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%e show that, in principle, an active gravity-wave detector based on a correlated-spontaneous-
emission laser has potential advantages over the more usual passive scheme.

I. INTRODUCTION

The current generation of laser interferometer gravity-
wave (g-wave) detectors' operate as passive phase-
measuring devices [see Fig. 1(a)]. In that figure a laser
source drives two arms of an interferometer and the phase
difference between the light propagating in these two
arms is a measure of the intensity of the gravitational ra-
diation. The shot-noise limit of such a passive system
yields a minimum detectable gravity wave given by

tlvity with modest optical paths.
However, as discussed below, the two-laser active inter.

ferometer device of Fig. 1(b) is limited not by shot noise,
but by the spontaneous emission noise associated with
each of the independent lasers of that figure. The phase
fluctuations associated with spontaneous emission lead to
a minimum detectable gravity wave of amplitude

h "„= QRv/Pt

(active device, spontaneous-emission limit), (3)

(passive device, shot-noise limit), (1)

where y is the cavity decay rate, v is the laser frequency,
fiv is the energy per photon, P is the laser power, and t
is the measuring time.

On the other hand, putting the lasing medium inside
the cavities as in Fig. 1(b) yields a much more favorable
sensitivity to gravitational radiation in the shot-noise lim-
it. Such a device is said to be active because of the pres-
ence of an active medium inside the cavity. The shot-
noise limited sensitivity of such a device is given by

~ ~

ikI ha= Oe

(a) Passive Detection

(active device, shot-noise limit), (2)

where co& is the gravity-wave frequency.
The shot-noise limit of the active system is interesting

in that it is (1) potentially more sensitive than the passive
device, since cos may be much smaller than y; (2) the en-
visioned device may be of laboratory (rather than kilome-
ter) dimensions. In this context it is worth noting that a
similar situation is encountered in ring laser gyroscope in-
terferometry. There when one makes a passive laser gyro
device based on measuring the phase difference betwtu:n
the counterpropagating waves (with the laser external to
the Sagnac interferometer) long path lengths are required.
This is accomplished by winding a fiber-optical wave
guide many times around the perimeter of the optical cir-
cuit. On the other hand, gyros based on measuring the
frequency difference (with the laser inside the optical cav-
ity) between the counterpropagating laser beams do not re-
quire the many findings approach and achieve high sensi-
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(1) Active Detection
FIG. 1. Ca) Passive system: an external laser drives a Michel-

son interferometer which is influenced by an incident g-wave
denoted by h„„, traveling in the positive x direction. (b) Active
system: an incident g wave drives two ind'ependent lasers,
which emit fields El and E2. These fields are heterodyned in
order to observe the temporal beat note.
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i.e., the same limit as that associated with the passive de-
vice, Eq. (1).

In recent research associated with correlated emission
lasers (CEI.), e.g., the quantum-beat laser, it has been
shown that uncertainty in the relative phase angle due to
spontaneous emission can be eliminated. This device
holds promise for a system in which the g-wave detector
could operate as an active interferometer but without
spontaneous anission noise. For such a system we find
the sensitivity

h;„=e Qfiv/Pt
V

(active detector, based on CEI.), (4)

where e is a function of toe/y. As discussed in Sec. IV, e
is around 10 2, assuming reasonable values for toe and y.

It is the purpose of this paper to inquire as to whether a
"correlated-spontaneous-exmssion" g-wave detector might
in principle improve the active system limit of Eq. (3). An
example of such a scheme is offered herein. It is em-
phasized that there are many subtleties involving such a
system, and the questions associated with measurement
strategy for such a device require care in their analysis. It
is hoped that this paper wiH provoke critical discussions,
in particular concerning the extent to which such devices
might be useful in future generation g-wave detectors. It
is clearly worthwhile to investigate examples which chal-
lenge the accepted quantum-noise "limits" and sharpen
our understanding of these limits.

k i
—vi(1+h )/c =0,

k2 —vz/c =0.2 2 2

(7a}

(7b)

v, —v2= , ck, —hocos(a)st kgx—o) .1 (9)

In the ease of the passive device of Fig. 1(a), the signal
due to a gravity wave translates into a phase shift ob-
tained from Eq. (8) by multiplying by the effective path
length L, which is essentially the number of bounces
times the length of the arm Li. In this case, the g-

wave —induced phase shift is given by &P'~'=2~Lho/~
In such an experiment the fundamental quantum limit is
given by "photon shot noise. " Denoting the average num-

ber of laser photons by n, the power at the detector by P
and assuming unit quantum efficiency for present pur-

poses, one has the phase uncertainty due to shot noise for
a measurement of duration t

Vfe may view the above dispersion relations as implying
a change in wave vector or frequency depending on
whether the light source is taken as external or internal to
the optical cavities under consideration. In the case of the
laser external to the Miehelson gravity wave detector [see
Fig. 1(a)], Eqs. (7a) and (7b) yield

1 &]
k i

—kq ————hoeos(~st —ksxo),
2 G

while for the case of internal laser(s) [see Fig. 1(b}] the
wave vector is viewed as constant and Eqs. (7a) and (7b)

imply a frequency difference

II. PASSIVE VERSUS ACTIVE GRAVITY-%'AVE
INTERFERON ETERS

For a gravity wave propagating in the x direction the
correction to the metric from fiat space time may be writ-
ten3 as

(10)

Equating b,P'~' to b,4&„one finds the minimum detectable
g-wave amplitude for such a passive system to be

0 0 0 0
0 0 0 0

hpv(x&t)= 0 0 1 0
0 0 0 —1

h(x, t), (5a)
where we'have introduced the cavity decay rate y =c/L.

Consider next the active system of Fig. 1(a). The tiny
frequency separation given by Eq. (9) implies a phase
difference accumulated during a time t of magnitude

h(x, t) =hocos(tost ksx) . — (5b)
h p[sln(cogt»& —ksxo) —sin(ksxo )] .

COg

(12)

82E,

Bp

8 E2

Bx

1+h(x, t) ~ &i

c clt
=0,

8Ei =0.
2 Qf2

(6b)

Equations (6a) and (6b) lead to the following simple
dispersion relations for the laser fields Ei and Ez.

