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A physical interpretation of the diffusion-limited-aggregation (DLA) algorithm for simulating

viscous fingering during fluid displacement in a porous medium is given in terms of the material

properties of the porous medium. In one dimension, the flow patterns generated by a DLA simula-

tion correspond to a simple exponential distribution of "Quid capacity. " Also, for any given distri-

bution of fluid capacity, it is possible to estabhsh a corresponding stochastic algorithm for the mov-

ing Quid interface. The discussion of this paper places the DLA simulation of viscous fingering on
a physical basis and, more generally, establishes the mathematical equivalence of two models of sto-
chastic interface evolution.

Paterson' has shown that the diffusion-limited-
aggregation (DLA) process introduced by Witten and
Sander can be used to model fingering patterns and
sweep efficiencies of two-fluid displacement in a porous
medium. The original DLA simulation is only applicable
to the case of an inviscid driving fluid displacing a
Newtonian fluid (i.e., at the limit of infinite mobility ra-
tio) and when interfacial and wetting effects are negligi-
ble. While there have betm ro:ent attempts to modify the
DLA algorithm to include some of these effects, the pre-
cise connection between DLA and the fluid flow problem
has yet to be established.

When an inviscid fluid is displacing another fluid of fi-
nite viscosity, the fluid interface is unstable to any pertur-
bations, however small in magnitude. 3 Even in a macros-
copically uniform and statistically homogeneous porous
material there are fluctuations in the hydrodynamic con-
ductivities and void structure over the pore scale, and over
larger scales, which can initiate finger growth; these fluc-
tuations do not appear in the macroscopic equation
governing the flow (Darcy's law). In contrast, in the
DLA algorithm, the stochastic nature of the "random
walkers" provides the source of fluctuations in the growth
of fingers. The aim of this paper is to establish a hnk be-
tween the probabilistic nature of DLA and the fluctua-
tions of microstructure in a porous material. Such a con-
nection will hopefully allow one to devise simple proba-
bilistic models to study more complex problems of fluid
flow in porous media.

Consider the displacement of a Newtonian fluid of fi-
nite viscosity by an inviscid fluid. We limit the discussion
to a displacement process in one dimension, with the
viscous fluid withdrawn from the origin and the interfaces
between the fluids located at points x = —l(t) &0 and
x =r(t) ~0. A constant pressure drop P is maintained
between each fluid interface and the origin. Since the
pressure satisfies Laplace's equation, the pressure gra-
dients on the left and right of the origin have magnitudes

dl/dt = vt/q, dr—/dt = —v„/y, (2)

where y is the porosity. In an ideal porous medium where
there are no fluctuations in material properties, k and y
are constants and the motion of the interfaces can be
found by solving Eqs. (I) and (2) for l(t) and r(t). One
finds that 1 (t) —1 (0)=r (t)—r (0)= (2kPlpy)t. —In a
statistically homogeneous rather than ideal porous medium
the interface will not move in this deterministic manner,
as there is a stochastic element in the displacement pro-
cess. We introduce this stochastic element by hypothesis
A:

In the next time step ht, the interface will advance one
step du& with a statistical weight that is proportional to
the magnitude of the velocity.

This hypothesis has been proposed by several authors as
a growth law or simulation algorithm to produce random
structures. %'e now examine its consequences and its rela-
tionship with the statistical properties of the porous medi-
QHl.

Consider the relative evolution of the left and right in-
terfaces for the one-dimensional displacement described
above. According to hypothesis A, the probability of the
r interface moving in the next time step is

Probt r interfaces moves) =(dr/dt)/[(dr/dt)+(dl/dt)]

P/1 and P/r, respectively. The magnitudes of the volume
fluxes vt and v„on the left and right of the origin are
given by Darcy s law':

vi=(klan,

)(P/1),

v„=(klan,

)(P/r),

where k is the permeability and p is the viscosity of the
displaced fluid. The instantaneous velocities of the inter-
faces are given by
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with a similar equation for the probability of advance of
the I interface. Applying Eqs. (1) and (2) to each inter-
face, we find that

Prob f r interface moves I =I /(r +I},
Prob[1 interface moves) =r/(r +I) .

