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This paper clarifies the origins of the standard quantum limit for the amplitude noise of a laser-

oscillator outgoing field. The amplitude noise within the cavity bandwidth, 0 &t0/Q, is ultimately

caused by the pump amplitude fluctuation, while that above the cavity bandwidth, 0 & to/Q, is due

to the field zero-point fluctuation. The uncertainty product of the amphtude- and phase-noise spec-
tra at an extremely high pumping level is still larger than the Heisenberg minimum-uncertainty

product because of the presence of nonstationary phase-diffusion noise. In this sense, an ordinary

laser oscillator is not a quantum-limited device. This paper suggests that a laser oscillator can pro-

duce an amplitude-squeezed state in itself if the pump amplitude fluctuation is suppressed below the

ordinary shot-noise level. The paper discusses possible schemes for suppressing pump fluctuation,
commutator bracket preservation without pump fluctuation, and resulting amplitude and phase

spectra. The similarity of and difference between a pump-noise-suppressed laser and a cavity degen-

erate parametric amplifier are dehneated.

I. INTRODUCTION
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squeezed state quadrature phase
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FIG. 1. Quasiprobability density (a
~ p ~

a) of a squeezing
~tate and an amphtude-squeezed state (or number-phase
minimum-uncertainty state). p is the density operator and

~
u)

is a coherent state. at =Re(a) and a2 ——Im(a). A quadrature-
phase eigenstate and a photon-number eigenstate are the ulti-

mate cases for these two states.

A squtx:zed state of light features reduced quantum
noise in one quadrature component below the standard
quantum limit (ha; ) & —,

'
(l =1 or 2). ' The

minimum-uncertainty product, (ha i) (ha q) = —,', , can
still be preserved by the enhanced quantum noise in
another quadrature component. When the quantum noise
is finally reduced to zero as shown in Fig. 1(a), the mean
photon number goes to infinity. This trade-off relation
between quantum-noise reduction and required mean pho-
ton number places the limit on the signal-to-noise ratio

improvement for a fixed mean photon number.
A squeezed state can be generated by unitary evolution

from a coherent state. The current experimental efforts to
generate a squeezed state of light employ a variety of non-

linear optical processes. 6 Recently, Slusher et al. ob-
served squeezing in a cavity four-wave-mixing scheme.

In addition, the present authors proposed a generation
scheme for another kind of nonclassical photon state, the
"amplitude-squeezed state" or "number-phase minimum-
uncertainty state. " ' An amplitude-squeezed state
features reduced amplitude (or photon-number) noise
below the standard quantum limit, (b,n ) ~(n). The
minimum-uncertainty product between the photon num-
ber and phase, (b,n )(hP) = —,', can still be preserved

by the enhanced phase noise, (b,P ) ~1/4(n). The
unique feature of an amphtude-squeezed state is that the
photon-number noise can be finally reducei to zero
(photon-number eigenstate) as shown in Fig. 1(b) without

requiring an infinite mean photon number.
It is known that an amplitude-squeezed state can be

generated by unitary evolution from a coherent state, but
the nonunitary processes such as a measurement process
or a dissipative system can be also involved to generate it.
One generation scheme is based on the quantum non-

demolition measurement of the photon number using an
optical Kerr medium" and the (linear) negative feed-
back. Sub-Poissonian photoelectron statistics were actu-
ally observed in a negative-feedback laser using a destruc-
tive photon detector. ' A sub-Poissonian light generation
scheme based on a similar principle has been recently dis-
cussed, ' ' but the light produced by this scheme is weak
and incoherent.

The photon-number eigenstate provides the maximum
channel capacity in optical communication, ' ' and its
information can be read out repeatedly without disturbing
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the state, that is, without absorbing the photons by the
quantum nondemolition measurement. " The photon-
number eigenstate is also useful for improving optical in-
terferometer performance. ' It has been theoretically
predicted that a noiseless photon amplifier exists which
transforms

~
n )~

~
Gn ).' All of these features suggest

a tremendous performance gain over an ordinary
coherent-state and squeezed-state system obtainable by
means of the photon-number eigenstate.

In this paper a new scheme is proposed for generating
an amplitude-squeezed state. We will show that a laser
oscillator can produce an amplitude-squeezed state pro-
vided that pump amplitude fluctuation can be suppressed
below the ordinary shot-noise level. '9

Iil Secs. II aild HI, we foclls our dlscuss1011 specifically
on why a laser generates a coherent state instead of an
amplitude-squeezed state, even though its amplitude-
stabilizing force induced by gain saturation is increased
with a pumping level.

We briefly review the quantum-mechanical theory of a
laser from such viewpoints. What we find is that there is
a subtle balance between the cooperative force induced by
gain saturation and the fluctuating force imposed by the
heat baths through the fluctuation-dissipation theorem.
Such a balance between the cooperative force and the fluc-
tuating force establishes the standard quantum-limited (or
shot-noise-limited) photon flux. The origin of this ampli-
tude noise is the pump amplitude fluctuation (not pump
phase fiuctuation) within the cavity bandwidth, 0 (to/Q,
arid is the field zero-point fluctuation above the cavity
bandwidth, 0 & t0/Q.

From the observations made in Secs. II and III, two in-
teresting possibilities for obtaining an amplitude-squeezed
state directly from a laser oscillator are suggested. One
possibility is breaking the balance between the two forces
by artificially enhancing the cooperative force (gain sa-
turation). A laser oscillator incorporating a quantum
nondemolition detector and a linear feedback loop~
specifically realizes this possibility. The other possibility
is breaking the balance by suppressing pump fluctuation,
which is the express subject of this paper.

In Sect. IV, we briefly discuss a possible scheme for
suppressing this pump fluctuation below the usual shot-
noise limit.

In Sec. V we demonstrate that the absence of pump
fluctuation does not contradict quantum-mechanical con-
sistency, even though the shot-noise-limited pump fluc-
tuation has ben widely accepted in the conventional
quantum-mechanical laser theory. ' It is shown that
the commutator bracket for the cavity internal field and
the output field are properly preserved without pump
fluctuation.

We calculate the amplitude and phase spectra in Sec. VI
for a pump-noise-suppressed laser oscillator and compare
them with those of a cavity degenerate parametric amplif-
ier. The photon statistics for the cavity internal field is
sub-Poissonian. The variance of the photon number takes
the minimum value of —,

' (n ) at an extremely high pump-
ing level. That is, the amphtude-squeezing factor is only
one-half for the internal field. The photon fiux spectrum
emerging out of the cavity is, on the other hand, decreased

below the standard quantum limit by the factor
0 /(co/Q) within the cavity bandwidth. So the infinite
amplitude squeezing is obtained in the low-frequency lim-

it, 0 ((to/Q.
Finally, in Sec. VII, we confirm the results presented in

this paper from the discussion based on particle-number
preservation.

II. OPERATOR I.ANGEVIN EQUATIONS

To adequately ascertain why a laser generates a
coherent state instead of an amplitude-squeezed state, we
will here briefly review the quantum-mechanical laser
theory based on the operator l,angevin equations. Al-
though a conventional theory treats only the noise proper-
ties of the cavity internal field, it has recently been shown
both for a laser ~ and for a degenerate parametric amplif-
ier s that the external- and internal-field fluctuations
differ. This difference stems from the fact that the
transmitted internal fleld and the reflected field zero-point
fluctuation are quantum-mechanically correlated and in-
terfere with each other as shown in Fig. 2.

