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A general quantum theory of nonlinear mixing in multimode fields is formulated. The theory is
valid for arbitrary media and thus includes various diverse cases such as those corresponding to non-

linear mixing in multilevel systems, optical fibers, etc. Thus Zeeman coherence effects are automati-
cally included. It is applicable to both degenerate and nondegenerate mixing experiments. The
theory is in terms of two distinct sets of correlation functions of the polarization operators. One set
of correlations is related to the nonlinear susceptibilities. The other set has no counterpart in semi-

classical theory and is related to the quantum-mechanical fluctuations of the polarization operator.
The general structure of the evolution of the density matrix of the generated fields is discussed. The
quantum statistics of the generated fields can be studied in terms of the %'igner distribution function
vrhich is explicitly evaluated. Higher-order squeezing characteristics of the field are discussed.
Conditions under which the quantization of the semiclassical equations is adequate are examined.
The application of the quantum theory to nonhnear mixing in two-photon media is also presented.
The theory is also capable of accounting for the interparticle correlations.

I. INTRODUCTION

The classical theory of four-wave mixing and, more
generally nonlinear mixing is well understood. ' The
third-order nonlinear susceptibilities X' '(to2, toz, —tot),
X' '(toi, —tot, tot), and X' '(to2, —to2, to&) and linear suscep-
tibilities I'"(tot) and X"'(to2) determine the structure of
the generated fields. For resonant systems it may be
necessary to include saturation effects by calculating the
analogous intensity-dependent susceptibilities. The na-
ture of the medium enters through these susceptibilities
and the knowledge of susceptibilities is sufficient for
studying the characteristics of the generated waves. How-
ever, for studies of the statistics of the generated fields
one needs to have a q~!antum theory of nonlinear mixing.
The quantum theory is interesting not only in its own
right but is also needed in studies on the fundamental
characteristics of the radiation fields such as squeez-
ing. 7 'o Several groups have already made important
contributions to the quantum theory of four-wave mix-
ing. " ' Our objective is different here and we prewmt a
theory with the following specific questions in inind:
How does one formulate a quantum theory which is gen-
eral enough to include four-wave mixing in a variety of
resonant and nonresonant media? Is the quantization of
semiclassical equations of nonlinear mixing adequate?
Can the quantum theory be completely formulated in
terms of the nonlinear susceptibilities or does one need
other characteristics, hitherto unknown in the semiclassi-
cal theory'? One would expect that quantum fluctuations
associated ~ith the medium mil enter in any quotum
theory. This 18 because the semiclassical theory 18 a
mean-field theory and it uses a mean-field characteriza-
tion of the material medium in terms of the susceptibili-
ties.

The purpose of this paper is to present a general formu-
lation of the quantum theory of nonlinear mixing. Our
theory is in terms of the nonlinear susceptibilities and a
set of correlation functions of the polarization operators,
and it includes both the cases of degenerate and nondegen-
erate mixings. Such correlation functions can be calculat-
ed for specific systems. We present the general structure
of the density matrix of the generated field. This is in-
dependent of the nature of the medium in which nonlinear
mixing takes place. Thus questions on the photon statis-
tics of the generated field can be answered.

The organization of this paper is as follows. In Sec. II
we formulate the general theory of nonlinear mixing in
multimode fields. No approximation is made regarding
the strength of the pump field, whereas both the probe
and the generated fields are assumed to be weak. The
weak fields are treated perturbatively [cf. Eq. (2.14)]. In
Sec. III we obtain the dynamical equation describing non-
linear mixing for the case when each of the fields is a
single-mode field—these results translate easily to the case
of nonlinear mixing with traveling waves. In Sec. IV we
discuss the physical meaning of various coefficients in the
density-matrix equation. In Sec. V we present the com-
plete solution for the density matrix of the generated
fields. This is done via the Wigner distribution func-
tion, ' which can be used to discuss statistical aspects of
the generated fields. If initially the generated and probe
fields are in coherent states, then at time t the Wigner
function will be Csaussian in two complex field ampli-
tudes. Such Gaussian Wigner functions are shown to be
especially useful in the context of higher-order squeez-
ing' of the fields. In Sec. VI we show how the coeffi-
cients in the basic density-matrix equation can be obtained
for a class of important systems: (i) two-level transitions,
(ii) transitions in V systems, and (iii) optical fibers. In

34 4055 Oc1986 The American Physical Society



G. S. AGAR%AJ.

II. QUANTUM STATISTICAL THEORY
OF NOINI. I~AR MBQNG

In this section we develop a very general quantum
theory of nonlinear mixing. In our theory the role of the
different types of nonlinear susceptibihties can be clearly
seen. In addition, the qucuitum theory will involve certain
strictly quantum-mechanical correlation functions which
will not have any classical counterpart. We will treat the
pump field as a prescribed classical field and its depletion
due to the intcmaction with the medium will be ignored.
The probe field and the field generated in the process of
nonlinear mixing will be treated quantum mechanically.
The fields interact with a number of atoms distributed
over the cell volume. We assume that the time scales as-
sociated with the atomic dynamics are much smaller than
those associated with the field dynamics. Our approach
will consist of finding the dynamical equation for the den-
sity matrix of the probe and generated fields.

In dipole approximation, the interaction of the atoms
and the fields can be written as

H~= — x ~

&
f', t r x ~ x, t 3r . (2.1)

Here, P(r) is the polarization operator associated with the
medium. The pump field E»(r, t), which is treated semi-
classically, is taken to have the form

E»(r, t) =z»(r)e '"'+c.c. (2.2)

The polarization operator can be expressed, in terms of
the dipole operator d(i) associated with an atom located
at R"', as

Sec. VII we present the quantum thcxiry of nonlinear mix-
ing in two-photon media. ' In a second paper of this
series of papers we will present numerical results on the
quantum theory of nonlinear mixing in three-level sys-
tems. We will discuss the quantum theory of optical
phase conjugation in a third paper. Optical phase conju-
gation typically involves standing waves and thus a com-
plete quantum theory of phase conjugation has to use a
multimode description of the type presented in Sec. II of
this paper.