In the above, ho represents the strength of the gravity
wave, co& its frequency, and kg its wave vector. From the
covariant Maxwell equations we obtain a modified wave
equation for an electromagnetic signal propagating in the
y and x directions of Fig. 1. Noting that the gravity-wave
frequency is much smaller than the optical frequency we
find

h'„= Qfiv/Pt (shot-noise limit) . (13)

This result differs from the passive result of Eq. (11) in
two ways. First the sensitivity is improved by the factor
(~s/y) ' —10 —10. Furthermore we note that the sen-
sitivity of the passive device goes as L ' and therefore
large systems are implied in order to reach maximum sen-
sitivity. No such dependence accrues for Eq. (13). This
suggests that the active system may involve only laborato-
ry (meter} dimensions.

Now if we take the phase uncertainty to again be given by
the shot-noise limit, equating (10) to (12) the minimum
detectable gravity wave due to this active configuration is
found to be
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However, in the analysis of an active device such as in-
dicated in Fig. 1(b), we really have two independent lasers
and there is therefore an additional source of frequency
UncertMntf duc to thc 1Micpcncicnt Spontancou8 cIDl88ion
fluctuations of these two lasers. This implies an uncer-
tainty in the frequency between the two lasers of magni-
tude b,v( spout)=yQfiv/Pt . Equating this frequency er-
ror to the g-wave —induced frequency difference given by
Eq. (9) we find the spontaneous emission hmit for the
minimum detectable gravity wave signal

Ii"„= Qkv/Pt~ (spontaneous-emission limit) . (14)

We see that this result is the same as that given above in
Eq. (11) and therefore the two systems have an identical
sensitivity and dependence on cavity length.

In recent studies stimulated by the above considera-
tions, we have investigated a method for quenching spon-
taneous emission noise in the relative phase angle between
two laser signals. 7 We found that the spontaneous emis-
sion linewidth and associated uncertainty of the difference
frequency between two laser modes could be eliminated by
preparing the laser medium in a coherent superposition of
two upper states (via, e.g., a microwave-fleld coupling
~a) and

~
b)) as in quantum-beat experiments, or by

coherent pumping, as in the Hanle effect) as in Fig. 2.
The heterodyne beat note of the radiation emitted from
these states can, under the appropriate conditions, be freed
from spontaneous-emission noise. We here apply these
considerations to the detection of gravitational radiation.
In the next section we develop the theory for such experi-
ments and apply it to a possible experimental scheme.

III. THEORY OF A
CORRELATED-SPONTANEOUS-EMISSION

g-VfAVE DETECTOR

Consider the g-wave detector of Fig. 2. There we de-
pict a quantum-beat and/or Hanle laser driving a doubly
resonant cavity having frequencies Qi and Qz. The fre-
quency Qi is independent of the g wave, while the other
cavity mode frequency Q, is dependent on the gravitation-
al radiation according to the relation

P(r)=(v, —v, )i+8, —8, (17b)

pi ——aiioi+aiilpzcosg —y pi,
io2 Qgpz+R2lP2cos P Y2P2 ~

/=a bsi—ng .

(18a)

(18b)

(18c)

In the above the linear gain and cross-correlation coeff-
icient are given by a;=rg;/y, and aiz ——aqi ——~igq/y, ',
where r is the rate of excitation to state

i a), g; is the
atom-field coupling constant, and y, is the atomic decay
rate which we take as the same for all atomic levels. The
cavity decay rates are denoted by y;, a is given by Eq.
(23), and the "locking" frequency b is giveri by

Quantum Beat Laser

Laser

la&

Ib)

E~

Doubly Resonant
Cavity

Microwa ve Induced
Coherence

(a}

Hanle Effect Laser

Laser

j
-':- -':'-g 0

~a)
g

Ib)
g

where Eq. (17a) is appropriate to the quantum-beat laser
(iA) is the microwave-induced phase difference between
atomic states

~

a ) and ( b ) and vi is the microwave fre-
quency) and Eq. (17b) applies to the Hanle-effect laser,
with P determined by the choice of pump-radiation polar-
ization. It follows directly from Ref. 7 that the ampli-
tudes p;, i =1,2 and the phase angle g obey the equations
of motion

1

Qi = [1 Tbocos(cog r—kgxo)1 . —
1

Doubly Resonant
Cavity

Polarizatiorf Induced
Coherence

Now the heterodyne cross term may be written in terms of
amplitude p; and phase 8;(t) parameters as

where the relative phase difference 8(t}=8i(t)—82(t) un-
dergoes random fluctuations due to spontaneous emission
and v;, i=1,2 is the actual lasing frequency of the ith
mode having amplitude p;. It is expression (16) which is
of interest experimentally since the frequencies appearing
therein are dependent on the g-~ave amplitude through
Eq. (15).

As in Ref. 7 we define the overall phase angle tp(r) as

t(i(r}=(vi vi vi)t+8i 8i—— —

(b)

FIG. 2. {a}Quantum-beat-laser gravity-wave detector. Grav-
itational radiation perturbs frequency Q~ of doubly resonant
cavity. Laser consisting of three level atoms coherently mixed
by externa1 microwave signal at frequency v3 drives cavities 01
and Q2. Dichroic mirror causes light to be deflected in vertical
direction for frequency vl but transmits light at frequency v2.
(b) Hanle-effect-laser gravity-wave detector, similar to
quantum-beat system of (a) in that coherently excited atoms
emit light of two polarizations which drives doubly resonant
cavity via polarization sensitive mirror. Frequency of vertical
arm is affected by gravitational radiation whereas horizontal
laser radiation (copropagating with a gravitational wave) is not
affected by gravitational radiation.
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P1 P2
ti12 ++21

P2 PI
(19}

—(t212+~21)e ' /P1P2]+c c (21)

(the numerical factor difference from the corresponding
equation in Ref. 7 arises from the fact that we are using
here amplitude, rather than intensity, gain coefficients).