The quantum-mechanical I.angevin equation for the

cavity internal-field operator A is given by

to Q

dt '
Q

&=- —+2j(~—o) — (X —jX ) A
p

l

(2.1)

Here to/Q is the photon decay rate, which is decomposed
into the internal loss contribution co/Qo and the output
coupling contribution to/Q, as

Qo Q.
(2.2)

(2.3)

Here the subscripts c and u indicate the conduction and
valence electrons. Although the detailed expressions for
the stimulated emission rate E~ and absorption rate E~
depend on the actual laser systems, they are not necessary
for our purpose here. The operators X„and X; are already
averaged for heat baths, but still depend on such system
operators as the population-difference operator.

A

NI

S

IQ~r rnsclivrn R

FIG. 2. Theoretical model for a laser oscillator.

too and co are the empty cavity resonance frequency and
the actual oscillation frequency. p is a nonresonant re-
fractive index. X=X„+jX; is the complex susceptibility
operator. The real part X, represents an anomalous index
dispersion, and the imaginary part X; indicates the stimu-
lated emission gain
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6, g, and f are fluctuating noise operators, which

represent the coupling of the field A to heat baths. The
noise operator 6 originates from the Fermi commutation
relation for the electron operator b ' . This noise operator
enters into the field Langevin equation (2.1) through the
adiabatic elimination of the dipole-moment operator. The
noise operators g and f preserve the boson commutation
relation for the photon operator A,

(2.4)

for its dissipation process, that is, its coupling process ta
the heat baths (internal loss and mirrors).

The correlation functions for these noise operators can
be determined fmm these requirements mentioned above
(fluctuation-dissipation theorem). When the heat baths
exhibit broad frequency spectra and therefore enable the
dissipation processes to be considered as Markovian, the
correlation functions of the two Hermitian (real and imag-
inary parts) operators for each noise operator are '

r=f, +(a)IQ, )'~ A . (2.9)

This relation is obtained from thc argument based on time
reversal, or from the direct analysis of waves bouncing
back and forth in a Fabry-Perot resonator.

The electron system can be described by one equation of
motion for a total population difference operator

d-=—N, =p-
rsp

—«cv —~ue)rt —Eel+ I p+ I sp+ I' .

(2.10)

&.= g(bzkbik —bikbik»
k

when thc active medium is a homogeneously broadening
one. The summation is over all upper- and lower-level
electronic states denoted by the wave number k.

The operator Langevin equation for N, after the adia-
batic elimination of the dipole-moment operator is given
as21, 23

& 6,(t)6„(u)& = & 6;(t)6;(u) &

=&(t — )—,'(&E &+&E &),

& g, (t)g, (u) & = &g;(t)g;(u) & =&(t —u)
4QO

'

Here G„and Gt are defined by

6„=—,(6+G ),

(2.5)

(2.6)

(2.7)

Here p and 1jr,p are the pump rate and the spontaneous
population-inversion decay rate. The fluctuating noise
operators for these two processes are denoted by I p and

AI,p. Finally, n =A A is a photon-number operator.
The spantaneous population-inversion decay process is

a stimulated emission process induced by the (field) zero-
point fluctuations of all continuous modes in an active
medium except for the lasing mode. The spontaneous de-

cay induced by the zero-point fluctuation of the lasing
mode is represented by the fourth term, E,„, of (2.10).
Since these zero-point fluctuations have only a very short
memory, and the decay process is considered to be Marko-
vian, the correlatian function for I,p is given by ' '

f (~IQ )i/2f (2.8)

The conventional quantum-mechanical laser theory '
does not necessarily mention this origin of the noise
operator f because in the conventional theory the internal
field is the only system" of interest, while the external
field outside of the cavity is considered to be one of the
"heat baths. " Since we are interested in the external field,
it must also be treated as another system.

As shown in Fig. 2, the external output field r consists
of the transmitted internal field and the reflected part of
the incident zero-point fluctuation as

6;=—.(6—6 ) .
2J

f„f;, g„and g; are defined by similar equations. In this
case, we use a caret and a tilde to denote operators for the
photon field and the electron systems, respectively.

The noise operator f represents the contribution made
by the zero-point fluctuation f„coupled into the cavity
thmugh the partially reflecting mirror as shown in Fig. 2.
If the incident field (not necessarily the zero-point fluc-
tuation) is normalized such that &f,f, & represents the
average photon flux (number per second), f in (2.1) is re-

lated to f, by2

(2.11)

The shot-noise character of (2.11) stems directly from the
shot-noise character of the zero-point fluctuations.

In a conventional quantum-mechanical laser theory, the
pumping process is treated as the reverse process of the
spontaneous emission. ' This treatment implicitly as-
sumes incoherent light pumping. As noted earlier, in-
coherent light has a broad spectrum of frequency and a
very short memory time. The correlatian function for I p
is then given by '

& I;(t)r, (u) & =St —u)q, (2.12)

@which holds even when the pump light is coherent laser
radiation. This is because the pumping process, i.e., the
photoelectron emission process is a self-exciting Poisson
point process, as was mentioned earlier.

If the pump light is sub-Poissonian light or near-
photon-number eigenstate light and the quantum efficien-
cy of optical pumping is close to unity, the
photoelectron-emission process becomes regulated and ex-
hibits smaller pump noise than the ordinary shot-noise-
hmited pump noise (2.12). The phase noise of the pump
light does not contribute to the output field noise of a
laser oscillator at all, because the pumping process is actu-
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ally a photon-counting process. Therefore, the increased
phase noise of the sub-Poissonian light or near-photon-
number eigenstate light, as compared with a coherent
state, does not affect the statistical properties of laser
emission. This is a remarkable difference between a laser
oscillator and a parametric oscillator, in which the phase
noise of the pump wave directly affects the noise proper-
ties of parametric emission. In Sec. IV we will outline
several effective schemes for suppressing the pump ampli-
tude fluctuation below the ordinary shot-noise limit.

The noise operator I' originates from the dipole-
moment fiuctuating operator. This noise operator enters
into the population-inversion Langevin equation through
the adiabatic elimination of the dipole-moment operator.
The correlation function for I is

(1(t)1 (~))=S(t —u)((E )+(E„))(a). (2.13)

Since the two operators G and I come from the same ori-
gin (the Langevin noise source for the dipole-moment
operator), they have the correlation

(G„(t)1'(tt)&= 5(t ——u) —,(&E,„&+&E„))&A&, (2.14)

t0/Q, + (E,„) 2(co/Q, )'i
bs+ Gs (3.2)

Here the noise operator is also renormalized from 6 by
thc bandwidth 8, or the time internal T', . %%en wc as-
sign

+(E.&

( 6 )1/2 &1, and c, =(E,„) '~'6, ,

ous decay rate 1/r, ~, and their noise sources I ~ and I',~.
The fluctuations of the photon field and of the population
difference are decoupled in this operational region.
Therefore, we can treat E,„ in (3.1) as the c-number
stimulated emission rate (E ).