(4)

I (M) =M ' Q IP(1,0, 1) g P(1,0, 1)

These results lead to a probabilistic algorithm for the evo-
lution of the two interfaces: select a random number in
[0,1] and then move one or the other interface according
to Eqs. (4). In a lattice simulation, the interface chosen is
advaiiced by oiie grid spaclllg.

The probabilities given in Eqs. (4) are closely related to
the DLA algorithm. If we release an unbiased random
walker at the origin, the probability of the walker reach-
ing the r interface (I interface) before reaching the I inter-
face (r interface) is given precisely by the first (second) of
Eqs. (4). In other words, for a one-dimensional lattice,
the DLA algorithm is mathematically identical to our hy-
pothesis A. That hypothesis A and DLA are equivalent
for a lattice of arbitrary dimensionality is well known.
The advantage of hypothesis A is that we have a method
for converting a flow equation such as Eq. (1) or its gen-
eralization (to include finite mobility, interfacial, or non-
Newtonian effects) to a simple stochastic algorithm. 6 The
difficulty in two and three dimensions is to derive the
analogue of Eq. (1) needed to relate the interfacial velocity
to the position of the interface.

For our one-dimensional model we can formally express
the probabilistic advance of the two interfaces as follows.
Let P„(l,r) be the probability that the two interfaces be at
position I and r at the nth time step. From Eqs. (4) the
recurrence equation for P„ is

P„(l,r) =[I/(I+r +1)]P„ i(l, r +1)
+[r/(I+r +1)]P„ i(l + l, r)

with the initial and boundary conditions Po(l, r)= 5& L 5, x,

P„(L,R)=0, n ~0, P„(l,r)=0 if I ~l or r yR .

It is useful to introduce the generating function

P(l, r,f)= g PP„(l,r)=(~ +" "(I+r)h(l, r)
n&0

and in terms of the g-independent function h (l, r) defined
by Eq. (6) the difference equation to be solved becomes

(I +r)h (I,r) =rh (I + l, r)+Ih (l, r + 1),
0(1(L and 0&r &R, (7)

subject to the boundary conditions: h (L,R) =(L +R)
and h (l, r) =0 for I ~ L or r ~R. The numerical solution
of Eq. (7) is straightforward.

The quantity of interest in this one-dimensional model
is the displacement inefficiency, which we define to be the
mean position of one interface when the other has reached
the origin. %e consider only the symmetric case where
L =R =M for which the displacement inefficiency is
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FICi. 1. Displacement inefficiency I(M) [Eq. (S)), obtained
by numerical solution of Eq. (7). It appears that I (M) ~ M
as M~00, so the mean length not swept is proportional to
M' . This may be compared with the easily derived result that
the length not swept is proportional to M'~ when the probabili-
ties of motion of either interface are assumed to be equal. The
inset shows the model system simulated in Table I.

The function I(M) is exhibited in Fig. 1. We may inter-
pret 1 I—(M) as the one-dimensional analogue of the
areal sweep efficiency in displacement studies. In one di-
mension I(M)~0 as M~ ao (although the mean length
of the region not swept out diverges}. In contrast, in two
or three dimensions the analogue of I(M) converges to 1

as the size of the region initially filled with the fluid to be
displaced grows.

While hypothesis A (and DLA, to which it is
equivalent} may be used as a basis for qualitatively correct
simulation of unstable displacements, it uses no informa-
tion about the porous material other than its bulk proper-
ties, and so cannot distinguish between microstructurally
different porous media. We contend that microstructure
is the essence of fingering, and that a correct understand-
ing of the role of microstructure in fingering might lead
to the possibility of defining model media for which DLA
gives a quantitatively correct description of fingering. We
suggest that a key microstructural parameter which con-
trols fingering is the fluid capacity We. define the fluid
capacity, a dimensionIess quantity, to be the void space
per specified length A, in one dimension, the void space per
specified area A, in two dimensions, and the void space
per specified volume }(,i in a three dimensions. If )(, is on
the Darcy scale, then in three dimensions fluid capacity
becomes identical to porosity ip, and we shall use the sym-
bol q& here to denote fluid capacity. In three dimensions,
fiuid capacity, like porosity, is constrained to be less than
unity; no such constraint exists in one or two dimensions.
If )(, is on the pore scale, the fluctuations in the fluid capa-
city correspond to the pore size distribution. In a DI,A
simulation, we identify A, as the lattice size.