The equations of motion (18a), (18b), and (18c) and the
phase diffusion coefficient D(P) as given by Eq. (21) pro-
vide a description of our coupled laser system. I.et us
consider the physically reiisonable case of gi ——g2 and

p1 ~P2, then all a's reduce to a single rate, a, and Eq. (21)
assumes the simple form

D(g) = (1—cos1(), (22)
2'

2 2where n =pi p2-—
The other essential ingredient in our analysis is the

equation of motion for P(t) provided by Eq. (18c). From
Eqs. (15) and (17) we so: that the frequency a appearing
in Eq. (18c) is given by

a =EL+ —,
'

vihpcos(tost —ksxp), (23}

where lL=Q1 —Q2 —vs for the quantum-best and Q1 —Q2
for the Hanle-effect lasers. Note that Q1 —Q2-vs for the
first and Q 1

—Q2-0 for the second.

Finally, in Ref. 7 it was shown that the ensemble average
of the heterodyne signal (16) can, in the appropriate limit,
be written as

—D[P}t+i(vl -v2}t
( a 1(t)a2(t) j =P1P2e

where

D(4)= 8 [a, /p', +a2/P2

Hp =8+ ]02C3+g QiQ 2CX3 (27}

where as is the (classical} microwave-field strength and g

Detector IVIi xer

Vi- V2- Vp

and since in the above b=2a [(compare Eq. (19)] this
reduces to the familiar result given by Eq. (11}, since
CX~g.

In order to improve the sensitivity, we introduce a
mode-mode couphng designed to "reduce" b. In other
words, we want a mode coupling that will result in the ad-
dition of a term c sing to the phase equation (18c). We do
this by injecting some light from one of the cavities into
the other. To this end it is convenient to replace the reso-
nator of Fig. 2 by two coupled ring cavities as in Figs. 4
and 5. The outside loops are necessary to be able to con-
trol separately the injection phases. Other schemes lead to
a coupled-cavity problem which does not produce the
c sing term in the phase equation [see Eq. (35c) below].
This point is discussed further in Appendix B.

Consider first the Hanle-laser system of Fig. 4. There
we couple the (running wave) fields by taking the light
which is transmitted through a mirror of one cavity,
changing the polarization, and injecting it into the other
cavity. This we do with an efficiency ~.

For the case of the quantum beat laser, we remove light
from one cavity and inject it into the other while using a
nonlinear element as a parametric frequency converter, see
Fig. 5. The parametric process is described by the in-
teraction Hamiltonian

IV. A MEASUREMENT STRATEGY

Now from Eq. (18c}we see that when a =0 the relative
phase angle locks to the constant value /=0. In this case
D(P), as given by Eq. (22), vanishes. We must now ad-
dress the problem of extracting g-wave information while
taking advantage of the "noise quenched" configuration
occurring when D(f)=0.

To this end consider the superheterodyne signal as per
Fig. 3. Note that when we are locked the beat frequency
contains no g-wave information but the relative phase an-
gle 5$ is given by (see Appendix A)

5Q =[5+—,vih pcos(tos t —ksxp )]/b,
which does depend on the g wave. Thus when we arrange
that 6=0, Eq. (24) yields

Optical
Heterodyne

No Gravity Wave

Gravity Wave

Superheterodyne
Mi xing

V(
5$= —, — h pcos(cost exp ), —

2 (25)

where we have noted that vih p/b ~& 1 and are considering
times t ~m

Equating (25} to the shot-noise error (10) we find

b
(26)

V)

FIG. 3. Schematic illustration of experimental setup for
quantum-beat laser. Radiation at vl and v2 from quantum-beat
laser influenced by g wave is heterodyne detected by photomul-
tiplier. The current at the beat-note frequency vl —v2 is su-
perheterodyned with the external microwave signal at frequency
v3. The signal exiting the mixer is at frequency vl —v2 —v3.
%'hen gravity wave is present a small phase angle develops, as
indicated in the figure.
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to detector again we denote the conversion efficiency by a.
In either the Hanle or quantum-beat case, we note that

in coupling the field out of, say, cavity 2 we have

rrI fAPI ~ +~ ew~q 5

E2(out) =t3E2(in), (29a)

rrI g

detector

I

I

I0
I

I

I

I

I

where t3 is the transmission of mirror m3, and passing
through the polarization or frequency converter yields

D, Ei(out) =at3E2(in)e (29b)

where &&i is the field with the appropriate polarization
or frequency generated with an efficiency a. The phase
shift along the outside loop is written as P+5i, with P as
in Eqs. (17). Finally we note that this couples into cavity
1 through mirror 2 to yield

-i82-ip-i5&
EEi(in) =r4iiap2(in)e (30)

FIG. 4, Running-wave Hanle-laser gravity-eave detector
consisting of two coupled ring cavities. Lasing mcdiuKQ ls coIIl-
mon to both cavities. Mirrors m ~ and m2 totally reflect polari-
zation of cavity 1 and totally transmit polarization of cavity 2.
Gravitational radiation incident from left influences frequency
of cavity 1 whereas cavity 2 remains essentiaBy unaffected.
RunIllng %'aves propagate in the indicated directions. Light of
polarization 1 leaves cavity 1 at m5, its polarization is changed,
and it is then partly coupled into cavity 2 via the mirror m6.
Similarly, hght is extracted from cavity 2 at the mirror m3 po
larization rotated, and partly coupled into cavity 1 at mirror
m4. Mirrors m7 and ms remove a small fraction of laser radia-
tion for purposes of heterodyne detection.

is the purely imagimiry coupling constant g =i
I g I

. The
equation of motion for the conversion process is then
given by

(28a)

(ez+
='V12P2& (31)

where we have defined

y12— K.
572

(32)

Similarly removal of field from cavity 1, frequency con-
verting and injecting into cavity 2 Ieads to

—i(, HI —P) —i52

ht
=y2ipie (33)

where t4 is the transmission coefficient of mirror 2 (going
in). Now light is emitted from cavity 2 according to the
round trip time ht=p2/c, where p2 is the perimeter of
the second ring, so that

EE1 cr 4r 3 i(ei+—p) i si-
aP2eht p2

to detector

rAI
yto

detector
I

I&II
I

I

v ~l
m~

I

4
I

I

I

(28b)
where now

etst
X&2= (34)

The inJection rates as given by Eqs. (31) and (33) alter
the time evolution of the cavity amplitude md phasm so
that when 5i ——52 ——n Eqs. (18a), (18b), and (18c) become

pi=~ipi+&i2p2cosg —yipi —yi2p2cos1( .

pi ~&2+~2ipicosg y2p2 y2ipicosp, —

P=a bsin1(+c sin—1( .