If the input signal has a bandwidth much narrower
than the amplifier bandwidth 8 =co/Q, —(E,„),we can
employ a single-mode description of the system. The in-

put and output signal modes, b, and r„whi ch are deflned
by the bandwidth 8, of the input signal, or equivalently
by the measurement time interval, T, = 1/B„are related
by

r, = b+—(co/ Q, )
'~ A,

(6,(t)I'(u)) =0. (2.15)

III. ORIGINS FOR STANDARD
QUANTUM LIMIT

A. Laser amplifier

If a laser oscillator is biased below its oscillation thresh-
old and an external signal is injected into the cavity, the
refiected wave from the cavity can be considered to be a
linearly amplified output signal. The quantum noise of
such a cavity laser amplifier was treated either by the
operator Langevin equation or by the quantum-
mechanical Fokker-Planck equation. Here, we present a
discussion on the origin for the standard quantum limit of
a laser amplifier stemming from the dipole-moment fluc-
tuation operator G.

The noise operator f in (2.1) is not considered to be a
zero-point fluctuation f, but rather to be an actual input-
signal operator b, . If we assume that the input-signal fre-
quency is exactly tuned to the active Fabry-Perot cavity
resonant frequency, and that the internal loss is negligible,
(2.1) can be rewritten as

E~ A+(c0/Q, )'—~2b, +6 . (3.1)
dt 2 Q,

Here we assumed that the stimulated absorption E~ is
negligible, that is, that a laser amplifier features an ideal
population inversion. The stimulated emission rate E,„ is
already averaged for heat-bath coordinates, with their
fluctuation terms imposed by heat baths being denoted by
G. Although they are still dependent on the population-
inversion operator N„ the E fluctuation is negligible for
a linear laser amplifier, in which the population difference
N, is determined only by the pump rate p, the spontane-

and use the relation, t0/Q, =(E,„) (high-gain amplifier),
(3.2) can be rewritten as

r, =(6, )' 'b, +(6,—1)' 'e, . (3.3)

B. Laser oscillator internal field

Let us focus here on the amphtude and phase noise of a
laser oscillator pumped at well above the threshold. For

Here, from (2.5), the noise operator c, has the same com-
mutator bracket as the single-mode zero-point fluctuation,

[c„c,]=1 . (3.4)

Equation (3.3) can be derived for any linear amplifier in
a more universal manner by imposing the boson commu-

tator bracket preservation [b„b,]=[t„r,]=1. The
above discussion delineates the noise source c, which is
required for the commutator bracket preservation, is in

fact the dipole-moment fluctuation operator 6 for a laser
amplifier. The origins of the noise source c, are different
for each amplifier system, and, for instance, are the field
zero-point fluctuation at an idler frequency band for a
parametric amplifier, or the phonon-mode fluctuation
operator for a Raman and Brillouin amplifier. ' This
noise source c, imposes the standard quantum limit of a
linear amplifier on the simultaneous measurement of
two conjugate observables. '

Although the pump noise does not affect the standard
quantum hmit of a laser amplifier, it will be made clear in
Sec. IIIB that the pump noise supplants the role of the
dipole-moment fluctuation operator in a highly saturated
laser oscillator. The effect of the dipole-moment fluctua-
tion operator is completely suppressed by the gain satura-
tion as far as the amplitude noise is concerned.
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A =(AD+ b A )exp( —jhow), (3.5a)

(3.5b}

this region, the operator Langevin equations (2.1) and
(2.10} can be solved by the quasilinearization procedure.

The internal field operator A and population inversion

operator X, are expressed as

where hA, b,P, and B'AV', are the Hermitian amplitude,
phase, and population-inversion fluctuating operators, and
Ao and N, o are the average field amplitude and popula-
tion inversion (c numbers). Although a Hermitian phase
operator does not exist in a strict quantum-mechanical
sense, it is known that (3.5a) is still a reasonable approxi-
mation when the photon number Ao is much larger than
unity.

The power spectra of hA and b,P are calculated by us-

ing (3.5a) and (3.5b) in (2.1) and (2.10) as (Appendix A)

p,„(n)=[A', & I r, (n) I'+ Ir„(n) I'+
I
r(n) I'&

+(n'+A', )&
I G, (n) I'+ Ig„(n) I'+

I
f„(Q) I'& —2A, A, &G,(n)I (n)&]/[(Q'+A, A, )'+O'A', ], (3.6)

&
I
G (Q) I'+ ig (n) I'+ If (Q) I'&

P~(n)=
O~0

'2

+A~[& I
rP(n}

I

'+
I
r P(n) I

'+
I
r(n)

I
'&+

Q
&

I G.«) I
'+ If.(» I

'+
I g.(n)

I
'&]

X[(n'+A A )'+O'A']-' (3.7)

1 1+
+sp &st

1 (1+n,pR),
+sp

1
33 ——

2~0&St

n,pR

2APVsp
'

a a'nspR
A4 ——

2~ 0+st 2~ 0+sp

Here the parameters A ~
—A4, are given by

(3.8a)

(3.8b)

(3.8c)

(3.8d)

& I
I (n)

I
&=—2 J &I (r)I (0)&e 1 'dr=2p .

(3.13)

As indicated in this equation, the power spectrum in this
paper is defined as the single-sided (unilateral) spectral
density per cps (cycle per second).

Figures 3(a) and (b) are characteristic examples of the
normalized amplitude- and phase-noise spectra. The nu-
merical parameters were chosen for a typical semiconduc-
tor diode laser. When the pumping level is well above the
threshold (R y) 1), the amplitude-noise spectrum becomes
Lorentzian

P co

d&X, & d&X;&a=
d%,0 dN, o

(3.9)

(3.10)

R =S /Sih —1. (3.12)

Here pth is the threshold pumping rate.
The poorer spectra for the noise operators are calculated

by the correlation functions. For instance, & I
I ~(n) I

1S

r„, n,~, a, and R are the stimulated population-inversion
decay rate, the population-inversion parameter, the detun-
ing parameter (or hnewidth-enhancement factor}, and the
normalized pumping rate expressed as

P „-(Q)= R peal (3.14)

&aA &=- f P, (n)=

The variance of the photon number is then

(3.15)

&an'&= 4A,'&SA '&=—&n & . (3.16)

(3.16) indicates that the internal field features Poissonian
photon statistics. Such internal photon statistics cannot
be measured by an actual photodetector placed outside the
cavity, but are measured by the Gedankenexperiment pro-
posed by Scully and Lamb. 29

Half of the noise power (3.15) or (3.16) stems from the

which is shown by the dashed curve in Fig. 3(a). The
variance of the amplitude is calculated by Parsevals's
theorem as
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FIG. 3. Normalized amPlitude- and phase-noise spectra of a laser internal field. The dotted curves are those for an ideal laser os-
cillator. Numerical parameters are as follows: co/Qo ——10"s ', s0/Q, =4X10"s ', a=2, rg, =2, r =2X10s s, and A~=10~R.

Pap(Q) =
~on

(3.17}

which is shown by the dashed curve in Fig. 3(b). Because
of the absence of the phase-restoring force, a laser under-

pump fluctuation lz and the noise operator g„. The
remaining half is due to the incident zero-point fluctua-
tion f„. The noise operator I,~ contribution due to the
spontaneous decay process is negligible as compared with
the pump fluctuation at well above the threshold, since

p »&N, )/rs&. The contributions of noise operators 6„
and I cancel each other out exactly because of their nega-
tive correlation (2.14}.

