co) =0——
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