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Stark broadeiung of the hydrogen Lyman-a line from the center
to the near line wings for low-density plasmas

C. Stehle

(Received 4 March 1986)

Hydrogen Lyman-a Stark broadening is calculated for a low-density plasma (N & 10' cm ') for
0

detunings smaller than 10 A in the dipolar and no-quenching approximations. Sexniclassical and
quantal descriptions are alternatively used to describe the contribution of each collision. The results

may be compared vnth the impact and static approximation limits, thus defining their range of va-

lidity and leading to analytical expressions for the relaxation rate in these cases. The effects of the
trajectories curvatures and relative velocity variations are analyzed.

I. INTRODUCTION

Recently there has been renewed interest in the Lyman
and Balmer lines of hydrogen in low-density plasmas.
Some recent laboratory experiments' have shown very
larger collisional dynamic effects leading to the break-
down of the static theories in the line center. On the other
hand, precise computations of the line wings are needed to
interpret spectra in experimental conditions where redis-
tribution processes are very large (see for example Basri
et al. z for solar chromosphere spectra). We present here
low-density (N &10' cm ~) Lyman-a calculations from
the center to the near line wings.

The impact approximation is valid for electronic and
ionic perturbers in the line center, because the collision
time is short compared with the atomic dipole relaxation
time br0&&z (lLaii&i half-width). Moreover, the strong
collisions (i.e., which cannot be described by perturbation
theory) are separated in time. For large detunings br0 the
typical time of interaction br0 ' between the collisional
complex and the radiation field is small. Thus strong col-
lisions which play a major part in the broadening can be
always considered as statistically independent. So if, as
pointed out by Smith et al. , the impact approximation is
valid in the line center, the unified theory can be applied
from the center to the wings, leuhng to the low-density
limit of Fano's relaxation theory. ' The frequency-
normalized intensity is then

I(4')=n 'Im[ha) iy(dao)]—
where the relaxation operator y varies linearly with N, the
density of perturbers.

In the far wings the intensity is attributed to additive
independent spontaneous emissions: hence the collisions
are very rare events on a time scale of the order of the
evolution time hco '. After averaging over all the col-
lisions, the intensity varies linearly with the density —this
is the one-perturber approximation:

I(hco)-n 'Re[@(bc@)]l(he@)

This approximation, valid in the wings, breaks down in
the line center where simultaneous interactions occur dur-

ing the time of interest bc@ . In spite of this, the expres-
sion obtained for Rey(hcu) in the one-perturber
theories gives the usual impact result Rey(0) for very
small detunings.

Using Fano's expansion of the relaxation operator y in
terms of the collisional perturbation at the low-density
limit, ' ' it can be seen that this operator is the Fourier
transform of a function equal to zero for negative times
(causality principle). The Kramers-Kronig relations are
thus satisfied between the real and imaginary parts:

Imy(pro)= —P f dx .1 +~ Re) (x)
77 —~ IC0—x (3)

The line shape is easily obtained by (1) by calculating the
real part and then the imaginary part from (3).

The emission during a collision may be described in ei-
ther a quantal, 7'" or a semiclassical formulation. s 9'2 Ex-
cept in the case of "satellites" in the wings, ' these two
methods have been only used for the electronic broaden-
ing ' for detunings smaller than 10 A, the calcula-
tions prove that quantum effects (exchange interaction,
breakdown of the trajectory notion, etc.) are very small
and that the contribution of the polarization and quadru-
polar interactions is only 10% of the total intensity
beyond 1 A. ' For the relatively small detunings involved
in the present paper, all these short-range contributions
will be neglected. For detunings exceeding 10 A the large
departure from the dipolar approximation requires the use
of H potential curves.

In the case of H+ perturbers the unified theory of Vidal
et a/. ' has been used for the intricate interpretation of
solar spectra. ' Other recent calculations have included
some dynamics effects at moderate densities ' ' (N & 10'
cm ) but the earlier studies use the static description for
the ionic broadening as a consequence of the large con-
cerned densities. ' Quantum effects are likely to be
smaller for protons than for electrons, and adiabatic Hi+
potentials show that the departures from the dipolar in-
teraction are small for internuclear distances larger than
30 a.u. Assuming, as shown later, that the static

0
approach is valid, the corresponding detuning is +10 A.
Thus the discussion will be devoted to the near wing
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& 10 A) using dipolar interaction. Doppler
broadening, quenching, and fine-structure effects will be
neglected. This will be discussed in Sec. IV.