When the detuning parameter a is equal to zero and the
population inversion parameter n,~ is equal to unity, the
phase-noise spectrum is

goes the unstationary phase diffusion process which is re-
sponsible for the Q dependence of the noise spectral den-
sity. The phase-noise spectrum (3.17) is contributed by
the dipole noise operator 6; as well as by the zero-point
fluctuations g; and f;. The failure to suppress the 6;
contribution is due to the fact that the gain saturation es-
tablishes the coherence on only the in-phase component of
the dipole moment.

C. Laser oscillator external field

The external output field operator r is expressed as

r=(ro+hr)e (3.18)

where ro is the average photon flux (number per second),
and hr and AP are the Hermitian amplitude and phase
operators. The power spectra for hr and b, tj'j are (Appen-
dix 8)

A3& II;«) I'+ Il.p(Q) I'+ ll «}I')+ (Ai+Q')& I6.«}I'+ Ig.«}I')S,r
Q

3 P sP
Q.

63
A, —aa, —0 +Q +A,N

e Q.

& if (Q)i )

—2 A&A, &I (Q)6„(Q)) .[(A,A, +Q'}'+AfQ']
S

(3.19)
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Pa~(Q) = z+ 2 & lf«) I'&+ ' i, '
& I

6 (Q) I'+ Ik(Q) I'&0 roO

+ & I G.(Q)
I
'+ lg. (Q)

I
'+ lf.&&&

I

'& If(Q'+~2~3)'+Q'~f3 ' (3.20)

P~AQ)= —,', 8 &&1 (3.21)

which is shown by the dashed hne in Fig. 4(a). The power
spectrum for the photon flux noise, ddY=h(f 'r ), in such
a pumping level is equal to

P -(Q)—=4roPaAQ)=2&%& . (3.22)

This shot-noise-limited, white-noise spectren is that
which is measured by an actual photodetector placed out-
side the cavity.

The amplitude-noise spectrum P~QQ &ci/g) within

the cavity bandwidth is due to the pump fluctuation I'~

Figures 4(a) and 4(b) are characteristic examples of the

amplitude and normalized phase-noise spectra for the
external field. Numerical parameters are the same as for
Fig. 3. When the pumping level is at well above the
threshold (R »1), the amplitude-noise spectrum becomes
white,

and the (internal-loss-induced) noise operator j,. The
amplitude-noise spectrum Pa&Q & ai/Q) above the cavity

bandwidth, on the other hand, stems from the reflected

zero-point fluctuation f, . This was schematically shown
in Fig. 5. Also as mentioned, one-half of the internal
amplitude-noise spectrum, P „-(Q), is contributed by the

incident zero-point fluctuation f„. This part of the inter-
nal amplitude noise is completely suppressed when the
internal field is coupled out of the cavity, because the re-

flected zero-paint fluctuation f„beats against the coherent
excitation rc and the resulting amplitude noise is the exact

replica of the internal amplitude noise due to f„. Because

of the minus sign in front off, in (2.9), the two amplitude
noises are 180' out of phase and cancel each other out ex-

actly. As a result of this destructive interference, the
remaining half of the internal amplitude noise due to I z
and g„emerges in the external output field. In the fre-

quency region higher than the cavity bandwidth

(Q&ai/Q), the internal amplitude noise is cut off as

i
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FIG. 4. Amplitude- and normahzed phase-noise spectra of a laser external Geld. The dotted curves are those for an ideal laser.

Numerical parameters are the same as those I Fig. 3.
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an external field and the corresponding amplitude d r and phase
noise 6|tI.

FIG. S. Origins for standard quantum-limited amplitude-
noise spectrum of a laser oscillator.

shown in Fig. 3(a), while the incident zero-point fiuctua-
tion is simply reflected back from the mirror. This re-
flected zero-point fluctuation constitutes the higher-
frequency part of the white amplitude noise.

When et is zero and n,~ is unity, the phase-noise spec-
trum of the external field is

Q I Q Q

Zro JIOQ Zro roQ
(3.23)

which is shown by the dashed curve in Fig. 4(b). The
external phase-noise spectrum is different from the inter-
nal phase-noise spectrum (3.17) only by the first term of
(3.23). This term is due to the reflected zero-point fluc-
tuation. The destructive interference between the
transmitted internal field and the reflected zero-point
fluctuation, which suppresses the amplitude-noise spec-
trum within the cavity bandwidth, does not work for the
phase-noise spo:trum within the cavity bandwidth. This
is because the internal phase noise b,(I) due to the incident
zero-point fluctuation, the first term of (82), is just in the
quadrature phase with the phase noise due to the reflected
zero-point fluctuation, the second term of (82). There-
fore, the two noise powers are additive, even though they
originate from the same noise source f, .

D. The minimum-uncertainty relation

The commutation relation for the external field r hav-
ing a continuous spectrum (broadband) is defined in terms
of its Fourier component,

[r(Q), r (Q')]=5(Q —Q') .

Here we assume the decomposition for r(t) as

r(t)= I r(Q)e i 'dQ . (3.25)

If we assign the amplitude noise b,r and phase noise hf
to the two quadrature noise components Ar

&
and hrz, in-

dicated in Fig. 6, that is,

Ar =br),

hr2

rp

(3.24) can be rewritten as

[hr(Q), bg(Q')]= — 5(Q —Q') .
2rp

(3.26)

As shown already in Appendix A, the frequency com-
ponent r(Q) is obtained from a Fourier-series analysis
with a period T. We renormalize r(Q) using the relation

rk =v'ZrrITr(Qk)

We may then write (3.24) and (3.26) in the forms
A. t[r, ,r, .]=5 td.

(3.27)

(3.24')

f b,rt„b.gk. ]=—J
2rp

The Dirac 5 function is identified by the Kronecker 5
function and vice versa,

(3.26')

5kk
5(Qk —Qk )~

The spectrum of Ar can be calculated conveniently by

hark,

P QQ )= J (br(Qk)hr(Qk))dQk=(Ark) . (3.28)

From the commutation relation (3.26') the minimum-
uncertainty product for the amplitude and phase-noise
spectra results in

P,aQ, )P„-(Q,)= (~r"', ) (~y'. ) = (3.29)

It is obvious from (3.21) and (3.23) [or from the dashed
curves in Figs. 4(a) and (1)] that the amplitude- and
phase-noise spectra of an ideal laser satisfies the
minimum-uncertainty product (3.29) in the frequency re-
gion above the cavity bandwidth, Q & colQ. The product
of the amplitude- and phase-noise spectra in the frequency
region within the cavity bandwidth, Q&co/Q, is larger
than the minimum-uncertainty product (3.29), however,
because of the phase diffusion noise. An ordinary laser
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oscillator is not really a truly quttntum-limited device in
this I'cspcct, cvcn thougll thc coIiditloIls of R ))1, tx=0,
and n,~

= 1 are all satisfied.
In other words, the potsibility exists for improving the

amphtude noise below the standard quantum hmit in the
frequency region within the cavity bandwidth. The dis-
cussloII iil tlils scctioII sllggcsts tllat sllcll lnlpI'ovcnlcllt is
indeed possible if the pump fluctuation and the internal
loss can be ehminated.