P (r, t)= g' 5(r—R")d'p
~

a) (p
~

e

The eigenstates of the atom are represented by
~
a) and

co ~ gives the energy separation between the levels
~

a)
and

~
p). The summation in (2.5) is over all values of a

and P such that co p& 0.
The density matrix p of the coupled atoin-field system

obeys the equation

P 1 l—&o—~+~0»+Hi pIj+L~p (2.6)

where Ho» (Ho~) is the unperturbed Hamiltonian of the
field (atoms). The Liouville operator L„represent s the
relaxation operator for the atoms. It should be borne in
mind that I.q is a function of atomic operators only. The
losses in the system due to spontaneous emission and col-
lisions are contained in Lq. Since we are dealing with
resonant situations, it is possible to make canonical
transformation so that the transformed density matrix
satisfies the equation

Bt
= ——V4+&~» p j+L~p (2.7)

where Hz» represents the interaction of the medium with
the quantized probe and generated fields

H&F ——— 3r P r e'"'8+ x, t +H.c. 2.8

Here, H„includes the contribution from the interaction
with the pump field. In the absence of the interaction
with the probe and generated fields, the atomic dynamics
is given by the equation for the atomic density matrix pz

l

a~
p~= — l—H~,pw j+—I.apx . (2.9)

Solution of Eq. (2.9) yields the known results' 's on the
behavior of the atomic system interacting with a pump
field. In what follows we assume that the solution of Eq.
(2.9) is known. Let pz' be the steady-state solution of
(2.9).

We will now derive the dynamical equation for the field
density matrix p» defined by

P(r) = y 5(r—R")d" (2.3) pF =Tr~p . (2.10)

The probe and generated fields are represented by the
operator E(r, t). If the probe field has the frequency ~„
then the generated field will have frequency 2' —co, . In
such a case the field E(r, t) will have frequency com-
ponents co„2u—~,. %e are interested in resonant situa-
tions and therefore we would derive results valid to all or-
ders in E». For resonant situations we can make the
rotating-wave approximation. %'e introduce positive and
negative frequency parts of various fields and the polari-
XRtion DperatoI'. Tlm rotat1Ilg-%Pave approximation 81mph-
fies (2.1) to

Hi ———f d r P (r).[E~+(r,t)+E+(r, t))+H. c. (2A)

Note that E»+ has a time dependence e ' ', whereas in the
interaction picture the operator P (r) has the time depen-
dence

We next write (2.7) as

p
8t

=~~p+ ~~»(t)p (2.12)

which can be further transformed toBp. . . W~t-=W~»(t)p', p'=e "p,

Wg»(t)=e "W„»(t)e
(2.13)

Using (2.11) and the standard projection-operator tech-

In what follows we drop the tildes from various quanti-
ties. To obtain the reduced equation for p» we use the
projection operator techniques. ' Let 9' be the projection
operator defined by

~ ~ ~ ~ ~t,'0)T
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niques we can obtain a closed equation for pF. We also
make the following approximations: (i) The probe and the
generated fields are so weak that it is sufficient to retain
terms up to second order only in W„r,and (ii) the time

scales of interest are much slower than the time scales as-
sociated with the atomic dynamics, so the Markovian ap-
proximation can be made. The resulting equation for pr
is then found to be

t
=[Tr„W„F(t)p„]pF+hm f d~ITr„&„F(t)W&z(t r)—pz

Bt

[Tr—~~F(t)p~" ][Tr~~~r(t &)p~—"1IpF(t» (2.14)

which, on using the properties of trace and the steady-state nature of pq' (i.e., Wzp'„'=0), reduces to

pF (0)

Bt
=Trq~gF(t}pg pF

+ lim d~[Trw YaF(-t)e " W„F(t ~)p~ p—F(t) Tr„—&„F(t)p„''Tr„&„r(t r}p„'p—F(t)] . (2.15)

All the trace operations in (2.15) can be carried out if we introduce the correlation functions for the atoinic polarization
operators defined by

C tt(~)= lim (G (t+~)Gtt(t)),
f~oo

(2.16)

where G is one of the atomic polarization operators. The correlation function C~tt can be calculated in terms of e
and p~' by using

C p(~)=Trg(G e Gttpg') .

Using (2.8) and the properties of the trace, one can show that

Tra&ar(t)pw pF= f d r[(P (r)) e'"'E+(r, t)+(P+(r))e '"'E (r, t),pF(t)] .

(2.17)

(2.18}

It is important to note that expectation values like (P+ ) are nonzero as the atoms are driven by a coherent pump field of
frequency co. In fact, (P+(r) ) gives the atomic system's response at frequency co. Such a response depends on all orders
of the applied pump field. In view of the structure of Eqs. (2.15), (2.17), and (2.18), we also introduce the correlation
function

A.,(~)= »m [(G.(t+~)Gt(t)) —(G.(t+~))(G,(t))].
&~ oo

(2.19)

Detailed calculations using Eqs. (2.8) and (2.15)—(2.19) then lead to the following density-matrix equation for the field
1'

f der(P (r)) e' '[E+(r, t),pF]+H. c.

l
'

oo

d ri d ri dr[e '"'E, (ri, t),EJ (r&, t v)e ' " 'pFA—tJ++(ri, r2, r)

pFEJ (ri, t ——1.)e '"" 'AJ+, +(ri, ri, 7)+EJ+(rz, t—.7)pre'""—

X A;~+ (ri, r2, ~) pFE~+(ri, t ——r)AJ; +(r2, r&, ~)e'"" ']
+(a)~—co and +~—) (2.20}

where the last term in the square brackets represents the
same previous terms with the appropriate variable and su-
perscript changes made. Here the summation over the re-
peated indices i and j is implied. The atomic correlation
functions appearing in Eq. (2.20) are defined by (2.19), i.e.,
by

A,J +(ri, r2, ~)= lim [(P; (ri,~+t)PJ+(r2, t) )-
&-+ co

—(P-(,t+ ))(PJ'(,t}&]. (2.21)

The density-matrix equation (2.20} describes the propa-
gation of a multimode field through a nonlinear medium.