The aim of this paper is to prove that the description of
the ionic broadening of the hydrogen hnes at low densities
differs strongly in the line core where the large dynamics
effects lead to the usual impact approximation and in the
line wings where the Franck-Condon approach becomes
valid, corresponding to the static (Holtsmark in the dipo-
lar approximation) theory. As a consequence of the large
perturber mass, the semiclassical approximation for the
relative emitter-perturber motion seems justified. This pa-
per will use a quantal approach and a semic)assical one
using rectilinear trajectories for the description of the col-
lision. These methods are both particularly attractive be-

cause the collisional problem is exactly solved. They have
been first introduced by Tran Minh and co-workers, "and
I.isitsa and Sholin for the calculation of the electronic
broadening of the l.ya line wings. The comparison of the
results obtained here for the ionic broadening allows us to
analyze especially the effects of the trajectories deflection,
and of the change of the kinetic energy during the emis-
sion.

After a brief review of the methods (Sec. II), the varia-
tion of Re) (hem} is analyzed for collisions defined by the
same initial kinetic energy but different values of the an-

gular momentum. The intensity is then calculated (Sec.
III).

This paper will be concerned mainly with the ionic
broadening in a ~plasma with equal proton and electron
densities (N =10' cm ) at thermodynamical equilibri-
um ( T = 10 K).

II. REVIEWER OF THE METHODS

The basic theory has been reviewed in detail by Tran
Minh et al. " and Baryshnikov and Lisitsa and will

therefore only briefly be summarized here.
The collisions are defined quantally by the reduced

mass m, the initial angular momentum l, and kinetic en-

ergy E =R kz/2m. In the semiclassical case, the motion
is assumed to be described at a constant relative velocity v
on a rectilinear trajectory defined by the impact parameter
b. The Coulomb interaction between the emitting dipole
and the moving charge can be attributed to a rotating
field. Hereafter the initials ( n =2) and final ( n = 1) states
will be denoted, respectively, by Latin and Greek letters.

total energy [E(n =2)+A k /2m], the total angular
momentum I. =/+ I. (I and 1.are the orbital and atoinic
electron angular momenta), and the parity ( —1)'+ [and,
respectively, R k /2m, A =A, +A=A. , and ( —1) for the
ground state]. The channels are then denoted by
(L, /, L,M ) for n=2 and by (A, A, ,A,M' ) for the un-

perturbed ground state (A =A, ,A=0), corresponding to
the radial wave functions G(r). These functions are in-

dependent of M,M' and the isotropic profile also.
After a diagonalization of the interaction on this basis,
leading to a differential system of equations, ' the radi-
al wave functions (hereafter called the ERM radial wave
functions) of the state n=2 are the Bessel functionsJ„+i ~2(kr } corresponding to the diagonal potential ener-

gy (R /2m)p~(p~+ I)/r relative to the atomic energy
E(n =2). The p values corresponding to a given value
of L are, respectively,

p)=L

pi= ——,+ [(L ——,)'—(2L r+1)(x —1)]'~',

pi= ——,+ [(Lr+ , )'+(2L r—+1)(x—1)]'~',

x =[1+36(m/m, ) /(2Lr+1)2]'~2 .

These diagonal ERM radial wave functions J„+,&2(kr)

are deduced from the three channels (L;,I;,L r) denoted
briefly by i (with L, ,Li„L3——0,1,1 and l&, lz, l =3L,

—1,L +1) by the unitarity transformation X." For
the unperturbed ground state, they are simply Ji+,&2(kr)
corresponding to the centrifugal potential
(A /2m )A(A, + 1)/r

In the case of weak radiative coupling the transition
probability can thus be calculated between all the pairs of
exact eigenstates of the collisional complex characterized
by (p~, A, ). This corresponds to the generalized Born (or
distorted-wave) approximation for the radiation. i7

Fermi's "golden rule" which gives the radiative transition
rate has «be taken between an incoming initial and an
outgoing flnal state for the collisional complex. This
seems to disagree with earlier publications considering an
incoming wave also for the final state but it can be proved
that this has no consequence on the resulting isotropic
profile.