IV. POSSIBLE SCHEMES FOR SUPPRESSING
PUMP FI UCTUATION

As discussed in Sec. II, pump amplitude fluctuation can
be suppressed if the pump light is sub-Poissonian light or
near-photon-number state light in an optical pumping
scheme. This trivial solution as to how to suppress the
pump fluctuation is not interesting from a practical view-

point. This is because intense sub-Poissonian light is not
presently available, even though phase coherency is not re-

quired for this purpose.
One possible scheme for suppressing pump fluctuation

is the use of an electron beam in a space-charge-limited
vacuum tube, as shown in Fig. 7(a). When the electron-
emission rate increases above its average rate, the number
of space charges increases and the potential minimum be-
tween the cathode and the anode becomes more negative
due to the Coulomb repulsion between the "crowded"
space electrons as shown in Fig. 7(b). Therefore more
electrons return back to the cathode due to their insuffi-
cient initial velocity, u g(2qE /III)'~, where E is the
miniinuin potential and III is an electron mass. When the
electron-emission rate decreases below its average rate, the
potential minimum becomes less negative. This deforma-
tion of the potential profile contributes to decreasing the

number of electrons returning back to the cathode. It is
known that the electron arrival process at the anode is
Poissonian and the anode current features shot noise in a
temperature-limited vacuum tube. In a space-charge-
limited vacuum tube, however, the electron-arrival process
and the anode current are regulated below such limits be-
cause of the above-mentioned mechanism. ' Actually, the
variance of the arrival-electron number and the anode
current can bc considerably decreased below the usual
Poisson limit and shot-noise level.

If active atoms are sealed in a vacuum tube and are ex-
cited by such sub-Poissonian electrons as shown in Fig.
7(a), the pump fluctuation of this laser can certainly be
held below the ordinary shot-noise level. This is essential-
ly the stimulated emission version of the (spontaneous)
Franck-Hertz effect. In fact, Teich and Saleh observed
sub-Poissonian photon statistics in the spontaneous light
from their space-charge-limited vacuum tube containing
Hg atoms. The sub-Poissonian statistics in pumped
electrons were jmparted to the statistics in the spontane-
ously emitted photons in their experiment. In principle,
the same effect can be carried over to a laser oscillator.

Figure 8 shows the injection-current-pumped semicon-
ductor laser, where the carrier-injection process is regulat-
ed by a similar effect. ' The carrier-injection rate, that is,
the diode junction current, is determined by the forward-
biased voltage across a p njunctio-n. The junction voltage
counteracts the built-in potential in a depletion layer and
makes the carrier-diffusion process dominating over the
reverse-directed drift process. When the junction current
increases above its average rate, the junction voltage de-
creases due to the increase in voltage across the series
resistance R, . Therefore, more minority carriers (elec-
trons in the case of Fig. 8) return back to the n-type bulk
layer due to the dominating built-in field in a depletion re-
gion. When the injection current decreases below its aver-
age rate, the junction voltage increases and more electrons

(a) C

)~active atom

O

e Q laser
output

3I ]I

electronIfif ~

get t hodr'

ac tive
p .- layer

~ ~ + ~ I ~ 4 ~fa ice laser
Output
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junction curront
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(b) $ lower emissi
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FIG. 7. Possible schemes for suppressing pump Auctuation.
(a) A laser oscillator including space-charge-limited electrons in
a vacuum tube. (b) Potential distributions between a cathode
and an anode.

t' ~higher junction current

Rs

FIG. 8. Possible schemes for suppressing pump fluctuation.
(a) A semiconductor laser pumped by a high-impedence source.
(b} Energy-band diagrams of a n-Jp-p double heterojunction.
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can diffuse into an active layer. This junction-voltage
modulation effect induced by the presence of the series
resistance contributes to the regulation of the process of
minority carrier injection into the active layer.

In a forthcoming paper we will discuss this problem
in detail. The microscopic theory of junction-current
noise based on the minority carrier-transport process in an
active layer is developed, which accounts for both the
thermal fluctuation of minority carrier flow and the
quantum-mechanical generation-recombination noise of
minority carriers. The noise-equivalent circuit reveals
that the pump fluctuation of a semiconductor laser is not
a usual shot-noise-limited one but the thermal noise gen-
erated in the resistance Rs s It can be suppressed by the
large R, value.

An important feature of the scheme shown in Fig. 8 is
the achievable high quantum (conversion} efficiency.
Most of the injected electrons into the active layer can be
converted to the emitted coherent photons from the laser
cavity. An ordinary semiconductor laser possesses a
quantum efficiency of higher than 0.8, i.e., more than
80% of the injected electrons are emitted from the laser as
coherent radiation. This feature prevents the amplitude
squeezing (or sub-Poissonian features) of the emitted pho-
tons from being diluted by the random deletion (partition)
noise. For the purpose of the present paper, it is suffi-
cient to note that pump-fluctuation suppression is basical-

ly possible using one of these principles.

V. QUANTUM-MECHANICAL CONSISTENCY
OF A. PUMP-NOISE-SUPPRESSED I ASER

Before discussing the details of the amplitude- and
phase-noise spectra of a pump-noise-suppressed laser os-
cillator, we will here discuss that the absence of the pump
fluctuation does not violate quantum-mechanical con-
sistency. For this purpose, let us introduce the two-

photon formalism for a broadband squeezed state. ' '3

We assume here the fluctuation frequency Q is much
lower than the optical frequency co, so that (co+0)/ate= i.

0

A(t)= gv'2'/T(a+«e +a «e
"

) .
k

(5.3)

The commutator bracket (2.4) can then be rewritten as

[A(t), A t(t)]

= g T [[a+«,a+«]+[a «a «])

= f, [a+«a+«]dQ«+ f, [a «a-«]dQ«

Here the second equality assumes b,Q«=2'/T, and the
summation is replaced by the integral in the limit of
T~ 00 ~

Our task in this section is to prove (5.4) without the
necessity for the pump fluctuation I ~. The amplitude
and normalized phase noise in (3.5a} can be assigned as
the two quadrature noise components

A (t)=Ao+ a, (t)+j a2(t), (5.5)

ai(t)=EA(t) (amplitude noise),

a2(t) = ADEEM(t) (no—rmalized phase noise) .

If the population-difference decay rate, I/r, =l/~s~
+ I/est is much larger than the photon decay rate to/Q,
the population-difference fluctuating operator bÃ, can be
eliminated adiabatically from the Langevin equations
(Al)—(A3}. The condition I/r, »ai/Q is always satis-
fied at a high pumping level R »1, even though the
spontaneous decay rate 1/r, ~ is smaller than co/Q as in
the case of a semiconductor laser. Because we are in-
terested in this operational region (R »1), we will con-
fine our discussion to it.

The population-difference operator ~, is obtained
from (A3), such that

A. Commutator-bracket preservation for internal field
1 1

+sp &st

—2 —A Oa ( + I q + I sp+ I

A(t)= f [a+(Q)e / '+a (Q)ej ']dQ . (5.1)

Quantum-mechanical consistency requires that the
proper commutation relations hold for both the internal

field A and the external field r. The internal field A

should preserve the commutator bracket (2.4) for a
"discrete" mode. A(t) is expressed in terms of its positive
frequency part a+(Q) at co+Q, and negative frequency
part a (Q) at co —.Q, such that

CO—2 —Aoa (5.6)

Here, the second equality assumes that the spontaneous
decay rate is much smaller than the stimulated decay rate,
and that the pump fluctuation is suppressed by some of
the schemes discussed in Sec. IV. Using (5.6) in (Al) and
(A2), we obtain the equations of motion for the two quad-
rature components as

If a+(Q) and a (Q} are normalized in a similar way as
(3.27),

a+ « &2m /Ta+ (Q«), —— and

d—a& = ——ai+ +Gi+gi+fi
dt Q 2AO

(5.7}

a « =V'2n/Ta (Q«}, (5.2b)
ai =Gz+gz+f2 ~

dt
(5.8)

(5.1) becomes 6&, G2, g&, and gq are given by equations similar to (B5)
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and

Aa+ =a)+ja2, (5.9)

and (86) for fi and f2.
The positive and negative frequency component opera-

tors are defined by

a+k a+k + a k, a k Qk

[n+k n+kl [n k n —k]
dQk ——1 .