(35a)

(35b)

(35c)

Here yi represents the total loss rate of cavity 1, and y2
that of cavity 2. The coupling mirrors m4 and ms intro-
duce losses in cavity 1 at a rate (1—r)c/pi (where
r =r4, r5 ), so that one may write

FIG. 5. Figure illustrating the couphng of E~ and E2 via
parametric frequency conversion in order to increase system
sensitivity in quantum-beat system. Analogous to Fig. 4 except
that now light is frequency upshifted or downshiftcd in the out-
side loops, and the mirrors m& and m2 discriminate between
frequencies rather than polarizations.

C C+(1—rs) +you ~
P&

where y„h represents any other losses for cavity 1.
Equation (36) assmnes that r4 and r5 are real and posi-
tive. In this case, the reflection coefficients r4, r5, for
light of frequency or polarization 1 incident on the mir-
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rors from the other side, must be equal in magnitude, but
negative. The various transmitted and reflected waves at
mirror 4 are shown in Fig. 6, assuming t4 ——t4, real and

positive, and taking into account the fact that 5i must
equal m in order to have the correct sign for c in Eq. (35c).
Note that, then, the light leaving the system at that mirror
has amplitude

Eout = —&~t3E2& '~+t~Ei

=r4t3E2e ' +t&E] (37)

(and frequency or polarization 1). This is important, as
will be discussed later.

I.et us now for simplicity assume that all the coupling
mirrors have the same transmission and reflection coeffi-
cients, and that Pi ——p2. We have then

@=2,x'yc ~ (38}

Vc+ Pother ~ (40)

as in Eq. (36).
Now we can see that Eq. (35c} gives the g-

wave —induced phase angle (see Appendix A)

when pi pz, where y„ the loss rate for each cavity asso-
ciated with the coupling nurrors (m4 and m5 for cavity 1,
m3 and ms for cavity 2) equals

Y =2(1—r)—c i c Y12 Yzl
(39)

P P K K

[compare with Eqs. (32} and (34)]. The total loss rate Y,
assumed again to be the same for both cavities, is then
simply

longer valid when a —y, & cps /2]. If indeed
a —y, =cps/2, Eq. (42) becomes once again the active-
device shot-noise limit of Eq. (2).

A problem arises, however, because, as a result of the
phase-matching necessary to achieve our purposes, the
light leaving the system (at mirrors mz and ms in Fig. 4)
is in a superposition of modes 1 and 2 with a relative
phase such that the interference term they yield is propor-
tional to cosf [see Eq. (37) and Fig. 6]. This is a quantity
that depends on the gravity-wave amplitude only in
second order. Thus, it is not suitable for detection pur-
poses. This point is discussed further in Appendix C.

To obtain a heterodyne signal proportional to sing=/
[first order in h, see Eq. (41)] we need to extract some ad-
ditional light from the cavity (indicated at mirrors mi
and ms in Figs. 4 and 5) so that we can combine it with
the appropriate relative phase. But any additional loss
(beyond that associated with y, ) is going to require larger
gain to bring the system above threshold, so that a —Y,
will increase. Clearly, then, if we still want to have
a —y, ros/2, the losses introduced by the extraction of a
"signal" beam must be kept small enough that one still
has

'Y 'Ye —oig /2 ~ (43)

P, =(ais/2Y)Po . (44)

where Y is the total loss rate for each cavity (including Y,
and the signal-beam extraction losses). As a result of this
we find that the power in the signal beams P, (coupled
out at m7, ms} is related to the actual power of the laser
Po (e.g., the power escaping at mirror m4) by

V]5$= T hocos(s~ —ks&o)'b —c
(41}

It is this P, that must be used for P in Eq. (42}. The re-
sult is then seen to be of the form (4) with an e given by
e=Qcos/2Y; i.e.,

and the shot-noise limit (26}now reads'

(42)

jim;„Qcos/2Y Qfn /Pot~ . (45)

since b —c=2(a —Y, ) when pi ——pz and a= l.
Now the question naturally arises "how small can

a —y, bP'elf may be easily seen that nothing substantial
is gained by letting it be smaller than about &os/2, if the
measurement time t~ gros

' [in this case, Eq. (41) is no

Thus if we assume cps —10 and y-10 we see that
s-10 . At this point we do not discount the possibility
that a more efficient coupling mechanism might be found
to reduce e even further. The important point is that e
can be substantially less than unity. Some insight into the
origin of the new limit (45) is provided in the following
section. "

V. INTERPRETATION OF THE RESULTS

-t~t~E2e

~E~e -i4

r~t~E2 e

FIG. 6. Incident, refIccted, and transmitted waves at mirror
m4. Note that one must have r4 ———r4. A similar picture is
obtained at mirror m6 in Figs. 4 and 5.

The new limit (45) has a simple interpretation in terms
of the fundamental physics involved in the correlated
spontaneous emission laser. Such a laser may be under-
stood as actually operating in a single generalized mode of
the radiation field when the relative phase angle f is
locked to zero, i.e., in the absence of a gravitational wave.
The gravitational wave may then be envisioned as exciting
another mode (orthogonal to the original one), and detec-
tion of the gravity wave requires the detection of at least
one photon in the new mode. This condition leads to the
limit (45).