G. S. AGAR%AL 34

The nonlinear medium itself is interacting with a strong

pump field. In order to extract the equation relevant for
four-wave mixing, we make use of the coherent nature of
the radiation generated in four-wave mixing. We thus
have to make use of the phase-matching conditions. If
the pump and probe fields have, respectively, wave vectors
k, and k„then the coherent signal is generated in the
direction 2k —k, =k, . Thus to obtain the dynamical
equation describing the generation of coherent radiation
we carry out spatial averaging, i.e., we drop all the rapidly
varying spatial terms from Eq. (2.20}. The final equation
obtained by spatial averaging can be written down only in
special cases, since one needs to know the r dependence of
various atomic correlation functions, which in turn de
pends on the interparticle distribution function and on the
traveling or standing-wave nature of the pump field.

III. FOR%'ARD FOUR-%'AVE MIXING

We now use the general theory of Sec. II to obtain the
dynamical equations for the fields produced in the config-
uration involving forward four-wave mixing. The pump
wave is a traveling wave with wave vector k, i.e.,
sz(r)=sze'"'. We further assume that the different
atoms are uncorrelated, i.e.,

pump wave is a traveling wave, the density-matrix equa-
tions for the atomic system show that

A,J +(r,r, r) =A~1-+(0,0,~), (3.2)

Let k, be the wave vector of the probe and let k, be the
wave vector of the generated radiation. We write the elec-
tric field operator as

(3.4)

the basic equation (2.20) reduces to

(3.3)

where E, and 8, are, respectively, the unit polarization
vectors associated with the probe and generated fields; a
and b are the photon annihilation operators for the two
modes, P- i &2—nAu/V and V is the quantization
volume. On substituting (3.3) and using the structure
(3.1), (3.2) of the atomic correlation functions, and the
phase matching condition

(3.1)

otherwise the density-matrix equation {2.20} wiH involve
the interparticle correlation g(r, r'}. Moreover, since the

I

~ps ~pF

Bi ar

where

PF

Ni.A
(3.5}

(3.6)

P, l'[u', upF] f"dec '" ""c,', C„AJ+ (r)
NLA

—~P, ~

i[be, bpp] f dre ' c,';c,)A(j~ (r)

+
~ p, ~

[a~,p~a] f die ' s,';c,JAJ;+( —r)

+
~ p, ~

i[bi,pFb) f due ' c,';C,JAJ.; ( r)+H c— . (3.7)

where N is the total number of atoms in the sample
volume. In deriving (3.6) and {3.7) we have used the prop-
erty

A ++( ~) = [AJ, (r)]'— (3.8)

of the atomic correlation functions. In the density-matrix

equation {3.5} the terms (Bp~/Bt)FwM describe the four-
wave-mixing process involving two photons of the pump
and one photon from each of the modes a and b. The
terms (BPF/8f )Ni.A dcscrlbc thc changes ill fhc charac-
teristics of the field modes a and b due to the linear ab-
sorption and emission processes in the presence of a pump
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C~p(~) = lim & [GN(t +r),Gp(t)] ) = —Cp ( —r),
f-+ co

(3.9)

wave. Note that these two processes in the semiclassical
theory will be described by the four-wave-tnixing suscepti-
bilities X' '(co,co, —co, ), X' '(co, co, —co, ), and the saturated
absorption susceptibilities. The latter

susceptibilities
in

the simplest situations are related to X' (co, —co,co, ),
X' '(co, —co,co, ). We wiB see that the quantum theory not
only involves such nonlinear susceptibilities but also a set
of other characteristics of the atomic system that have no
classical counterpart. It should be borne in mind that the
steady-state traveling-wave situation is obtained by replac-
ing thy z/c.

In order to understand the various terms in the basic
equation (3.5), we transform it in such a way that the
symmetrized correlation functions and the correlation
functions involving the commutator of the atomic opera-
tors at different times appear. Therefore, instead of Eq.
(2.19), we introduce the correlation functions

= lim & IG (t+r) —&6 (t+1)),G p(t) —&Gp(t))) )

=Qp, ( —r)
so that

A p(r)=[C p(~)+Q p(~)]/2,

(3.10)

(3.11)

Ap, ( r)—=[Q p(~) C—~p(r)]/2 .

Let us also introduce the notation

(3.12)

(3.14)

C++(r) =
& P,+(r),~,'(0)]) (3.13)

and let Alp(z) be the Laplace transform of A p(i)

Amp(z)= f d~e "A~p(r) .

Straightforward but long calculations then show that the
Eq. (3.5) can be written as

Bt
(Q,+, +( i v,—)[a,[b,pF ]]+C,+, +( i v, )[a—, I b+,pF I ]+Q,+, +( —i v, )[b,[a,pF]]

+C++( —iv, }[bt,Iat,PF J])e

~~ ~'~ -+- ~ -+-
2

(Q ('v }fa [a PF]]+C ' (iv. )[a Ia PF I ])

(Q (' }[b l»P ]]+C'. ( .}[b' Ib P Il}+H
2

(3.15)

where we have also introduced the detunings of the probe
and the generated fields by

vc =co a)c~ &s =a) a)s ~ (3.16)

We show in the next section that the correlation func-
tions C~++, etc., have a simple interpretation in terms of
the nonlinear susceptibilities. The functions Q appear
only in the quantum theory and are connected with the
fiuctuation properties of the atomic system. The func-
tions Q do not appear in the mean values of the field am-
plitudes. For example, one can show that the mean-value
equation for b is

the semiclassical equations of nonlinear mixing. We also
ignore the terms involving the correlation functions C„
and C, i.e., we assume that the absorption in the medi-
um can be neglected. On setting 2co=co, +co„wethen
obtain

Bt I [a tb,p][C,+, +( i v, ) +C ++—
( i v, )]—

+(a PFb bppa )—
X [C~+( iv, ) C,+,—+( i—v, )]I—

)
Ps Pc ~ ~+ .

&
t )

— (2oci7 —cog —coc )

CS C

+H.c. , (3.18)

C, (,.„)&b) (3.17)

which in the ease of degenerate four-wave mixing further
reduces to

If we compare (3.17} with the corresponding classical
equation we see immediately that C,+, +( iv, ) is rel—ated
to the four-wave-mixing susceptibility. The function

C„(iv,) is related to the net absorption and dispersion
in the maiium at the frequency of the generated wave.