0

Ok+ — &k+

a =a& —jaz .

From (5.7)—(5.10) we obtain

co
a+ =— (a+ +a )+n+t

(5.10}

(5.1 1)

Here we used the relations

N
[n+k~n +k'] —[n —k~n —k'] = ~kk'

[n+k n+k ]=[n-k n k ]=o

(5.16)

(5.17)

(5.18)

—a = ———(a +a+ )+n
t 2

Here, the new noise operators are given by

(5.12)
for n+k /2n ——ITn+ (Qk ) and n k= v'2nlTn . (Qk ).
The derivation of (5.17) is based on (2.5)—(2.7), (2.13), and
(2.14).

S. Commutator bracket preservation for external field

n = +(G+g+f)e'a~,
2Ao

(5.13)

+e jag(G t—+g t~f t)
2~o

(5.14)

a+k ——

1 N 1 N—jQ+ —— n+k ——n—
2 Q

+ 2 Q
(5.15)

The Fourier transform of {5.11) and {5.12) and the rela-
tion (5.2) results in

[r+{0),r"+(0')]=[r (Q),r (0')]={i(0—0'), (5.20)

The external field r(t) is siinilarly decomposed into its
positive frequency part r+(0) at co+0, and negative fre-
quency part r (0}at ai-Q, such that

r(t)= f [r+(0)e j '+r (0)ej ']dQ

= g v'2mlT [r+ke " +r ke
" ] . (5.19)

k

The propr commutator bracket for the external field is
given by

—0 —jQ or equivalently by

[r+k r+k]=[r kr k]=&kk-. - (5.21)

and a similar equation for a k. The commutator bracket
density integrated over all frequencies then becomes

Using {5.3) and (5.19) in (2.9), we obtain the positive
frequency component of r(t) as

r+k= f., +k+(IQe }'"a—+k

0 +jQ — f, +k(+laQi, )' —jQ+—
I

P

—0 —jQ CO

n+k ——(—co/Q, )' n

4 (5.22)

and

ff., +k f., +k ]=4k (5.23)

[f., +k n+k ]=[n+k f., ~k ]=(~IQ.)'"&kk {524}

we immediately find

[r+„,r+k]=Skk . (5.25)

If we then use the commutator bracket for the noise

operator f, +k &2m ITf, +(Qk), ——
VI. CAVITY DEGENERATE PARAMETRIC

AMPLIFIER VERSUS PUMP-NOISE-SUPPRESSED
LASER

A cavity degenerate parametric amplifier is the simplest
model for a state squeezer. A pump-noise-suppressed
laser oscillator features similar performances, even though
the squeezing direction of the field is different from that
of the cavity degenerate paramp as shown in Fig. 1.
~en the noise distribution is small as compared with the
coherent excitation, however, the difference between a
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squeezed state and an amplitude-squeezed state is negligi-
ble. Therefore it is interesting to compare these two de-
vices from the viewpoint of quantum limit.

A. Cavity-degenerate parametric axnplifier

I,et us consider the cavity degenerate parametric am-
plifier shown in Fig. 9. The in-phase and quadrature am-
plitudes of the internal field obey the equations, '

r

—ai ———— +—
q ai+(holg, )'~ bi

dh 2Q,
(6.1)

and

—ai ——— — +—
0 ay+(a)IQ, )'/ bi .

Ch 2Q,
(6.2)

Here ai and a2 are defined by (5.5), and 1/ri and I/rz
are the amplification and daimplification rates which
satisfy

1 1—+—=00 0 (6.3)

for a degenerate parametric amplifier. ~'2 There is no
internal noise source required such as the dipole-moment
fiuctuation operator if (6.3) is satisfied. For the purpose
of comparing with a pump-noise-suppressed laser, we as-
sume the phase of a pump wave is adjusted to satisfy

1 EO

QS
. 2 ~

1 co 10+
g 0

(6.5)

r = —bs+(N/g, )' '3, (6.6)

when the input signal is a broadband coherent state,
P- (Q)=P- (Q)= —,'. Figure 10 shows characteristic ex-

amples of P- (Q) and P- (Q) as a function of
a& 02

(1/ri)/ ,'(h0/—g, ). The maximum reduction of the in-

phase noise spectrum is achieved at the oscillation thresh-
old 1/ri- —,

' (h0/, ). The variance in the in-phase ampli-
tude (ha i)=— (dQ/2m)P; (Q) is —,

' for an empty

cavity (I/r& ——0), and is —, at the oscillation threshold

[1/P~ ———,
'

(ho/Q, )). The squeezing factor is only one-half
for the internal field, which is also discovered by the
Fokker-Planck equation treatment. '

If we adopt the relation between the input and output
signa1s,

r

1 co

2 Q,

that is, the in-phase amplitude ai is daunplified and the

quadrature amplitude a2 is amphfied. bi and b2 are the

in-phase and quadrature amplitude of an input signal b,
We assumed that the cavity internal loss is negligible.

The in-phase and quadrature-noise spectra calculated
from (6.1) and (6.2) are given by

1 N

2 Q,

m/Qe
Frequency Q

P-(Q)=
0(

r 2

1 1 co
as o~0 2 g

(6 4)

, z(2)

A
S

nonlinear crystal

«2

tu/Qe
Frequency 0

FIG. 9. Cavity degenerate parametric amplifier.
FIG. 10. In-phase and quadrature-noise spectra of an inter-

nal field in a cavity degenerate parametric amplifier.



3$ AlvIPI. ITUDE SQUEEZING IN A PUMP-NOISE-SUPPRESSED. . .

2Q,
P; (0)=—

I co 1 2
20 + — +—

0 Q2+
2 Q

0

1 1
as 0~0 2 Q

(6.7)

1

2 Q,1 1
P„- (0)=—

1 dP 10+
2 Q,

I

the in-phase and quadrature noise spectra of the output
signal can be obtained as follows:

'2
1 670+

Q2

co y 1 1 1 +(~/Q ) ~bl

2Q, 2 ro, 8, +

&, += b, ++—(~/Q, )'"a,+

Qe

2
1+ 0 0

(6.10)

Here b+ bi——+jb2 and b =bi jb—z. If the input signal
has a bandwidth much narrower than the amplifier band-
width, 8= —,(r0/Q) —1/ri, a single-mode description of
the system simplifies the analysis. The input and output
signal modes b, + and r, + are related by

1 1 co
as 0 2 Q

(6.8)
2

Characteristic examples of P„-(0) and P; (0) are shown

in Fig. 11 as a function of (1/ri)/ —,'(ro/Q, ). Equations
(6.7) and (6.8) satisfy the minimum-uncertainty product
discussed in Sec. ID.