For definiteness, consider the Hanle-effect laser (similar
results obtain for the quantum-beat laser). As before, we
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define annihilation operators associated with the modes of
the two cavities as a

&
and az (corresponding, for instance,

to orthogonal linear polarizations), but when the locking
condition /=0 is satisfied, the laser is effectively operat-
ing in the single mode

to the right-hand side of Eq. (47a). This leads to the cou-
pling

E~ =[2a y—ih—(t)v/2v 2]E~ i—h(t)vz /2v 2,

a+ —— (a~+e '"az),
v'2

(which may correspond to circularly polarized light, for
example). In fact, from the semiclassical equations

Ei ——(a —y)Ei +ae '~zz,

Ez —(a —y)Ez—+ae+'~zi,

and the definitions,

(47a)

(471)

(E + —i'
2

(48)

one proceeds, by multiplying Eq. (471) by e '~ and add-
ing (substracting) the resulting equation to (47a), to obtain

E+ =(2a —y)E+, (49a)

(491)

[note that P is time independent, being determined solely
by the pumping mechanism to levels

~
a) and

~
Iz), as

mentioned in connection with Eq. (171)].
Equations (49) are decoupled, and in fact it may be

shown that this decoupling holds also when nonlinear
terms are taken into account, {i.e., when a is the saturated
gain). This will be shown in a later publication. Equa-
tions (49) also show that the mode E+ (a+ in the quan-
tum theory} is above threshold, while the mode E (a )
is damped. The damping of E turns out to be
equivalent to the locking of the phases Hi(t) and Hz(t) of
E+ and E to the particular value 8i —Hz —/=0. This
may be seen as follows: from Eq. (48), we have

E =—[y+ih(t)v/2@2]E ih—(t)vz+/2V 2 .

Since hov «a,y, cps, and
)
E

( « ~
E+ (

if we are never
very far from the locked-in regime, the modifications to
Eq. (49a) may be neglected, but Eq. (521) will read

E = —yE ih(—t)vz+/2v 2, (53)

which shows that the gravity wave acts as a source of
photons in the "E "mode. What is more, the signal we
want to detect, as discussed above, is proportional to
sing= sin(8i —Hz —P), i.e., to

e'~z, z,' E',—Eze '~=z E~+ E'—Z+ . (54)

Hence, in order to detect any signal at all, at least one
photon of the E type must reach the detector. Suppose
that all losses are transmission losses, so that the y in Eq.
(53) gives the rate at which the E photons are leaving
the cavity. Then we have

ri
' =2yn (55)

or

—l VE = ~ E+,
2 2r

(56)

where n' is the number of photons outside, and n the
number of photons inside the cavity. If E+ in Eq. (53) is
taken as constant, and the observation time is large
enough compared to y, one will get the steady-state result

z, =(z, +z )wz,
Ez e'~(E+ E——)/v 2 . —

Then when E ~0 we are left with just

(501)

n+ .
8y

(57}

When substituted in Eq. (55) this gives, over a measure-
ment time t,

2
I

n = n+t
4y

for the number of E photons reaching the detector. The
condition that this number equals at least one gives

(58)E,(r) =E+(r)/v 2, (51a)

1
ho —Qy/n~t~ . (59)

Now we note that we may arrange for the E+ and E
modes to have different decay rates, given by y+ and y
The nominal power of the laser is y+n+Rv, so we have

1
h, = Qy y —+ma', r

where we have noted that the y that appears in Eq. (59) is
now y . Note that if y -cps, Eq. {60) gives the limit
(45).

It is in fact possible to show (see Appendix E), that the

Ez(t) =e'&E+(r)/v 2, (51b)

so that Ei(t) =Ez(t)e '~. This implies pi pz and
8,(t) =Hz(t)+P, or /=0.

Also, one can see from this argument why when
E =0 (i.e., /=0) the relative phase diffusion due to
spontaneous emission is zero. Equations (49) show that
the atomic medium contributes gain to the E+ mode
only. Therefore the spontaneous emission takes place
only in this mode. The spontaneous E+ photons have of
course a random phase, and ~ill cause a random change
in the phase of E+(r), but when Eqs. (51) apply this ran-
dom phase change will be common to E&(t) and Ez(t);
hence the relatiue phase 8&{t)—Hz(t) will not change.

Consider now what happens in the presence of a gravi-
tational wave. It will modify the frequency of mode 1,
which may be represented by adding a term ih(t)vzi/2—
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maximum signal is obtained when y -ros (the analysis
above is an approximation valid only when y »co&). To
do this, one must actually integrate Eqs. (53) and (55), as-
suming a definite form for h(t); for instance, Eq. (5b).
E+ in Eq. (53) may still be treated as approximately con-
stant in steady state. Then E (t) is obtained by integrat-

ing Eq. (53), and used to obtain n (r); this is in turn sub-
stituted into Eq. (55) which is then integrated between
t=0 and t=t to give the total number of E photons
leaving the cavity (and reaching the detector) in a time t
The calculation is straightforward, but lengthy; the result
for n' (r ) is

n' =
2 2 +[sin(2cost +2X)—sin(2X)]/4a)s [c—os5 e—~ ™cos(a)st~+5)]!(y+cps)'~

+Kg

+(1—e ")cos (X)/2y (61}

where 5 and X are unimportant phases. It is easy to see
that, for given t and ass, the factor y (y +cos) ' is
maximum when y =cps, and that the factor
y (y +sos), occurring in the third term, is max-
imum when y =cos/v 2. As for the last term, it goes as

(1—e )/(y +cps), and it is maximum also around

y -cos or 1/t . Hence we see that n' is maximum when

y -cos, in which case its order of magnitude is

(62)
Aov ii+1~

nature of the g-wave interaction with the detector takes a
very different form in passive and active devices. In the
passive case the signal goes as

dp» =—ho,~)

where L equals the number of bounces times the cavity
length, whereas in the active scheme we have

(66)

which is hke Eq. (58) with y(y )=cos. The hmit (60},
then, with y =cps, is seen to coincide with the result (45).

In effect, then, we may say that what the extraction-
reinjection technique discussed here accomplishes is to
make y+ different from y, and y -ass. This can also
be seen directly from Eqs. (35), specialized to the case
ai =ai ——ai2 ——a2i, yi ——y2 ——y, yi2 ——yii ——y„ for the
complex amplitudes E, and Ei one then has (in the ab-
sence of the gravity wave}

Ei ———,
' (a —y)Ei+ —,

' (a —y, )e '~E2,

Ei —,'(a —y)E2+———,
' (a —y, )e'~Ei .

(63a)

(63b)

Then, using the definition (48) again, one finds the equa-
tions for E+ and E

E+ ———,
' [2a—(y+y, )]E+, (64a)

VI. CONCLUSIONS AND FINAL COMMENTS

In this paper we have discussed the passive- and
active-cavity approaches to interferometric detection of
very small displacements. %e have shown how, with an
appropriate measurement scheme, a correlated spontane-
ous emission laser may be used to achieve a sensitivity
surpassing (in principle) the conventional schemes.