We conclude this section by examining the conse-
quences of dropping the Q terms from the tnaster equa-
tion (3.15). This would enable us to compare the results
of our theory with those obtained by the quantization of

Pr i
[aa tb t,pF ]+H.c-. ,Bt

O~
iC++(0)

(3.19)

(3.20)

Our analysis thus shows that an effective Hamiltonian

H,g ——&ca b +~ ab (3.21)

can be used to describe degenerate four-wave mixing in a
nonabsorbing medium, provided we drop all the terms
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connected with the fluctuations in the medium. Our
analysis further shows that an effective Hamiltonian
description can be used for the case of nondegenerate
four-wave mixing, provided the dispersion of the suscepti-
bilities X' '(to, co, —to') is not important, i.e.,
C~++ ( i v—, ) =C++( i v—, ). Since, in general, both
dispersion and absorption effects are important, an effec-
tive Hamiltonian description for four-wave mixing is
inadequate.

IV. PHYSICAL INTERPRETATION OF THE
ATOMIC CORRELATION FUNCTIONS C AND Q

In order to understand the meaning of the qiumtities C
and Q which appear in the quantum theory, we examine
the dynamical equation {2.7) with the assumption that the
field E+(r, t) is a given field with wave vector q and fre-
quency Q, i.e.,

E+(r,t)=ae'q' '"'+H. c. (4.1)

(4.2)

where p is the atomic density matrix and

HqF ———f d'r P (r)e'"' '"'+'q'. s+H. c. (4.3)

We next investigate the linear response of the system to
the applied field s. Note that before the application of the
field s, the atomic system is in a state pz

' such that

L„p'„'—[H—„,p'„']=0 . (4.4)

Using (4.2) one can show that the linear response of the
dynamical variable 6 at time t can be written as

Here e. is a given prescribed quantity. Thus instead of
(2.7) we now have

Tr[p(t)G] et~—~ n~& — f d&r f dr([G(r) P—(r).&])elq r i{a& n. )r— —

6 & P+ r . ~ —iq I+i{co—Q)z (4.5)

The induced poI@rization is given by

P(r, t) =e '"'Tr[pP+(r)]+H. c. ,

which on using the result (4.5) becomes

P(r, t)=e 'n' — f dr f d ri([P+(r, r),P (ri) a])e 'e

(4.6)

+e '~ "" — v r~ P+ r,~,P+ r& .s' e 't.'" "'+H.c. (4.7)

P; (r, t) =e '"'+'s' —C,+J (i (ei Q) )n s—j.

+e+ —i {2e-Q)t+i{2k—q} r

)(C +"+( i (to Q) )e—'+H—.c. , (4.8)

where n is the density of atoms. Note that the first term
in (4.8) gives the response of the system at the applied fre-
quency Q. Thus if g,z(Q) is the susceptibility of the sys-
tem, then we can identify

If the different atoms are uncorrelated than (4.7) can be
simplified by using Eq. (3.2) and the definition (3.9) with
the result

(4.10)X g e (co)sp (~) .
n

The second term in (4.8) gives the induced polarization
at the frequency 2' —Q. Such an induced polarization
has the form of a plane wave in the direction 2k —q.
Thus t»s term corresponds to four-wave mixing. If the
correlation function C;1+( i(co Q)) —is com—puted to
second order in the pump field er, then we can obviously
identify

nonlinear optical susceptibilities, the intensity-dependent
X has the expansion

X;,(Q) =X,',"(Q)

{2n +1)+ g +i~ p . ~ p J(Q~~& —~~ ~ ~

@=1

X;;(Q)=—C;J (i(~—Q)) . (4.9) (ez)~(er )pX,' Iii(co, co, —Q) = —C;~ +( i (co Q))n . — —

It should be borne in mind that X;J(Q) depends on all the
powers of the pump field of frequency to. If the pump
field is zero, then X;J{Q) reduces to the usual linear sus-
ceptibility of the system. In the language of conventional

(4.11)
In the more general case the four-wave-nuxing susceptibil-
ity depends on all the powers of the pump field and hence
can be written in a form analogous to (4.10):
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00—nC~+)+( —i(co —0))= g g'; ti+p' . . . tt J(co,co, —0;co, —to, . . .to, —t0)e (co)ep(a)) go (co)ep (co) . (4.12)

We have thus established the relation of all the atomic
correlation functions involving the commutator of the
atomic operators to the intensity-dependent susceptibili-
ties of the atomic system.

The quantities Q are inore difficult to interpret. How-
ever, it is well known that the inelastic scattering from a
quantum-mechanical system driven by an external field is
determined by the correlation functions of the form
(P' '(r, r)P+ (r,O) ) —(P (r, ~) ) (P+ (r,O) ). Atomic

correlations of the form (P' '(r, r)P (r,O)) determine
the anomalous correlation functions of the field radiated
by an atomic system. Thus the quantum-mechanical
character of the field radiated by a system driven by a
field of frequency t0 is determined in terms of the atomic
correlation functions Q. This can also be appreciated by
looking at the short-time solution of (3.15) for an initial
vacuum state of the field

Bpt;

Bt 2
[Q ++( —iv, )+Q,+, +( iv, )+—C,+, +( iv,—)+C,+, +( iv,—)] I

1, l)(0,0
I

IP, IN +-
+ [Q+ (iv, ) —C (ivs)](

I
1,0)(1,0I —IO, O)(O, OI )

2

+ [Q,+, (iv, ) C,+—, (iv, )]('I 0, 1)(0,1
I

—
I
0,0)(0,0

I
)+H.c.

2 (4.13)

Thus for short times, the probability that a photon of the
mode a grows from vacuum is related to the real part of
Q ~ (iv, ) C+ (i—v, ) The.off-diagonal elements of the
field depend on the correlations like Q++( —iv, ). Equa-
tion (4.13) leads to nonvanishing of the expectation values
like (ab ). Such nonvanishing expectation values in turn
lead to the simultaneous production of photons in modes
Q and 6.