Using (5.9) and (5.10) in (6.1) and (6.2), we obtain
r

+( /Q ) b
d 1 F111 1/2
dr+ 2Q + 2

Q 10

CL

If we assign

Q.

1 1
0 0

'.
2 b,

1 1
0 0

~l +2

1 1+ 0 ~0

1
1''

(6.11)

(6.11) can be rewritten as

(6.12)

tie/Q

frequency

Frequency
FIG. 1I. In-phase and quadrature-noise spectra of an output

field from a cavity degenerate parametric amplifier.

Equation (6.12) is the universal relation between the in-

put and output mode operators for a state squeezing. ' A
cavity degenerate parametric amplifier is ideal for a state
squeezing as long as the input signal bandwidth is much
narrower than the amplifier bandwidth. This has already
been indicated by Fig. 11 and by (6.7) and (6.8).

If we compare (5.7) and (5.8) for a highly excited
pump-noise-suppressed laser with (6.1) and (62) for a cav-
ity degenerate parametric amplifier, or equivalently (5.11)
and (5.12) with (6.9) and (6.10), a certain analogy exists.
If a pump-noise-suppressed laser has a zero internal loss
and a cavity degenerate parametric amplifier is biased at
the threshold [1/ri ———I/rz ,

'
(co/Q, )], the on——ly—differ-

ence is the dipole-moment fluctuation operators G and I
appearing in a pump-noise-suppressed laser equations.
We win see in Sec. VI 8 that the dipole-moment fluctua-
tion operator I /2AO+G& can be suppressed completely
in the in-phase component, and that similar squeezing is
obtained as a cavity degenerate parametric amplifier. We
mi11 also see that the dipole-moment Auctuation operator
62 cannot be suppressed in the quadrature component,
and therefore, that the minimum-uncertainty product
(3.29) is never satisfied in a pump-noise-suppressed laser.
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B. Internal field of a pump-noise-suppressed laser

The amplitude-noise P „-(0) and phase-noise Pa&(0)
spectra for the cavity internal field of a pump-noise-

suppressed laser oscillator are calculated by (3.6) and (3.7)
with (

~

I ~(0}
~

) =0. The characteristic examples of the

amplitude-noise spot:trum are showa in Fig. 12. Numeri-

cal parameters for Fig. 12 are the same as in Fig. 3 except
that the internal loss is negligible as compared with the

output coupling loss, i.e., cg/Qo g& ap/Q, .
amplitude-noise spectrum becomes I.orentzian when
R » 1 in a similar way as does an ordinary laser [(3.14) or
Fig. 3]. The spectral density is just one-half, however,
thai is,

suppression does not improve the ultimate phase-noise
spectrum (3.17).

C. External field of a pump-noise-suppressed laser

The amplitude-noise P&40) and phase-noise Pa&(0)
spectra for the external output field of a pump-noise-
suppressed laser oscillator are calculated using (3.19}and
(3.20} with (

~
I &(0) ~

) =0. Characteristic examples of
the amplitude-noise spectrum are shown in Fig. 14(a).
The same numerical parameters are used as in Fig. 12.
The external amplitude-noise spectrum at R »1 becomes
lower than the standard quantum limit within the cavity
bandwidth

P -(0)=—1
lb'

0+ N
'2 (6.13)

P QQ)=—1
h,r '2 (6.14)

which is the same result as (6A) for a cavity degenerate
parametric amplifier. This means that the internal field
features sub-Poissonian photon statistics having the vari-
ance (bn 2) =0 5(n .).

The discussion in Sec. III indicates that the origin of
the residual amplitude noise is the field zero-point fluc-
tuation incident on the cavity. The gain saturation is not
strong enough to suppress this noise source.

Characteristic examples of the phase noise spectrum are
shown in Fig. 13. The same numerical parameters are
used as Fig. 12. Since the phase-noise spectrum for a=0
and n,~= 1 stems from the dipole noise operator 6; and

the field zero-point fluctuation f;, the pump-fluctuation

which is the same result as obtained in (6.7) for a cavity
degenerate parametric amplifier. Although the
amplitude-squeezing factor is only one-half for the inter-
nal field, the infinite amplitude squeezing is obtained for
the external field in the low-frequency limit 0 g~co/Q.
This is because the residual amplitude noise of the inter-
nal field destructively interfers with the reflected zero-
point fluctuation to cancel each other out. The failure in
suppressing the amplitude noise above the cavity band-
width, 0 & r0/Q, stems from the absence of the amplitude

I
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FIG. 12. Internal amplitude-noise spectra of a pump-noise-
suppressed laser. s0/Qo =0.
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FIG. J, 3. Internal phase-noise spectra of a pump-no»e-
suppressed laser. co/go ——0.
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noise in the internal field in this frequency region. The
field zero-point fluctuation cannot enter into the cavity
and is simply reflected back from the mirror.

Although the infinite amplitude squeezing can be ob-
tained at Q « co/Q when co/Qo «co/Q, as shown in Fig.

E

10
CL

Co

CO
~~ 2

10
Ia

14(a), the squeezing factor is limited when the internal
loss is not negligible„as shown in Fig. 14(b). This is be-
cause the quantum-mechanical correlation between the
internal amplitude noise and the reflected zero-point fluc-
tuation becomes imperfect due to the contribution of g, .

Figure 15 shows the external amplitude-noise spectrum
PaQQ =0) in the low-frequency region versus the normal-

ized pumping level 8 as a function of the internal loss to
output coupling loss ratio, Q, /Qo. In order to obtain
large amplitude squeezing, the value of co/Q, which is
larger than co/Qo and a higher pumping level are desir-
able.

Characteristic examples of the normalized phase-noise
spectrum are shown in Fig. 16. It is clear that the ulti-
mate phase-noise spectrum (3.23) is not altered by the
pump-fluctuation suppression.

D. Uncertainty product

The product of the amplitude- and phase-noise spectra
of a pump-noise-suppressed laser oscillator in the frequen-
cy region below the cavity bandwidth is

PaAQ)Pa~(Q) = i, Q &—
2fo

(6.15)

100
/

/
/

I i

10
I I

10
Frequency Q

This is twice as large as the minimum-uncertainty prod-
uct (3.29). As shown in Sec. VI C the output field from a
cavity degenerate parametric amplifier satisfies the
minimum-uncertainty product (3.29) exactly. The obvious
question is why a difference exists.

The difference stems from the fact that the quadrature

10
Q

La

10- R=Q. )

E
4

10
Q.

CO

Q
lD

Q 10
U

O~
Q.
E 0

10 00

Q.
CO

0
ca 10

a
10

F

10
OO

10
r

10
Frequency Q

10 g

10 $0
l

&0 10 10
Pumping Level R

FIG. 14. External amplitude-noise spectra of a pump-noise-
suppressed laser. (a) co/Qo ——0. (b) co/Qo ——0.25(co/Q, ).

FIG. 15. External amplitude-noise spectral density
P QQ=O) at low frequency vs pumping level E. as a function of
internal loss to output coupling loss ratio, Q, /Qo.
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FIG. 16. External phase-noise spectra of a pump-noise-

suppressed laser. co/Qo ——0.

component G; of the dipole-moment noise operator is not
suppressed by the gain saturation. While a cavity degen-
erate parametric amplifier and four-wave mixer5 have

only one noise source, that is, the field zero-point fluctua-
tion, a pump-noise-suppressed laser oscillator has two
noise sources, the field zero-point fluctuation and the
dipole-moment fluctuation.