The relaxation operator is then given by

A. Exact resonance method (ERM)
y(b,co)=N I duk Ukf(uk)

0 k

For hydrogen the collisional problem can be solved "ex-
actly" in the no-quenching approximation because the
centrifugal and dipolar potentials both vary in the same
%vay~ as p'

The constants of the motion are for the upper state the

(2L r+1)g(L, boo, E)
I.~=0

with Ak =muk, E = (iiik ) /Zm, and
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Reg (L ",i)gtu, E)= mt5()r —(k —2m hro/i)1)'i )

L~ol O, l; =L ~+1,L;,A, AT, A,

5(LI, 1)5(A~,O)5( d(, , l; )5(A, A, )

X 6 I., I, ~~I.; gI. ~ r 6 A~ AT~A~A, AT r ' r
2'

(5)

The first Dirac term is a consequence of the total energy
conservation (colhsional complex and photons). Note also
the conservation of the angular momentum for the rela-
tive motion 5(A, ,l; ).

Overlap integrals in (5) are replaced by convergent in-
tegrals of the dipolar interaction matrix elements A,jlr
between the channels i =(L;,l;,L ) and j=(Li,ij,L )

giv1ng

Reg (L,b,co,E)
3

~A)ii y [I) M()Li k, hc)p5(A, ,l;) .
m =1

The overlap integrals M are given by

CO

M(p, k, hc) = dr J& +i&—2(kr)J), +i&i(ar),0 p &m

and can be expressed in terms of the hypergeometric func-
tions 2F),2s with different expressions depending on the
wing (k/a'~&1).

classical description of the dipolar interaction in terms of
a rotating field I'(t) [with 8'(t)=e/r2(t)]. The problem
can be solved exactly in a system of coordinates rotating
with this perturbating field.

For very large l values the dipolar coupling is small and
the trajectories linear. The deflection and change in the
relative velocity on the trajectory are negligible according
to the inequalities

~
V~(r)

~
«R l2/2mr or

The emission occurs during the collision, leading to varia-
tions of the kinetic energy equal to R hto and to modifica-
tions of the trajectory. This effect is small at large rela-
tive velocities satisfying the condition

~

A' b,cu
i

/mu~ ((1 .

When the three preceding inequalities are satisfied, it is
easy to prove that the overlap integrals M can be simply
expressed in tonus of the Bateman functions
k„(y)= IV„qi,i/2(2y)/I (1+v/2) (Whittaker and gamma
functions), by

B. Semiclassical method (SCM} M(p k, l;a.)-(p +l;+1) 'k,~(a„)x„(y), (9)

For large values of the angular momentum, classical
trajectories can be defined by the impact parameter b and
velocity v satisfying the condition

L -l =mub/A&&1.

The potential FRM energies excluding the centrifugal
barriers (A /2m)fp;(p, ;+ I ) L(L +1)l/r r—educe f'or

the state n =2 in the three diabatic molecular Hq+ or H
potentials Vi(r) =0, V2(r) = —2lx, and V3(r) =+2lx
[with x -1+9(m/m, ) /l~]. These potentials can be al-
ternatively obtained for linear trajectories using the semi-

with y =hco b/u, and

v=p~ —
l& ——+1,+(1+x),

(10}
x =1+9(m/m, l) =1+9(R/m, ub)

The summation over I. becomes an integration over b
and hence [Eqs. (4) and (5)]

) (ge) N I vf(v)dv f dg 2vvgg (ggvvg), , ,

with

Reg (b, bee, E)=
7?T~

2 v

k i(y)+—1 2 9 m

I x 2 pter~,

'2

I2
—,[ki (y)+k)+ (y)]+[k„(y) k „(y)] (12)

These relations were first given by I.isitsa and Sholin in
the formahsm of the dipole autocorrelation function and
can also be derived by calculating the emission probability
of the collisional complex between each pair of diabatic
eigenstates. The intensity is the same for dLtu and —h,gu

according to the relation k„(—y) =k „(+y}.In addition,

the relation

Reg (l,htu, E)=Reg (1/q, &~q,E), (13)

valid for any posi, tive value of q, gives a correspondence
between ihe electron and ion contributions taking
q =m, /m.
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For low / values departures from the rectilinear trajec-
tories and constant velocity assumption lead to an in-

correct variation of g" with I: the effect on the line shape
will be analyzed further.