%e note in conclusion that the "nonlocal" or "tidal"

so that 7+ ——y+'Ve, and V —=7 Vc Xotber ~g~ as per
Eqs. (40) and (43).

But, since v=c/k and cos ——c/Xs, Eq. (66) may be written
as

ho — ho (active)
~g g (68)

Thus, for a passive device, it is clear that gravity-wave
detection is a nonlocal effect and measures deviations
from I.orentzian space-time only when L is appreciable.
For an active detector the factor of A, /L is replaced by
v/cps. In this case the nonlocality is to be understood as a
comparison of the g-wave amplitude at different points in
spacetime, i.e., comparing the g-wave —induced phase
difference between detectors at different points in space,
or comparing the phase shift of a single detector at dif-
ferent times. In this sense we are viewing the effect of the

g wave [according to Eq. (6a)] as leading to a kind of
time-dependent "red shift. " We recall that red-shift ex-
perirn. ents as carried out by Pound and Rebka involved
the emission of radiation from nuclei locahzed at one
point in space and the subsequent comparison with an ab-
sorber at another point in space-time. In their experi-
ment, we note that the atoms have vanishing physical ex-
tent as compared with the gravitational parameters, just
as in our case the size of our "quantum-beat g-wave detec-
tor" may be small compared to the gravitational wave-
leilg'tli A,s .

Finally, we note that the largest useful L, as it appears
in Eq. (65},is As, and in that case

kg
ho (passive) .
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so that the active and passive phase shifts are seen to be
the same in this limit.
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APPENDIX A: CEL RESPONSE
IN THE LOCKED REGIME

Consider the locking Eq. (18c) with a given by Eq. (23).
By Eq. (19), b is of the order of magmtude of ai2„which

/=a(t) bg—. (Al)

With the initial condition that )=0 (the steady-state solu-
tion in the absence of the gravitational wave} the solution
to Eq. (Al) is

P= f e ~" ' 'a(t')dt' . (A2)
0

Substitution of Eq. (23) for a(t') gives

will be equal to a. the gain rate; this in turn will be of the
order of magnitude of y, the cavity loss rate. Assuming
that both the detuning 5 and hov are much smaller than
y we have a ~&b (typical numbers might be y-106 Hz
for the cavity loss rate, v-10'5 Hz for the laser frequen-
cy, and ho-10 ' for the gravity wave). Then we expect
the solution of Eq. (18c) to be very close to the stable
steady-state solution that one obtains when a =0, namely,
/=0. Deviations of g from 0 will be of the order of a /b,
so one may expand the sine function to first order, and
obtain

1»o
P(t) =—(1—e ')+ —

z Ib cos(cost ksxo—)+cossin(cost ksxo—) e'[—b cos(ksxo) cess—in(ksxo)] ) .
b +cgs

(A3)

If the cavity decay rate y is much larger than the frequen-

cy r0s of the gravitational wave we will have b »ros, and
it is easy to see then that Eq. (A3) approaches Eq. (24)
after a time t»1/b (which may still be much smaller
than one gravitational wave period}. In this case, the
phase of the field inside the cavity follows "instantaneous-
ly" the gravitational wave. The case in which the effec-
tive b is of the order of cos is treated in detail in Sec. V.

APPENDIX 8: RING CAVITIES VERSUS LINEAR
CAVITIES

The transition from the system illustrated in Fig. 2 to
the one presented in Figs. 4 and 5 may appear to involve a
"quantum jump" in complexity, for which the motivation
provided in the body of the paper may seem insufficient.
We have explained how the system may be unlocked by
extracting some light from one cavity and injecting it into
the other one, and shown in detail how this works for our
proposed cavity arrangement. What we wish to address in
this Appendix is why we have chosen this particular ar-
rangement (specifically, two ring cavities) to illustrate our
scheme, rather than the linear "doubly resonant" cavities
of Fig. 2. The main reasons are as stated in Sec. IV,
namely, to avoid feedback along the injection loops, and
to retain control over the phase difference between the ex-
tracted and the injected signal [the 5's in Eqs. (29)—(33),
which as discussed in the text, should be equal to n]. We
will elaborate on these points here.

It may at first seem that the extraction-reinjection tech-
nique proposed in Sec. 1V to reduce the 1ocking might be
used with the linear cavity of Fig. 2. In fact, with refer-
ence to, e.g., Fig. 2(b), assume that the top mirror is used

to extract an amount of light from cavity 1 which is then
rotated in polarization and injected into cavity 2 via the
mirror on the right. If the length of the path between the
mirrors equ~Js a half-integer number of wavelengths, the
term added to the field Ei in cavity 2 is

b E2 —— rEi, — (B1)

every round trip, if both mirrors have amplitude transmis-
sion coefficients t. This may be seen by writing the
standing-wave fields in both cavities as a sum of traveling
waves and looking at how these traveling waves are cou-
pled by the extraction and reinjection of hght. In the
same way, the same circuit would lead to an amount
~k i

—— t E2 being a—dded to the field in cavity 1. This is
actually more than is needed to unlock the system, since
the cavity losses per round trip are only

(B2)

r(rE, +rrE, ) . — (B3)

Again, some of this light will be reflected at the top mir-
ror, and sent back to cavity 2. We find then that there is
no simple way to estimate the magnitude —and, most im-
portantly, the phase —of the field added to either cavity.
In effect, we have set up a coupled-cavity problem, the

This reasoning, however, fails for the following reason.
When light from cavity 1 reaches the right-hand side mir-
ror in Fig. 2, it is partly reflected and sent back on itself
together with the transmitted field from cavity 2. What is
then added to cavity 1 is not just some field from cavity 2,
but a superposition
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APPENMX C: THE OUTPUT FIELD

We mention in the text that the field leaving the system
at the mirrors m4 and m6 is not in a state useful for
detection purposes. Since this is an important point it
should be made as clear as possible.