V. SOLUTION OF THE MASTER EQUATION (3.15)

In this section we present the general structure of the
solution of (3.15}. It proves convenient to work with the
Wigner distribution function P(z„zb} associated with the
density matrix p~. Formally the Wigner distribution
function' is defined by

P(z„z&}= Tr pz f f d ad Pexp{ —[a(z,' —a ) —a'(z, —a)+P(zi', b) P'—(zs ——b)]j (5.1)

where f d a stands for the integration over the whole complex a plane. The basic equation (3.15) can be transformed
into an equation for P by using the following rules of mappingi' associated with Weyl ordering:

[a'p] —,[a p]

[ a,pj ~2z.y, [a',p j 2z.'y,

[a'[b'p]]
& &

[a' [a pj]

The equation for P is then found to be

[Q ++( i v )+Q—++( —iv )]

(5.2)

IP, I'& ay

Zg Zb

C ~+ (ivy) (2z,f)+ C,+, (iv, ) (2zbg)+cc.a Ii3. I'~-
(5.3)
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The equation for the Wigner distribution function has the
form of a linearized Fokker-Planck equation in four
variables. The diffusion terms in this Fokker-Planck
equation arise from the nonvanishing of the symmetrized
atomic correlation functions Q. The drift terms are relat-
ed to the nonlinear susceptibilities. It should be borne in

mind that C~+( iv—,)&C,+, +( i—v, ) for the case of non-
degenerate four-wave mixing. Equation. {5.3) clearly
shows that the quantization of the semiclassical equations
is not adequate, for if one had used the semiclassical equa-
tions and quantized them, then all the second derivative
terms in (5.3) would have been missed. It should be
remembered that the Wigner function enables one to cal-
culate the symmetrized expectation values; for example,

Z, =—p, p, C,+, +( iv—, )Zb—

p,'p,'N
Zb C ~g ( i v—

~ )Zg

C+ (iv, )Z, ,

(5.6)
fP, I'X

C,+, (i v, )Zb,

subject to the initial values Z,',Zb. If initially each mode
is in a coherent state

I z, )
I zb), then

$0(Z„Zb)= exp( —2
I Z, —z, I

—2
I
Zb —zb I ) .

5' '(z, —z,')5' '(zb —zb). The conditional distribution as-
sociatixl with a linearized Fokker-Planck equation is well
known. It is Gaussian in four real variables. It is cen-
tered at the solution of the equations

2Z 2Z Z 2
Z Z 5 4~ ~

2

If &}&)0(z„zb)is the Wigner function at time r =0, then the
general solution of (5.3) can be written as

&tp(z„zb,t)= f d z,' f d zbpo(z,',zb }K{z„zb,t;z,',zb),

(5.5)

where K is the conditional distribution function associat-
ated with the Fokker-Planck equation (5.3). It is the solu-
tion of (5.3) subject to the initial condition

I

(5.7)

Using (5.7) and the Gaussian nature of the conditional
distribution, it follows that p(Z„Zb,t) is also Gaussian.
Since any Gaussian distribution is completely character-
ized by the mean values of the variables Z and the fluc-
tuations in them, it is sufficient to solve mean value equa-
tions like (5.6} and the equations for quantities like

&Z, Zb). Let |{& (p ) be the column (row) matrix with
components Z, and Zb (Z, and Zb). Then from (5.3) it
follows that

I Ps I Cm (ivs}
) =~

PrP, (C,g+)'( —iv, ) IP. I'[C'. (iv. )]'
(5.8)

I p, I
[Q+ (iv, )+c c]..

ps p. I Q ~+—{ ivy }+[Qes—( —ivs)] I'
Pr'P,'[Q,+, +(—i v, )+—Q,+, +( i v, )]—

I p, I [Q,+, (iv, )+c.c.) (5.9)

These are to be solved subject to the initial conditions ob-
tained from equations like

aat+a~a
& 6 & = & z. & = & ~ &, & 0A~i &

= &z.z." & =
( ),

sidering specific examples of the media which determine
the form of the correlation functions Q and C. Numeri-
cal results on the photon statistics will be presented in a
future paper.

If we define 5$ as the fluctuation of g from its mean
value

Iz. I'+ z

Zb Zb

Zg Zb

. (5.10)
Zb +q then it follows from (5.10) and (5.11}that

(5.13)

Note that the solution of (5.9}can also be written as

& yqf) +At& yyt ) (e Af)t+2 f d ArD( Ar)

&ab)&a'a &+-,'

&a'b'& &b'b}+ ~

(5.12)

Thus the Gaussian property of p and the matrix e"' and
(5.11}completely characterize the time development of the
density matrix. Explicit results can be obtained by con-

&5y5yt) & eAt(eAt) 1+2 d 'ArD(eAr)f
0

Equation (5.14) shows that the field fluctuations at time t
are determined by (i) the growth of the initial quantum
fluctuations of the field, and (ii) the quantum-mechanical
fluctuations associated with the medium (D terms).

Finally, note that in the context of squeezing one needs
to know the fluctuations in the components like (a +at).
These can be directly obtained from the Wigner function.
For example let A be the operator
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A =pa+vb, Af =@*a +v'b

[A,At]=1, fp/'+ /v[ =1. (5.15)

The moments of A can be written in terms of the Wigner
function as

((A+At) ) = f f d2Z d2zqp(Z Zb'1

X(pZ, +vZb+c. c. )" (5.16)

&(A+At —&A+At&)"&= f f d Z, d Zsg(ZN, Zs)(pZ, +vZs —p&Z, &
—v&Zi, &+c c .)".. (5.17)

Using our earher result that ~)} at time r is Gaussian if ini-

tially the field modes were in coherent states, we can
reduce (5.17) by using the moment theorem for Gaussian
distributions. %e then obtain

&(~+~'—&~+~'& }'"&

'
&(A+A —&A+A &)'&" (5.18)

2"n f

The result (5.18} can be used in the considerations of
higher-order squeezing. If a field is in a coherent state,
then the 2nth-order moment also obeys the property (5.18)

I

teristics of the pump field. These correlation functions
can be explicitly evaluated in special cases and we now
consider several important ones.