(Secs. IIIA, IIIB, IIIC, and IIID) except in the case
where it becomes necessary to distinguish between the real
and imaginary parts (Sec. III E).

III. VARIATIQNS OF y %'ITH THE DETUNING
B. Line core-impact 1imit

The dynamic relaxation operator y(bco) will be calcu-
lated from the line center to the near line wings. This re-
quires a precise determination of the hypergeometric and
Bateman functions for very large values of the angular
momentum le;iding to some numerical difficulties particu-
larly in the ionic broadening case.

A. Numerical computation

Near the line center the collision time is negligible in
comparison with the time of interest hen '. The emission
probability varies smoothly along the trajectory and is
thus mainly given by contributions from large internu-
clear distances where the radial wave functions reach their
asymptotic forms. The same conclusions can be drawn in
the ERM for the overlap integrals which become

M(p k I a)

=2sin[(p —I;/2Hr]/[(I;+ I+@ )(p, I;)rr] .—

(14}

The relaxation operator can be expressed in terms of the
scattering matrix S:

g(Lr, O, E)

=3 ' g /L;I;L
i

1 —S
i
L(I;L )5(L;, I) . (15)

I =I.T+1
t

This function is independent of E for a dipolar potential.
The semiclassical limit is

T

1+x
g (I,O,E}=6 2'2 1+ '+'zcosz

2
L *

(16)

In the case of heavy perturbers and strong collisions the
phase variations in the emission probability along the tra-
jectoryz lead to oscillations for g(LT) and g"(/) about
unity. These functions are always lower than —', because
of the unitarity properties of the S matrix. Trajectory ef-
fects appear for the "low" I -L range excluded by con-
dition (7) and increase for decreasing values of /. As can
be seen from (10) the largest values of ~/2

—I
~

for low /

values is approximately given by 3(m/m, )/I to be com-
pared with l. Hence for H+ perturbers these effects are
important in the L range (I-L &70) where capture
into the quasibound state ( —,

'
+/zz is an imaginary number,

see Sec. IIIA) may occur for the ERM eigenstate corre-
sponding to pz. These effects, hereafter called "short-
range effects, " cannot be seen with the chosen I scale in
Fig. 1 for which the semiclassical and quantal curves are
indistinguishable.

For large I-L values, the SCM and ERM descrip-
tions reduce to the same second-order perturbational ex-
pansion:

g(I, O, E)-6(m/m, ) /I =6iri /m, u bz& 1

for /&I, [b &b, (u)] . (17)

This expression shows the long range of the dipolar in-
teraction, leading to a negligible contribution of the

Whittaker functions W„izz(x) are easily expressed in
terms of the Kummer function U(1 —v, 2,&) (Ref. 2g),
which may be represented by an asymptotic expansion for
large x values, by a logarithmic solution for small x
values and in general by Chebyshev expansion given by
Edmonds and Kelly. They satisfy recurrence relations
which can be calculated by the method of continued frac-
tions. " For large v values, the integral representation (p.
405 of Gradshteyn and Ryzhik ) has also been used.

The hypergeometric functions Fi (a,b,a +b + l,z)
(0&z &1) can be computed by using the limiting expan-
sions for small values of z or 1 —z and some recurrence
relations or their expression in terms of the Whittaker
functions (if valid).

In the ERM case the L summation is made by a tra-
pezoidal method using a variable step of integration. In
expression (6) the contribution of the ERM state corre-
sponding to pz is omitted at low L values. Hence for
L &L" (L"=2 for the electrons, 74 for the protons), the
corresponding potential (R /2m)pz(/22+1)/r is negative
in spite of the centrifugal barrier: /zz+ —, is thus an imag-

inary number. In contrast to the repulsive case, the radial
wave function oscillates rapidly at small distances. Their
overlap M(/zzk, /;~) with Bessel functions Jl +i~2 of real

arguments are neglected for numerical convenience. This
point will be justified later.