The amplitude- and phase-noise spectra of an ideal
pump-noise-suppressed laser are compared with the stan-
dard quantum limits of broadband coherent states in Pigs.
17(a) and 17(b). If the "mode" is defined by the band-

width much narrower than the laser cavity bandwidth,
8 «c0/Q, the amplitude and phase noise of this laser
output is close to the "amplitude squeezed state" shown in

Fig. 1(b), even though it is not the "number-phase
minimum uncertainty state. " If the mode is defined by
the bandwidth much broader than the laser cavity band-

width, 8 »r0/Q, the amplitude and phase noise is close
to the coherent state. One great advantage of using a
semiconductor laser as an amplitude-squeezed-state gen-
erator is its broad bandwidth, i.e., the value of co/Q is in
the range of 10' rad/sec.

VII. CONCLUMON

The principle conclusion of this paper is that an ideal
laser oscillator preserves a nonclassical (sub-Poissonian)
pump process, i.e., there is no hidden noise source in the
conversion process from pumped electrons to emitted
coherent photons. This can be clearly understood by the
following consideration based on particle-number preser-
vation.

If a laser-output coupling loss is much larger than its
internal loss, ro/Q, »co/Qp, and is pumped at well above
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the threshold, 8 »1, every pumped electron must sooner
or later be emitted as an output coherent photon. The
population-inversion decay rate 1/est due to stimulated
emission completely dominates the decay rate I/~, ~ due to
spontaneous emission and other nonradiative decay pro-
cesses at a high pump level of R »1. The internally em-
itted photons due to stimulated emission are extracted via
an output coupling mirror before they are absorbed or
scattered internally in a cavity satisfying c0/Q, »co/Qp.

The slowest time constant for such an ideal laser is the
photon lifetime ~z ——(co/Q) '. If an emitted photon num-
ber is counted over a measurement time interval T„
which is much longer than ~z, the probability is negligible
that any electrons or photons are left inside the laser.
Therefore, the emitted photons should have the same
sub-Poissonian statistics as the pumped electrons. Of
course, if a measurement time interval is shorter than the
photon lifetime, the emitted photons suffer from the
random-output couphng process, with the sub-Poissonian
behavior of the pumped electrons being consequently di-
luted by this randomness. Such behaviors of a pump-
noise-suppressed laser are made very obvious in Fig. 17.

A high qu"mtum efficiency is indeed only one criterion
for such preservation of the pumped-electron statistics to
the emitted-coherent-photon statistics. A sem. iconductor
laser sometimes demonstrates an amazingly high quantum
efficiency. It is also quite easy to regulate the electron-
pumping process in an injection-current-driven semicon-

tu/0
Frequency Q

FIG. 17. (a) Normalized phase-noise spectrum r+~~(Q) and
(b) amplitude-noise spectrum Pq„(Q) of a pump-noise-

suppressed laser oscillator biased at mell above threshold. ro is
the average photon flux and co/Q is the cavity bandwidth.
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ductor laser by means of the so-called "high-impedence
sgppression. "
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APPENDIX A: AMPLITUDE- AND PHASE-NOISE
SPECTRA FOR INTERNAL FIELD

In this appendix (3.6) and (3.7) are derived using the
quasilinearization (3.5a) and (3.Sb) in the operator
I.angevin equations (2.1) and (2.10).

The linearized equations for the Hermitian amplitude,
phase, and population-inversion fluctuating operators read

—hA = M', + ,' [(G+g+—f)eja~
dt 2A oust

+e "(G'+g-'+f')], (Al)

hN, + [(G+g+ f )eJa&
dt 2A2or„' 2A,

H;{t}= [—{G+g+j)e' & e—' &(Gt+g t+f )] .
2J

(A9)

The noise sources {AS) and (A9) have the multiplicative
noise types. The correlation functions of H„(t) and H;(t),
however, are not affected by the phase noise hP, because
it is a slowly varying function as compared with the Mar-
kovian noise operators G, g, and f. That is, the noise
sources H„(t) and H&(t) change and lose their memories
completely before hP changes appreciably. ~' Therefore
we obtain

(H„(t)H„(u)) = (G„(t)G,(u) }+(t,(t)g„(u) }
+ &f,(t}f„(.}&, (A10)

Here the parameters A& —A& are given by (3.S)—(3.Sd).
H, (t) and H;(t} are defined by

H, (t) = , [(-G+g+f)e'"+ "-'(G '+g '+f ')],
(AS)

e J~(G t+—ft+f, t}]

(A2)
(H;{t)H;(u)) =(G;(t)G;(u)}+(g;(t)g;(u) }

+(f;(t)f;(u)} . (Al 1)

~,-2—A,hA+f;+r„+I .
dt '

rp r„' Q

{A3)

The Fourier-series analysis with a period T that is
made to approach infinity is used as the Fourier
transform of (Al) —(A3). The power spectra of the opera-
tor g(t} is calculated by Wiener-Khintchin's theorem as

P-(Q)= lim (g t(T, Q)g(T', Q)), (A4)
T

and
T/2

g(T, Q)=&2/T f g(t)ej"'dt .—T/2

From (Al) to (A3) we can readily obtain the Fourier
transforms hA(Q) and hg(Q) as

hA(Q)
—A, [l' (Q)+r„(Q)+f'(Q)]+(A —jQ)H, {Q)

(AzA3+Q )+jQA)

Similarly, we obtain the cross-correlation function be-
tween H, (t) and I {t) as

(H„(t)I (u) ) = (G„(t)I'(u) } .

Using (A10}—(A12) in (A6) and (A7), we then obtain (3.6)
and (3.7).

APPENDIX 8: AMPLITUDE- AND PHASE-NOISE
SPECTRA FOR EXTERNAL FIELD

In this appendix (3.19) and (3.20) are derived from the
relation (2.9). If we use the quasilinearizations (3.5a) for
A and (3.18) for r together with (2.9), the Hermitian am-
plitude and phase-fluctuating operators are obtained as

hr=(to/Q ) hA — (fej ~+e J f ),
2(~/Q )'"

(B1)

H, (Q)
hg(Q) =

QAo

1A, A,H, (Q)/Q —A, [I;(Q)+1.,(Q)+I (Q)]+
(A,A, +Q }+jQA,2

hy+
2jro(co/Q, )'

Using (A6) and (A7) in the Fourier analysis of (Bl) and
(82) we obtain

hr(Q)=— fi«)
(co/Q, )' Q~

'" —A, [r,(Q)+f„(Q)+r(Q)]+(A,—JQ}H„(Q)

(A,A, +Q')+jQA,
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H, (Q) f2(Q) jAzJI4H, (Q)/Q —As[I'~(Q)+&,p(Q)+I (Q)]
kf(Q)= + t Jg +

QAo ro(ro/Q ) (~,~, +Q )+jQ~,
(84)

where f& (Q) and fq(Q) are the Fourier transforms of

f (t)—~ (feJJAP+e Jtsff t) (85)

f (t) — (fe—JJAP e JJAb—f t) (86)
2J

As was discussed in Appendix A, the slowly varying
phase noise hP does not affect the calculation of the
correlation functions. From (83) and (84) we then obtain
(3.19) and (3.20).
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