A. Two-level optical transitions

Let us consider the quantum theory of four-wave mix-
ing in a medium of two-level atoms with frequency
separation coo. This is the case most extensively stud-
ied2'" 'i both theoretically and experimentally. The po-
larization operator, for an atom located at the position R,
can be written as

&(a+a' —&a +a'&)'"&,.„

"' &(A+At —&A+At&)'&"„.
2"n f

Hence, if

&(w+~' &w+—w'&)'&

(5.19)

P(r) =dS+5(r —R)+H.c. , (6.1)

where S+, its adjoint S, and S'= —,[S+,S ] satisfy the
commutation relations for spin- —,

'
systems. We do the

calculations in a frame rotating with the frequency co of
the pump field. The dynamical equation (2.9) for the
atomic system can be written in the matrix form as

«(&+~+—
& ~+ t&)'&, (5.20)

&(A+At —&A+At&}'"& (&(A+At —&A+At& }'"&„„.

P gy+I y &S+ &eik R input .
y

— y»

y, =&S &, I, =I,=O, I, =&r2T, ,
(6.2)

(5.21) +idl
2lg

&(&+a'—&a+a'&)'&=2 ~i ~'&5g, 5g', &

+2~ ~'&5@,5y,'&

+2@v&5$i5ifi2 &

+2p'v'&5ifi25ifii & . (5.22}

VI. SPECIFIC EXAMPI.ES

It follows from the above that if the variable (A +A t} is
squeezed to second order, then it remains squeezed to all
even orders. We have thus proved a general result in the
quantum theory of four-wave mixing. The second-order
squeezing can be studied using the result (5.14) and the
easily proved relation

lg

1
ib—2ig. —

T2

ds
b, =coo—c0, g = . (6.3)

(6.4)

Here T~ and T2 are the longitudinal and transverse relax-
ation times and g gives the equilibrium value of the atom-
ic inversion in the absence of the pump. By using the
quantum regression theorem all atomic correlation func-
tions can be computed in terms of the solution of (6.2).
We give results for various correlation functions in terms
of the steady-state solution

The general theory given in Secs. II and HI is valid for
a wide class of systems in which nonlinear mixing can be
studied. Different systems will lead to different coeffi-
cients in the dynamical equation (3.15) as the correlation
functions C and Q will depend on the nature of the medi-
um, the nature of the optical transitions, and the charac-

and the elements of the matrix U defined by

U(z) =(z —A)

Our calculations show that

(6.5)
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(6.6)

(6.7)

(6.8)

(6.9)

Q,+, +(z)=(F, d) (a, d) g U2I(z)(1 —2/i/2, —2p2p&, —2/2/3)i,

C++(z)=(e, d)'(a, d)'g Uzl(z)(2/i, O, —P, )1,
I

Q+ (z)=
I a. .dI'g U~i(z)( —244'i 1 —2&i&» —2&i&i)i

l

C„(z)=
~
a, .d

~

' g U2I(z)(0, —2Qg, g& )I ~

Thus all the coefficients needed for the quantum theory of four-wave mixing in a two-level medium can be explicitly ob-

tained.
For many practical purposes it is sufficient to do a third-order calculation in the applied (pump and probe) fields.

Hence, we give explicit results for the atomic correlation functions to second order in pump flelds:

Q ++(z) 2(a, d)'(e, d)'g' 1

C++(z) (x+i~+1/T2) (1/T, +ih)' .0 (z+ I/T&)(z+1/T& —i&) .&.

1

(x+1/Ti )(1/T2+i5)
(6.10)

Q„+ (z)

(&) (z + 1/T2+ i b, )
(x+1/T2+ih)

1' 1

'9.

2

+ (1/Ti —ih) (6.11)

These expressions simplify considerably for degenerate
four-wave mixing in a medium which only has radiative
relaxation (ri = —1, I /Ti ——2/T2)

Q++(0) 2g2(a, d)'(a, d)'
C++(0) [(1/Ti) +& ](1/T2+ib)

2
x T2(i 6+1/Ti)

—1 E(f)=( 2 aRER+ 2 aLEL)e +C.C. (6.14)

I

correlation functions Q-++-, etc. In the following we treat
the important case of the V system. The A system is
very similar. The ladder system is discussed in Sec. VII in
connection with t*o-photon media.

Let us consider the transitions
~ j=0, rn =0)~

~ j= l, m =+1) in a three-level system due to the in-
teraction with a linearly polarized pump field. The linear-
ly polarized pump field can be decomposed into right and
left circularly polarized components

Q„(0)
Css

1—
(1/Tz+i b, )

4lg I'
(1/T, )'+5'

B. Three-leve1 optical transition V system

There exists considerable work on four-wave mixing in
a medium in which optical transitions can be modeled as
three-level transitions. ' ' The semiclassical theory is in
terms of the nonhnear susceptibilities, whereas the quan-
tum theory requires the additional knowledged of the

(6.13)

Thus for large detunings b, T2 &~1, the fluctuation Q,+,
+

can be ignored. Moreover, real Q,+, (0)-0(1/bT2)
and hence can also be ignored. In such a case the dif-
fusion [Eq. (5.9)] is negligible and the field fluctuations
are given by the first term in the solution (5.14). d=diiex

I
1&&3 I+d23ec I

2&&3
I
+H c. (6.15)

where the states are labeled as
~
1), ~2), and

~

3) i.e.,
~1)-=~ j=l,m =1), ~2)= ) j=l,m =-1), ~3)
=—

~ j =O, m =0). Let Ei and E2 be the energies of the
states

~
1) and

~
2) relative to the state

~

3). The
density-matrix equation for the three-level system in-
teracting with the pump field (6.14) can be written in the
matrix from as

We further assume that the signal wave is a right circular-

ly polarized wave so that a, =aa. In such a case the gen-
erated wave is left circularly polarized, i.e., a, =aL, . We
have taken the strengths of the left and right circularly
polarized components to be different so that the case of
light with arbitrary polarization can be handled. The di-

pole moment operator for the atomic system can be ex-

pI essed as
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itl=~P+I A=Pii 42=Pi2 6-P2i A=Pi~e' ' '"' 43=6' A=P2»7tl7=P23e' ' ""' PS=47

2ilg~ I

—» Igi I

0
l Igs I

—l Ig~ I

—{r„+2i5)
O

-i
I gi I

—(I 12
—2i5)

~ Ig~ I

0
—{Il3+i5+ih)

0

- i
I gs I

0
—{I~3

—i5—ih)
l IgL I

jj2

2ilgs I

—2i
I g~ I

—{I23
—i5+ih)
0

0

—{Iq3+i5 —ih)

0
0
0

8'L,

+~ gI.
0
ga

+l gg

Ei+E2 d23 Es di3.E2
5=(Ei E2)/2',—6=cop —a), P)p ——

2fi
s gg = —

s g'I. =— (6.16)

In these equations I;J is the relaxation rate of the off-
diagonal element p,&. These relaxation rates include con-
tributions from phase-changing collisions. The rate of ra-
diative decay of the state

I 1) ( I
2) ) is taken as 2yi (2y2).