The lower limit of the energy integration is E;~ 0for-—
the red wing or E;~ Rheo/kT for the bt——ue wing as fol-
lows from the Dirac term in expression (5). After the
variable E has been transformed to E E;~, a 32—-point
Gauss-Laguerre integration is used.

In the semiclassical case the g functions, (12), are cal-
culated but not the thermal average leading to y „(11).
Indeed all the physical conclusions are drawn from the
comparison of g with g . This comparison and the con-
clusions of the quantum results for y will show that an
evaluation of the thermal average leading to y is not
ncccs sar@@.

In order to clarify the notation, Re), Re) ", Reg, and
Reg will be denoted, respectively, by y, y, g, and g
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the slow ions contribute to the slow plasma reaction lead-
ing to the Debye screening of the ion-hydrogen interac-
tion.

To ensure that the impact approximation is valid up to
the half-width, the condition htuiq2b/u «1 has to be sa-
tisfied even at large distances. By taking the Debye radius
for b and the mean velocity for u this gives N& 10'
cm at 10 K for the ionic broadening.

As mentioned in the Introduction, the strong collisions
[b &b, (u) or l &l, ] do not overlap in time. The required
condition 4.84X10 ' s( mlm, ) NT ~ &&1 is satisfied in
this density range.

~ I

I

I

~ I

I \
I

p I
I

I I
I I

I
I

I I

I I

I I

H per t Ur bars
0

A

C. Near line Wings

Near impact region D.epartures from the impact ap-
proximation for a collision (u, b) are specified by the mag-
nitude of the quantity yv =v 4to b/u, where v [Eq. 10 ] is
a measure of the strength of the colhsional interaction.
This can be shown in the semiclassical formulation by ex-
panding [k„(y)+k „(y)]to the first order in y.

For large b values (
~

v~ -1) the impact approach
breaks down for detunings satisfying htobD/u & 1 corre-
sponding to

~
b,A, j & 10 3 A (10 2 A for electrons). In

h f the strong collisions (small b values) the same
condition (yv( &1 is valid until (b,A,

(
&10 A( or

the electrons) so that, for 10 3&EL,&10 2 A, the impact
approximation can be used for strong collisions, but not
for the weak ones, leading to the following approximate
form for g

g "(1,hto, E)= 1 for l & l, ,

g (l, bto, E)=6(m/m, ) A(y)/li for 1, &l &lo,
&(y)=y'[Ki( iy i )+En( iy i )]=(n /8)[ki(y)

+k i(y)] and corresponds to the second-order expansion
in the collisional perturbation of the relaxation theory5

Oy
0 500

t =mv b/$
'I 000 1500

FIG. 6. g vs I for a large detuning. The dashed line shows
the mean value of the I oscillations given by the result of the
stationary phase method [Eqs. (22) and (23)).

fy f
))1. (21)

(ICO and Ei are the usual modified Bessel functions).
This function has been used for the impact broadening o
j.so a ines.1 ted lines. Figures 3 and 4 give the variation o g

een thatwith b (expressed in umts of fi/mu). It can be seen a
the exact and approximate near impact results are indis-
tinguishable and differ from the impact curve only at
large b values. Short-range effects are also negligible as in
Sec. III A and the ERM results have not been plotted.

Intermediate region For i.ncreasing detunings we can
use the asymptotic expansion for the Bateman function
[k„(

~ y ~
) not too large]:

k„(Jy f
)=k „(—)y /

)-exp( —2 [y [ )

Cb

1.0
4P

lX

ers
A

Hence the contribution of large-distance interactions van-
ishes as exp[ 2b/b„(u)],—where b (u)=

~

u/b, co
~

is the
f-usual Lewis cutoff. The Debye screening becomes ine-

fective as soon as the Debye radius is much larger than b„
(&to bD/u »1). At 0.1 A, for example, and E= 1 eV, we
have b =300 au. and bD ——3X10 a.u. , corresponding,

6respectively, to I -3X10~and lz-3X10 .
The g(l) function is no longer connected with the S

matrices for the strong collisions because the impact
theory breaks down and the mean value of the oscillations
is enhanced for increasing detunings (Fig. 5).