To illustrate the role of the fiuid capacity, consider a
model porous medium, which consists of narroio tubes of
comparable lengths and diameters connecting chambers
with volumes very much larger than the volumes of the
narrow tubes. The narrow tubes give rise to the permea-
bility of the porous medium, while the chambers give rise
to the fluid capacity. To apply this model to a real porous
medium, one should not necessarily identify the narrow
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tubes as individual pore throats and the chambers as indi-
vidual pore bodies. The physical nature of the tubes and
chambers is determined by the length scale A, . We shall
take the volumes of the chambers to be randomly and in-
dependently distributed. For a two-fluid displacement in
our model porous medium, consider flow within two of
the narrow tubes which are adjacent to unfilled chambers,
and comparable distances from the pressure source. The
interface cannot advance into a new tube until the
chamber into which fluid is currently pouring is filled.
The flow rates within the tubes, and so the rates of filling
of the chambers, may be of comparable magnitude, but all
other things being equal, the smallest chamber will fill
soonest, so the motion of the interface is heavily governed
by the micrastructure.

The preceding model is a discrete version of a porous
medium in which the fluid capacity y is a random vari-
able. Can we find a stochastic law for interface growth
for such a medium which coincides exactly with the
microstructure-insensitive hypothesis A (or DLA)? We
propose, for the one-dimensional model, hypothesis 8:

Prob{1 interface movesj =Prob{
~

dl/dt ( & (
dr/dt

~ j .

taneous velocity of the appropriate interface. We consider
two prescriptions for the probability that the bond labeled
i is the bond chosen for growth:

Prob{bond i chosenj =u; g uj,

Prob{bond i chosenj =Prob{u;/p; =maxi {ui/+J j j (12)

The first of these equations is DLA or hypothesis A and
the second is hypothesis B. Let f denote the probability
density function for the independent random variables q&;.

The event "u;/q&; =maxj {uj./qi j" is exactly the same as
the event "yj &(ui/u;)p; for all j," so that Eq. (12) be-
comes

Prob{bond i chosen j

pl fl (V /V )P- +J +Jj

With this hypothesis only one interface moves at each
time step„even if dl/dt and dr/dt are of comparable
magnitude. However, if we consider what happens over a
few time steps, we find that both interfaces will advance.
We make the plausible assumption that the effective per-
meabilities experienced by the left and right interfaces are
nearly equal, so that all stochastic properties of the flow
are attributed to fluctuations in the jiuid capacity of the
porous medium. Equation (2) remains valid with p now
denoting the fluid capacity, and combining this with Eqs.
(1) and (9) we have

Prob{1 interface moves) =Prob{(lyt) '&(ry„) 'j .

(10)

One may establish an exact mathematical equivalence
between hypothesis A (which is the same as DLA) and the
consequence (10) of hypothesis 8, in the particular case in
which the fiuid capacity y has an exponential probability
density function. Indeed the equivalence is a very general
consequence of exponential fluctuations in microstructure,
and holds independent of the dimension of the system and
the physical interpretation placed upon the random quan-
tity y. We consider any connected set of sites on a d
dimensional lattice, with a single new site about to be add-
ed to the cluster in a random fashion. We label the possi-
ble bonds along which the growth may occur (i.e., all
bonds adjacent to the cluster) with a coordinate
i =1,2, . . . , N. %ith each of these bonds is associated a
deterministic positive number u; and a positive random
variable y;. The random variables y; are assumed in-
dependent. For the one-dimensional fluid displacement
problem, N =2, with i =1 indexing the l interface and
i =2 the r interface; u; denotes the volume flux calculated
on the basis of Darcy's law (1); and u;/y; is the instan-