Nate that 25 gives the Zeeman splitting between the levels
I) and I2) and cop gives the position of levels

I
I) and

2) in the absence of the magnetic field. The palariza-
tion operator for the V system is

P,'+'=P'+'sa d23 I
3——)(2 I,

p'+'=P+ aL, =di313&&1I . (6.18)

All the correlation functions relevant for the quantum
theory of four-wave mixing in a V system can be calculat-
ed using Eq. (6.16) and the quantum regression theorem.
We quote the results. Let f be the steady-state solution of
(6.16), i.e.,

P' '+=d
3 iasI3)(1I+d23ar', I3}(2I (6.17) (6.19)

and let U(z) be the matrix (6.5) with A now given by
(6.16). Then our calculations lead to the results

Q „++(z)
=d23d13 g U7l(z)[( —44~0~ —(('7~0~41 —(1 Pl 4e) 0 0 i}l2)l 294li|41

C ~+(z)
(6.20)

Q„+ (z)
23d23 g U7l( )[(0,0,$3, +$2,0,gs, ( 1 —pi pe)+pe—,O)i 29$igs]—

C (z)
(6.21)

Q ~+(z) =d 23d i3 g U4l(»[(0 +A.O 0 4 +07 o fe+ (1 —0i ge))i— W—Alt—l7l—
C ++(z)

(6.22}

Qcc (» =
I di3 I g U4i(»[(it3 4s o 1 —4i —4+Pi 0 0+6 0}i—2qfA'5l .

C„(z) (6.23)

Here the parameter q is to be set zero (one) for the corre-
lation functions C (Q). Moreover, in Eqs. (6.20)—(6.23)
the upper (lower) signs are to be taken in calculating the
functions Q (C}.

With the knowledge of the correlation functions
(6.20)—(6.23), the quantum theory of four-wave mixing in
V systems is complete. The correlation functions for the
quantum theory of four-wave mixing in the A system can
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be evaluated similarly. Numerical results in these two
cases will be discussed in a future paper.

C. Four-wave mixing in an optical fiber

Recently, there has been considerable interest in the
production of squeezed states of the radiation field using
four-wave mixing in an optical fiber. ' ' The study of
squeezing requires the quantum theory of four-wave mix-
ing in an optical fiber. We now show how the general
theory of Secs. II and III can be applied to four-wave
mixing in optical fibers. We need to have a quantum
theoretical description of the optical fiber. These can be
modeled in terms of a set of anharmonic oscillators. The
equation (2.9) for the optical fiber will have the form

P t f22=—j[5c c+X(c ) c —c f cf—',p]

p(t)= Iz(t))(z(t) I, (6.26)

where
I
z(t)) is a coherent state with amplitude z(t)

given by

z (r) z e iat «t+— f
( le iht —«t)—

(~+i6)
In steady state one has

K+lA )( K+14

(6.27)

(6.28)

of the nonlinearity. Such a solution can be obtained by
using coherent-state techniques and is well discussed in
the literature. ' ' If the oscillator at time i =0 is in a
cohel'ent state

I zo ), then the time-dependent solution of
(6.24), for the case X=O, is

—x(c cp —2cpc +pc c),

E=Np —co, f = 8aa

(6.24}
Various steady-state correlation functions of the oscillator
system can be obtained using (6.27) and the Markovian
property of the system. We list several of these which are
needed in the computations of the correlation functions C
and Q:

The operators c and c are the annihilation and creation
operators for the anhaimonic oscillator. The anharmoni-
city is represented by X. The nonlinear response of the
fiber arises from the nonvanishing of X. The coupling
with the pump field is represented by f. The terms in-

volving tr describe the linear losses in the fiber.
The steady-state response can be computed to various

orders in X; for example, the mean oscillator motion will
be

( ) if + 2f If I
X +0(X2)

(tr+l&) (tr2+itt. )(tr+i 5)
(6.25)

The second term in (6.25) yields the third-order suscepti-
bility of the anhartnonic oscillator driven by a pump of
frequency co. The correlation functions of c operators can
be calculated to various orders in X. For this purpose we
need the time-dependent solution of (6.24) in the absence

( c ('r)c (T)c(0)& =
(tt +6 ) tr+t~

~,

& c(0)c (r)c'(r) &

(6.29)

2 if + tf
(

i ter «r) (6 3—0)
tr+i 5 x+ ih

I4(c (0}c (r)c (r)) =
(~2++2)2

4 2 2

( ct(r)c2(r)ct(0) & (~2++2)2 (tr2+ Q2)

(6.31)

(6.32)

We now calculate the correlation functions for the
anhannonic oscillator. From (6.24) we can show that

d'p
+id+a ([c(r)—(c(r)),c(0)—(c(0))] )=—2iX([c (r)c (r) —(c (r)c (r)),c(0)—(c(0))] ) (6.33}

and hence to first order in X,

I ([c(r)—&c(r)),c(0)—&c(0)&] &=(z+ib+a)-'I &[c(0) &c(0)),c(0) (c(0))] )

—»XL ([c (r)c (r) —(c (r)c (1)),c(0) (c(0))]—) I, (6.34)

where I.f denotes the Laplace transform of f(r). The suffixes 0 and 1 indicate the orders of X. Using (6.24) we fjnd
that

&c'& —&.)'=iX(2&.)'&"&
—2&.)("&—1) . (6.35}

Using Eqs. (6.29)—(6.32) and (6.35), we obtain the correlation functions of the osciHator operators

L. &[c(r),c(0)])=2iX(z+ia+~} '(z ib+x}-—
2

+0(X')=C,+, +(z)/(d. e,")(d s,'),a+i' (6.36)
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L, ([c(~)—(c(r)),c(0)—{c(0))]+)= —2iX(z+ib, +~) '(-z i—5+x) ' Eg

x+ih
2

2

+2iX(z +i b +a')
a+6,:—Q ++(z)l(d. a,')(d.a,'),

Eg

K+f5
—1 —1 .+O(X')

(6.37)

C~ (z)= ~d a,
'

~

(z+ib, +v) '
( 2—iX}(z+ih+a) ' +1 +0(X ),

( 2+ Q2)
(6.38)

Q+ (z)=C~ (6.39)

Using the explicit results (6.36}—(6.39), we have a com-
plete description of the qu mtum theory of four-wave mix-
ing in optical fibers. From the foregoing examples it is
also clear how the quantum thcery of four-wave mixing
can be discussed for other types of media.