In this intermediate region (
~

bA,
~

& 1 A), the velocity
variations after the emission are rather small [condition
(8)]. Short-range effects are negligible after the average
leading to y (y ). ERM and SCM curves are indistin-
guishable.

0.0 W
0 2000 I 000

t= mv bl%
6000

D. Large detunings

FIG. 5. g" vs I in the intermediate region. The dashed line
shows the near impact approximation (20).

Beyond 1 A, the small angular momentum contribution
becomes larger (Figs. 6 and 7) and the Bateman function
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E. Line shape

The real part of the dynamic relaxation operator y(hei)
is calculated by mean of expression (4). ERM results are

compared for electrons and protons with the impact [Kqs.
(18) and (19)],near impact [Eq. (20)], and static [Eq. (24)]
limiting cases in Fig. 8. It can be shown that the first and

second approximations are convenient in the H+ case in

the detumng rangM 0—10-3 A and 10-3—10-2 A, rmp~-
tively. The Holtsmark formulation is appropriate beyond
1 A for the red wing but the neglect of the contributions
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FIG. 9. Imy(h~) as a function of h~ for the protons. Units
are 10' rad s ' for hu and 10 rad s ' for Ilny(hu}. (X=10"
cm, T=10"K.)

Ado)=(fi'/2m)[p (p +1)—I;(I;+1)]/Ro .
The right member of this equation corresponds to the po-
tential difference between the colhsionai ERM eigenstates
before and after the emission. For a positive (negative)
detuning the solution Ro exists only for the eigenstate
denoted by m=3 (m=2). The value of this "quant:al
Franek-Condon point" is near its classical value. Howev-
er, the oscillations of g with I. are more rapid for the red
wing than for the blue ones contrary to the semiclassical
case. This can be attributed to different trajectory curva-
tures and relative velocity variations on these trajectories.
But the mean value of these oscillations is in good agree-
ment with the result of the saddle-point method [expres-
sions (22) and (23) taking sin2= —,

'
] as can be seen from

Figs. 7(b) aild 7(c).
This proves that these trajectory effects are negligible

after I. summation (4). However, in the qtuuital case,
the omission, for numerical convenience, of the pi contri-
bution leading to capture into quasibound states (Lr & 74)
slightly underestimates the total red wing intensity. The
result of the saddle-point method seems to give a good es-
timation of this neglected contribution [Fig. 7(c)], giving
after energy integration a total intensity close to the Ho-
ltsmark result. This point will be shown in the next sec-
tion.

0
0

1

2 3 f.
f' 5

i units of IO A)

FIG. 10. %'avelength-normahzed total intensity E(hA, } vs

AA, (electrons and ions} at 10' cm 'and 10~K. Thedashed line
shows the result without dynamic shift (Imy =0}. Units are 10'
A for Eand 10 4A for hA, .

leading to capture into a quasibound state is responsible
for a little underestimation of the intensity for detunings
larger than 5 A. The energy threshold value A boi/kT for
positive detunings bc0 gives rise to a lower intensity for
the blue wing if the condition A'bc'/kT & 0.05 is satisfied
(i.e., dA, & —5 A}. The relaxation operator is then, in the
static approximation, obtained from the Holtsmark result
(24) after multiplication by the Boltzman factor
exp[ (R Leo/k—T)]

Vhth regard to the electronic broadening, the impact
approach can be used in the range 0—10 A, and the
near impact between 10 and 1 A. The static regime is
not reached. All these results agree with the preceding
discussion. They also prove that the semiclassical ap-
proach of Lisitsa and Sholin' would give very accurate re-
sults.

In the line center the line shift Imy(0) is related to the
wings asymmetry as can be shown by the Kramers-
Kronig relation. As this asymmetry effect becomes visi-
ble in the static region an approximate expression is given
by Imy(0)- —6.63X10 NT (5X10 A at 10 K
and 10' cm ). Relation (3), giving Imy(boo) as a func-
tion of Rey, can be expressed in terms of the difference
[Re}'(&~+&)—Rey(b~ —x)] on both sides of the con-
sidered detuning. So, near the line center, very accurate
results would be necessary for Rey which varies very
slowly with the detuning.