.Recall that the success of the extraction-reinjection
"unlocking" technique requires that the injected field be
out of phase by n radians relative to the phase difference
with which the system tends to lock. That is, if the sys-
tem, as indicated by Eq. (18c) tends to lock at /=0, the
injected light should tend to lock the system at t(=m.
This results in phase relationships between the waves at,
e.g., mirror 4 as shown in Fig. 6. There the phase of the
cavity field (proportional to El} relative to the injected
wave is Hl 82 p n'= p— n—. A—s a resu—lt of this, howev-
er, the output waves (bottom part of the beam splitter)
have a phase difference of P. As shown in Eq. (37), the
output field goes as

EOIIt r4 j3Epe +f4E $

—ip (C 1)

where r4, t4, and tg are assumed real and positive for de-
finiteness. The basic result discussed here does not arise
from any particular choice of phase shifts at the beam
splitter, but from general properties of (nonabsorptive)
beam splitters; in particular, time reversal invariance re-
quires rq ———r4.

The g-wave information is entirely contained in the
phase difference P. We normally measure f by combin-
ing the fields El and E2 and looking at the interference
term. The output field [Eq. (C1}]contains both El and

solution of which is not trivial; and it is not obvious that
when equations of motion for El and E2 are written, that
take into account the multiple refiections within the out-
side circuit (now a cavity in its own right), they will have
the form that we want them to have.

Compared to this, we bdieve, it may be appreciated
that the scheme illustrated in Figs. 4 and 5 has a greater
conceptual simplicity, since (1) there is no possibility of
feedback along the injection loops and (2) the phase-shift
of the injected light may be easily controlled by choosing
the optical path length of the injection loop.

Note that feedback appears to be unavoidable as long as
we use the same mirror for extraction from, and injection
into, a given cavity. One could easily think of schemes,
based on the linear cavities of Fig. 2, with two separate in-
jection loops, involving beam splitters, and one-way isola-
tors to prevent feedback. The simplest of these schemes
do not work, because they lead to losses larger than the
coupling they provide; this is understandable intuitively,
since light must be absorbed or otherwise lost at the one-

way isolators.
%e are still considering the coupled-cavity problem,

and do not rule out the possibility that a useful coupling
might be achieved in that case, but we believe that at the
present time the scheme presented in this paper is the sim-
plest "proof-of-principle" demonstration of our ideas.
This point is argued further in Appendix D, which con-
siders an alternative solution to the problem of how to ex-
tract the signal beams.

E&, but their relative phase is such that they add almost
in phase (since P « 1}. That is, on the outside of the mir-
rors rn4 and m6 the beams interfere to give a "bright
fringe. " We emphasize that this results solely from the
fact, pointed out above, that on the opposite side of the
beam splitter they must add "almost out of phase, " i.e.,
with a phase difference 1t+m, for the unlocking mode
coupling to be effective.

Essentially, then, to try to measure g by looking at the
output of mirror 4 (or mirror 6) would be to look at a
bright fringe, which is an unfavorable condition. Favor-
able conditions are at a dark fringe (beams combined with
a phase difference f+m) or halfway between bright and
dark (beams combined with a phase difference 1(+m/2).
In the first case (dark fringe) the power at the detector
would go like

Pde, ——2Po(1 cosp) =—P0$ (C2)

(assuming equal power in both beams, for simplicity)
while halfway between bright and dark one would have

Pdet =2P0+2Poslntp 2P0+2P0$ . (C3)

The first case has smaller photon counting noise and a
smaller signal, the second one larger photon counting
noise and a larger signal. If we write the equivalent pho-
ton counting power as

Pno, se QPd„(h——v/tm ), (C4)

[if n =Pd„t /iilv is the total number of photons reaching
the detector in the measurement time t, Eq. (C4) is sim-

ply P„; =v n Rv/t ], we see that for the dark-fringe
detector Pd, l P0$ so

noise |( PO~v/rm i Psignal PO P (C5)

Pd„——2P0(1+cog/) =4Pll P0$— (C7)

P06„
Panisc 2 ~ Psignal ol)(

&m

(CS)

which gives a much smaller signal-to-noise ratio than ei-
ther Eq. (C5) or Eq. (C6), since ij'r « 1.

The only way to combine E~ and E2 to obtain either a
dark fringe or a half-fringe is then to extract some addi-
tional light from both cavities, since the light leaving the
two output mirrors m4. and m6 is a superposition with the
wrong phase difference (g, bright fringe). Hence the in-
troduction of the beam splitters m7 and ms. A possible
alternative arrangement to operate on a dark fringe is dis-
cussed in Appendix D.

while for the detector halfway between bright and dark
fringes Pz„-2P0 (the dominant term) and so

noise + 0 m }i signal 04 ~

We see that Eqs. (C5) and (C6) give the same signal-to-
noise ratio (aside from a factor v 2). On the other hand,
at a bright fringe
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APPENDIX D: OPERATION AT A DARK FRINGEV

We have considered the possibility, for the Hanle-effect
laser, of extracting the field from the cavity in a way that
would not make use of the beam splitters m7 and ms and
would lead to operation "at a dark fringe" (see Appendix
C). In this scheme (see Fig. 7), mirror m i would be an or-
dinary 50/50 beam sphtter. The polarization of the field
in cavity 1 would be rotated just before it reaches m „to
align it with the field in cavity 2, and the path lengths of
both cavities would be chosen so that in the absence of a
gravity wave one would have destructive interference (a
dark fringe) between Ei and E2 at the "out" port of mi,'

that is, no net field would leave the cavity at m i, and the
field inside cavity 1 would change from Ei to

Ei+ Eze
1 1

2 2
(Dl)

I

I

I

I

Ez

from
fTl g

I
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~ ~ g
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I

I

I

I
lTl 2

t&) l

IT)~ I

I

I

I(
I

to rn~

Immediately behind m~, a quarter-wave plate mould
convert this field to the appropriate circular polarization
to interact with the gain medium. After passage through
the gain medium, the beam would once again be split into
its x and y polarization components at the dichroic mir-
ror m2.

With this arrangement no light would leave the cavity
unless the phases of Ei and E2 were mismatched, so that
the interference at the out port of the beam splitter was no
longer entirely destructive. If a relative phase difference
itt developed, the output field would be proportional to

-i8) —I82—ip, —I 8&Ei Eze ' —=pie —p2e = ipse— , (D2)

if pi ——p2
——p and /=8, —Hz —P. The total output power

would therefore be proportional to P, as in the dark-
fringe detection schemes discussed in Appendix C.