VII. QUANTUM THEORY OF NONLINEAR
MIXING IN TYCHO PHOTON MEDIA

As a final application of the general theory of Six:s. II
and III, we consider four-wave mixing in two-photon
media. Results of semiclassical calculations for such
media can be found in Ref. 16. Let us consider the opti-
cal transitions in a ladder system consisting of the states
labeled as

~
I ) (upper most state},

~
2) (intermediate

j

P+ =d3zA32+d2~A2~, A;J =
~

i ) (j ~

. (7.1)

The density-matrix equations can be cast into a matrix
form the standard way25 and we quote the result

state), and
~
3) (ground state). A pump field co interacts

with three levels such that 2'-coi3. We leave the intensi-
ty of the pump quite arbitrary. If the intermediate-state
detunings are large then one has the case of a two-photon
medium; otherwise, one in general has the case of stepwise
transitions. We leave the intermediate-state detunings
quite arbitrary so that by taking appropriate limits we will
recover the cases of two-photon media and stepwise tran-
sitions.

The polarization operator for the three-level system
under consideration can be written as

~0+~ 41 Pl i 42 Plze it s P13 f4 W2 6 P22 46 P23

dig 8 dzi'8
Ws=46I 4=Is =ig» g& = I gs

—2y1
—lg}

&gt

—lg2

lg2

—Eg.

—r)2 —ia)
—lg2

lg &

—lg2

—r)3—ih) —id 2

0

lg )

0

igi

r12+ & ~1
—lg)

lg2

lg)

—lg~

—272
—2 lg2

2Lg2

—Eg2

—I 23 —ih2
—r31+i5+i h2

—ig 1

lg2

—lg 1

—r„+is,

CO J2 co I 62 —&23 co . (7.2)

Here, I;i are the relaxation rates of the off-diagonal elements and these include contributions of collisions; 2y, and 2y2
are the radiative decay rates of the states

~
I ) and

~

2). The steady-state solution of (7.2) is

(7.3)

The atomic correlation functions relevant for the quantum theory can be calculated in terms of the steady-state solu-
tion (7.3) and the elements of the matrix U{z)={z—A) '. Our calculations lead to the following results for the correla-
tion functions C and Q.
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C++(z)

Q ++(&) g [d32 as U6I(»+dzi &s &21(»] I (+d21 Sc 6&+d32 &c'43 &0&dzl S'c(01+45) &

+d32 ac 4+dzl Sc t('2&dzl'&c 43&d32 Sett'4+dzl &c |(8&

xd32 ~c [t(5+( 41 P5)])l 2'V(d32 selt'6+dzl'~c 42)|('1 j & (7.4)

(z) y [d32's I 61(2)+dzl'a Uzl(z)]Q+ (»

X [(+d12 Ss44&dlz*as(45+41 )&+d23 asA+dlz'~s(('6&d23 Ss47&d23'SsQS

+dlz &st&d23 as(1 fl —Q5+$—5),0, —dlz. sstpz)1 2q (—d23 ssgs+dlz aslI(&4)tt'1] . (7.5)

In Eqs. (7A) and (7.5) upper (lower) signs are to be taken
for the correlation functions C's (Q's). The parameter q
is to be set zero (one) for obtaining correlation functions C
(Q).

We conclude this section by examining the results for
two-photon media, assuming that the intermediate-state
detunings hl and 52 are large. We further assume that
the saturation effects are unimportant and therefore we
calculate the correlation functions C and Q to second or-
der in the pump field. From Eq. (7.2) one can show that

&f Zi(o» 32 32( )+ 21 21( )]+}

—+d32 a p13 (7.7)

([~32(0)&P a ]+} +d21 s P13 ' (7.8)

From the operator algebra equal time correlation func-
tions can be obtained:

gigz
1 ~2[1 (~1+~2)+ I'13]

(P+ ') = —(d ')g /& +0(g') .
(7.6)

Using Eqs. (7.2)—(7.5), detailed calculations show that

L, ([A„(r},{P+ a*)]-)=—

21 1+ 2+ 13 Z+1 1

dzi'&~gl gz

(7.9)

(7.10)

From Eqs. (7.6), (7.9), and (7.10) we find the following results for the correlation functions C and Q:

Q++(.)= (dzl a,*)(d32 s, ) (dzl. s,')(d32 a,')'+
(Z + id, l ) (Z+ ihz)

g&g2 + nonresonant contributions,
i~2[1 13+1(~1+~2)

(7.11)

++( )
glg2

ihz[I, 3+i (5,+bz)]
(dzl. sc')(d32 Ks ) (dzl s,')(diz s,')

(z +

i'll�

) (z +i 1412)
+ nonresonant contributions, (7.12)

which can be used in the quantum theory of four-wave
mixing in two-photon media. For the degenerate case one
has z =0. It is interesting to observe that at exact two-
photon resonance, b, i+ i) 2

——0, the fluctuation term Q
is not important if the dipole matrix elements are nearly
equal.

In conclusion me have developed a general quantum
theory of nonlinear mixing in arbitrary media. Central to
the theory are the two time correlation functions involv-
ing the commutators and anticommutators of the polari-
zation operators. Such correlations can be calculated
from the knowledge of the microscopic dynamics of the

medium pumped by an external field. Use of the Wigner
distribution function enables us to obtain general results
on the quantum statistics of the generated fields. Other
detailed applications of the present theory will be treatcxi
in future papers.
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