The shift contribution can be neglected as long as
~lmy ~

is much smaller than the detuning. This is always
the case for the electrons and for detunings larger than
10 A for the protons as well. Near the line center, the
computation of the H+ dynamic shift (see Fig. 9}., which
needs a smoothing of Rey(he@), is not very accurate. But
its effect is relatively small in this profile region where the
Doppler broadening is very large (Fig. 10). Thus
Imy(he@) can be set equal to zem from the line center to
the wings and the one perturber approximatio~ becomes
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valid as soon as jRey(b, ai)
~

is negligible compared with

The electronic contribution to the intensity is very
small in the near line wings. Hence the dynamic effects
enhance the relative contribution of the heavy perturbers
[Eqs. (18) and (19)]. It becomes on the same order of
magnitude as the H+ contribution towards 1 A.

1.5,

hX)0

IV. DISCUSSION AND CONCLUSION 0.5
0 100 h) (k

These results show that the trajectory effects (departure
from the assumption of rectilinear trajectory and constant
relative velocity) are very small after the collisional aver-
age [Eqs. (4) and (11)]for the protons and electrons in the
relevant density range. But the energy variation during
the emission leads to a small asymmetry which cannot be
treated by the semiclassical description of I.isitsa an Sho-
un. '

Concerning the ERM, the omission at small I. values
of the eigenstate contribution corresponding to imaginary
values of (pq+ —,) is negligible in the line center, but

slightly underestimates the intensity beyond 1 A in the
blue wing only. In the case of the electronic broadening,
the resulting error is very small for detunings smaller than
10 A. This can be shown by the comparison of the results
of the present ERM method ( T=12200 K) (see Fig. 11)
with the calculations of Feautrier et al. , ' and Feautrier
and Tran-Minh which include these capture effects and
other short-range interactions for L r & 2.

The method is valid as long as the impact theory is ade-
quate at the line center (N &10' cm ). The calculated
values for Rey(hem) can be used, at the same temperature„
at other densities, provided that Rey(b, co) varies linearly
with the density. This requires that b,rob&/u& 1, as dis-
cussed in Sec. III8. Hence the present results can be used
at densities lower than 10' cm for detunings larger
than 10 ~ A for the electrons and 10 A for the protons.
At smaller detunings expressions (18), (19), and (20) may
be Used.

At low densities the collisional duration is small in
comparison with the time between two collisions accord-
ing to the condition Choi/qbnlu &1. Between two col-
lisions, spontaneous emission occurs for the hydrogen
atom leading to the usual relaxation rate
y~=A/2=3. 13X10 rads ' which adds to y(b,co).

FIG. 11. Rey normalized to the Holtsmark result {24) as a
function of the detuning hA, {A) for the electrons
(N =8.4X10'6 cm, T =12200 K) compared with the results
of Feautrier et al. (Ref. 14) {dashed line) and Feautrier and
Tran Minh (Ref. 40) (dotted line), for the red and blue wings.

Spontaneous emission effects and spin-orbit interaction
are responsible for the splitting of the energy levels. The
I.ya line has to components separated by 5.4X10 3 A
corresponding to the transitions 2@3/p ~ 1s )gg and
2piqq~lsi/t. In the line center it can be shown ' that
the large contribution of the long-range interactions al-
lows us to use a perturbational description of the collision,
coupling principally the states 2p3/s aild 2pi &i to the state
2sizz. Thus the energy splitting effects can be neglected
for the densities satisfying the condition

~ he~, , iz, ,bn/u
~

& 1. The required large densities

(N &10'5 cm ) violate the condition for the impact ap-
proximation to be valid. In the line wings however this
effect vanishes for detunings larger than all the energy
separations in n=2 (i.e.,

~

hA,
~

&&5X10 A).
The resulting profile has finally to be convolved with

the Doppler broadening (4ki/in-4X10 ' A at 10 K),
whose influence is negligible for

~

lid,
~

& 1 A because of
its exponential decrease.
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