We have concluded, however, that this approach is not
satisfactory for the following reason. Equation (Dl) im-
plies a very strong coupling between the modes. The
change in Ei in one round trip due to the beam splitter
mi would be

1;p 1
hE( = E2e '~ — 1 — E) .o'2 v'2 (D3)

The first term leads to an equivalent mode-coupling coef-
ficient

(D4)

LP- —hv —,
C

after dividing by the round trip time L/c. This is larger
than the usual mode-coupling coefficient b [Eq. (19)]
which, as discussed in the text, would be of the order of
magnitude of 2y-t c/L, where t is the mirror transmis-
sion. The phase difference between the modes Ei and Ei
would lock to the value

f % 0 ~ ~ ~ ~
)

1 Al Al 1
l1, J

FIG. 7. A possible scheme for operation at a dark fringe.
Part (a) of the figure shows the arrangement to be used in the in-
set (dashed box) shown in (b). The optical elements in (a) are as
follows: A, polarization rotator by 90', m&, ordinary 50/50
beam splitter; 8, quarter-wave plate; C, gain medium; m&,
polarization-sensitive mirror.

fore reduces the size of the signal to that which would be
obtained with just a single-pass cavity. Also, the locking
coefficient is so large that our extraction-reinjection tech-
nique would be ineffective in trying to unlock it. We
therefore conclude that this approach is not useful for our
system, at least in the simple form discussed here.

APPENDIX E

Here we show explicitly the algebra leading to Eq. (61),
for the number n' of photons leaving the cavity in mode
E . We begin with Eq. (53), where we treat E+ as a con-
stant, since we assume that it is well stabilized and well
above threshold. For h(t) we use Eq. (Sb). Introducing

the integrating factor e, we find that E is given by

hovE+
I

e lCOf

e'&+c.c.

hovE+E (t) = i —e e cos(cogt' kgx)dt'—
2 2 0

which is smaller, by a factor of t, than the usual locked
result hv/2y. Note that 1/t is essentially the number of
bounces. The strong coupling between the modes there-

mhere, in the second line, the subscripts have been
dropped from y and cos and —kex is written simply as a
constant phase P. Next, noticing that
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1 1
8

y +i'to (y2+~2)1/2

where

5= —tan '(co/y)

we can rewrite Eq. (El) as

(E3)

2

n+(t)= — [cos (tot+/+5)+e r'cos (/+5)1 hov n+ —2 t 2
+ 8 @2+~2

—2e "'cos(cot+ /+5) cos(P+ 5)] .

how E+E (t)= i — —

z i «z [cos(cot+/+5)
(y2+~2)1/2

—e "'cos(/+5)], (E4)

Equation (E5) is the result that needs to be substituted
into Eq. (55), and integrated between 0 and t to obtai~
the total number of E photons leaving the cavity.
result is Eq. (61), when the subscripts are restored and the
definition

from which the number of E photons inside the cavity
follows immediately [squaring E (t) and multiplying by
a constant which will transform E+ on the right-hand
side into n+]:

X=/+5= —ksx tan—'(cos/y )

1s Qsed.

(E6)

'For an early discussion of laser interferometer detection of
gravitational radiation, see R. %'eiss, Massachusetts Institute
of Technology Report No. 105, 1972, p. 54 (unpublished).
For general background we have found the article by K.
Thorne, Rev. Mod. Phys. 52, 285 (1980) to be helpful. A
more up to datg review of work at the California Institute of
Technology and at the University of Glasgow is described in
the article of Drever et ai. and that of the Max-Planck Grav-
ity Wave Group in the paper by H. Billing et al. may be
found in Quantum Optics, Experimental Grauitation and Mea
surement Theory, Vol. 94, NATO ASI series, edited by P.
Meystre ance M. Scully (Plenum, New York, 1983). For a re-
view of recent optical g-wave detection work see the articles
by C. Borde and co-workers, in Ann. Phys. (Paris) 10, 201
(1985).

~See, for example, %. %'. Chow, J. Gea-Banacloche, L. M.
Pedrotti, V. E. Sanders, %'. Schleich, and M. O. Scully, Rev.
Mod. Phys. 57, 61 (1985).

3See for example, J. Weber, in General Relativity and Gravita-
tional Waves (Intersclence, New York, 1961),or in Grauitation
edited by C. Misner, K. Thorne, and J. Wheeler (Freeman,
San Francisco, 1973).

Considerations along these lines involving active detection have
been put forth by N. Chebotayev and co-workers, see S.
Bagayev et al. , Appl. Phys. 25, 161 (1981).

5See for example, M. Sargent III, M. O. Scully, and %. E.
Lamb, Jr. Laser Physics (Addison-Wesley, Reading, Mass. ,

1974).
6J. Gea-Banacloche, M. Scully, and D. Anderson, Opt. Com-

mun. 57, 67 (1986).
7M. Scully, Phys. Rev. Lett. , 55, 2802 (1985).
sSee far example A. Yariv, Quantum Electronics {Wiley, New

York, 1967).
~It has long been recognized that frequency conversion via

parametric processes is free of quantum fluctuations. See, for
example, W. Louisell, A. Yariv, and A. Siegman, Phys. Rev.
124, 1646 (1961). For a more recent treatment see R. Gra-
ham, in Quantum Optics, edited by S. Key and A. Maitland
(Academic„New York, 1970).

~OIf we consider the quantization of the micro~ave field, then
noise will accrue in the parametric process as well. In this
case the noise in the microwave maser driving the quantum-
beam laser and the parametric converters would go as (maser
intensity) ' and this could be made very small since the ener-

gy per photon is small. Reasonable estimates indicate that
this noise couM be made negligible on the scale of the present
"experiment. " On the other hand, the polarization converter
used in the Hanle-laser ease would clearly be noise-free.

~In further related work we have found our result to be similar
to one obtained by Drever and co-workers (article cited in
Ref. 1) using a different method known as light recycling.
We shall explore the relationship between these methods in a
subsequent publication. We wish to thank Carlton Caves for
very helpful conversations regarding this issue.