For the special case in which the random variables y;
have the exponential density f(p) =a exp( —ay), where a
is an arbitrary constant, the integrals in Eq. (13) are easily
evaluated and the probabihty found to be u;/g. ui.
Hence the two growth laws (11) and (12) are exactly the
same, irrespective af the precise values of the determinis-
tic quantities u; and the value of N, provided that the ran-
dom variables y; are exponentially distributed. This re-
sult may be significant far the modeling of a variety of
processes in which there is both a deterministic field and a
random transport coefficient governing interface motion,
but for the particular problem of fiuid displacements in
porous media leads to the following conclusion: Hy-
pothesis A (or equiualently the DLA algorithm) will yield
displacement results that correspond to a porous medium
for which hypothesis 8 holds, prouided that there is an ex-
ponential distribution ofj7uid capacities.

We conclude by reporting the results of some simula-
tions which we have performed for the model system of
identical narrow tubes of neghgible volume connecting
chambers of randomly distributed volume shown in Fig.
1. These are classical continuum simulations, in which
both interfaces are allowed to move simultaneously. The
distribution of the chamber volumes is taken to be the
fiuid capacity distribution f(tp). An inviscid fluid dis-
places the viscous fluid from both sides of the origin at
constant driving pressure. In this model system, motion
of the inviscid fluid from one tube to a neighboring tube
is forbidden until all viscous fluid is displaced from the
intervening chamber. The inefficiency I is found as the
ratio of the number of empty tubes on one side of the ori-
gin when the fluid an the other side reaches the origin to
the number of empty tubes initially on one side of the ori-
gin. Results of simulations are given in Table I for a
selection of fluid capacity probability densities f(y); in
each case there are 100 narrow tubes on each side of the
origin. For the exponential fluid capacity distribution, we
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TABLE I. Displacement ineffjciency I(M) for a one-

dimensional displacement with I.=R =M =100. Each result is
an average over 200 simulations. The random fluid capacity y
is generated from a random number z, uniformly distributed on
(0,1).

Footnote Fluid capacity
Displacement

inefficiency (%)

a y = —lnz

b p=z
e +=z
d +=z
e y=(1—5+25z)2, 5=1
e y=(1—5+25z)2, 5=0.33
e y=(1—5+25z)2, 5=0.1

e y = (1—5+25z)2, 5=0
'On the basis of hypothesis 8, this corresponds to DLA.
~

q uniformly distributed.
Cylinders with radii uniformly distributed on (0,1).
Spheres with radii uniformly distributed on (0,1).
Cylinders with radii uniformly distributed on (1—5, 1+5), cf.

Chen and Wilkinson (Ref. 7).

32.4
24.5
30.6
34.1

30.6
19.8
11.2
1.0

have proved above that DLA, hypothesis A, and hy-
pothesis 8 are mathematically identical. Numerical solu-
tion of the difference equation (7) yields the exact dis-
placement inefficiency for these three equivalent models,

and so can be used to compare the models (and thereby
hypothesis 8) against the continuum simulation. For the
exponential fluid capacity distribution, we find on taking
M = 100 the exact value 33.0% for the displacement inef-
ficiency, which is satisfyingly close to the value of 32.4%
found by the simulation.

While DI A and hypothesis A are equivalent, they coin-
cide with hypothesis 8 only for the particular case of an
exponential distribution of fluid capacity. For any porous
medium in which fingering is governed by fluctuations in
the fluid capacity, a DLA simulation will correctly
describe the fingering if and only if there is a length scale
k for which the distribution of fluid capacity is well ap-
proximated by an exponential. It should be remembered
that the probability density function for fiuid capacity
need not be scale invariant, so that a density appropriate
at one length scale A, may not be appropriate at a different
length scale. We have obtained by simulation of the
model system shown in Fig. 1 the displacement efficiency
for various forms of the fluid capacity probability density
function f(p). The results in Table I are consistent with
the simulations of Chen and Wilkinson. The discussion
given in this paper gives the DLA simulation of viscous
flngering a physical basis in terms of microscopic fluctua-
tions in the porous medium. Provided that one can iden-
tify the physical origin of relevant fluctuations, the argu-
ments advanced here in the context of viscous fingering
can be used to quantify connections between DLA and
other physical phenomena.
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