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Backward saturation in four-wave mixing in neon: Case of parallel puj(np polarizations
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%'e present in this paper a theoretical and experimental study of the effect of an intense pump
beam on four-wave-mixing emission in the geometry of phase conjugation. The theoretical model is

developed for I (natural width) g Q~ (Rabi frequency of the intense pump) ~ km (Doppler width)

and uses the dressed-atom approach. %e have analyzed degenerate and nearly degenerate four-wave

mixing. In this latter case, we have studied three situations according to which beam (intense pump,
weak pump, or probe) has a different frequency. The experimental study has been done in a neon
cell using cw lasers. Our experimental results are in excellent agreement with theory. This study
shows the need to take into account the atomic motion in the theory. However a quantitative
analysis cannot be done assuming an infinite Doppler width and we show the importance of the
Boltzmann factor. In the case of nearly degenerate four-wave mixing, narrow resonances corre-
sponding to transitions between energy levels of the dressed atom are observed.

I. INTRODUCTION

Degenerate and nearly degenerate four-wave mixing has
been extensively studied during the recent years. ' One
reason for this interest is the possibility of obtaining effi-
cient phase conjugation using four-wave mixing. For in-
stance, phase-conjugate reflectivities higher than one have
been obtained in atomic sodium vapor and have opened
the possibility of observing self-oscillation in cavities
closed by a sodium-vapor phase-conjugate mirror. How-
ever, the understanding of four-wave mixing in atomic va-
pors has for a long time been restricted to the perturbative
limit. ' Saturation effo:ts were generally described with
motionless-atom models. When the Rabi frequency Qi is
smaller than the Doppler width these theories give in-
correct predictions as shown by Bloch et al. More pre-
cisely, these authors consider the case of one saturating
pump beam and one weak pump beam. They show that
the intensity of the phase-conjugate beam is larger in the
case of backward saturation (intense pump beam and
probe beun propagating in opposite directions) than in the
case of forward saturation (intense pump beam and probe
beam propagating in the same direction). This result can-
not be interpreted by a motionless-atom model. Soon
after, Bloch and Dueloy presented a seiniclassical theory
of the effect of one saturating pump beam in degenerate
four-wave mixing in a Doppler-broadened medium. We
have afterwards presented a simpler approach using the
dressed-atom model. The main advantage of this theory
is that it considerably clarifies the underlying physics and
it leads to simple physical pictures. In the case of back-
ward saturation we have shown that the signal is generat-
ed by two velocity groups only. For these velocity groups
the Doppler effect tunes the incident frequencies to obtain
a resonant nondegenerate four-wave-mixing emission on a
Rabi sideband, in the atomic frame. (The enhancement of
four-wave-mixing emission on a Rabi sideband in the

nearly degenerate case was previously considered by Har-
ter and Boyd in the case of stationary atoms. ' It is in-
teresting to notice that this effect permits us to under-
stand the saturation effects in the degenerate case for a
Doppler-broadened medium. )

In our preceding papers '" we have considered the case
of a resonance line and we have calculated the line shape
for a two-level atom in the backward-saturation and
forward-saturation cases. We have also analyzed the ef-
fect of collisional daiiiping and the situation where the
weak pump beam can also saturate the atomic transition.
In the present paper, we adapt the theoretical model to the
experimentally studied situation of a transition between
two excited levels. We calculate the hne shape in degen-
erate four-wave mixing in the case of backward satura-
tion. We discuss the influence of the Doppler width and
of the distribution of intensity in a realistic Gaussian
biam. Afterwards, we extend our calculations to the case
of nearly degenerate four-wave mixing in two-level atoms.
We consider two incident beams of frequency rat and the
third incident beam of frequency mL. We show that the
line shapes are strongly different according to which beam
(intense pump, weak pump, or probe) has a different fre-
quency. %e then present experimental results obtained in
a neon discharge in the case of three incident beams of the
same polarization. In the degenerate case we show that an
excellent quantitative agreement is obtained between ex-
periment and theory when the effect of finite Doppler
width is taken into account. In the nearly degenerate case
we also obtain very good agreement with theoretical pre-
dictions. In particular, we have observed narrow reso-
nances which are located on the Rabi sidebands. These
resonances correspond to a Doppler-free spectrum of
atoms dressed by the saturating optical field. The good
agrecmnent obtained in all the experinMntal situations that
we have considered demonstrates the validity of our
theoretical method and shows that the problem of one-
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beam saturation in degenerate and nearly degenerate
four-wave mixing in atomic vapors seems now to be fully
understood.

II. THEORY: THE DRESSED-ATOM MODEL

A. General description

We consider three electromagnetic waves E~, E2, and
Ez whose frequencies are cot, , aii, and toL', and whose wave
vectors are ki, kz, and k& [Fig. 1(a)]. The pump beams
EI and E2 propagate in opposite directions
(ki/~ki

~

= —kz/(kz
~

). The 2 axis ls pai'allel to kz.
The three waves have the same linear polarization a. We
assume that the frequencies of the incident waves are
close to the resonance frequency too of a two-level atom
[Fig. 1(b)]. We suppose that

~

a ) and
~

b ) are two excit-
ed levels which are populated in a discharge with a rate
A, and At, . We take a single relaxation constant I for
the populations of ~a) and

~
b) and for the atomic

coherence.
%e assume that the only wave which saturates the

atomic transition is Ei. Its amplitude
~
E,

~

is sufficient-
ly large to obtain a Rabi frequency Qi ——d

~
E,

~

/A' larger
than I (d is the matrix element of the electric dipole mo-
ment between

~

a ) and
~

b ) ). On the other hand, Qi is
smaller than the Doppler width ku of the a Iz transi-tion.
The other waves E2 and E3 have a much weaker ampli-
tude, the corresponding Rabi frequencies Qz and Qz being
smaller than I . The assumption of our theoretical
development is thus

k1 L

02,03(I ~~A] ~ku .

We study here the case where the probe beam E3 propa-
gates in a direction opposite to the intense-pump beam E~
[see Fig. 1(a)]. This is the backward saturation case. The
situation where E& and Ei are almost colinear (forward
saturation) corresponds to a weaker phase-conjugate effi-
ciency and is not treated here. The line shape in forward
saturation for a two-level atom has already been calculat-
ed in the case of Fig. 1(b) in Ref. 12 and for a resonance
line in Ref. 11.

The component of the electric dipole moment which ra-
diates the phase-conjugate beam is calculated in the atom-
ic rest frame. The wave frequencies are Doppler shifted
in this frame. For an atom of velocity u„the frequencies
of the three incident beams become

(2a)

(2b)

Note that we have assumed a very small angle 8 be-
tween the directions of propagation of Ez and E& in order
to obtain a residual Doppler width (-k8u) small com-
pared to I .

In the following we make a quantum treatment of the
intense wave Ei and a classical treatment of the weak
waves E2 and E3. We shall thus consider the interaction
of a two-level atom dressed by an intense optical field'
with two weak classical fields. We first apply this model
to calculate the electric dipole moment for a velocity
group U, . The calculated value is then averaged over the
velocity distribution. We finally assume that the medium
is optically thin, i.e., that the three incident waves are very
slightly modified during their propagation. The theoreti-
cal variation of the generated beam intensity which is ob-
tained is compared with experimental results in Sec. III.

FIG. 1. I,'a) Scheme of the incident beams in the four-wave
mixing geometries studied in the paper. The two pump beams
EI and E~ propagate in opposite directions, the probe beam
makes a very small angle 8 with the pump-beam direction. The
three beams have the same linear polarization. (b) The two-
level-atom model considered in this paper. The pumping rates
are A, and A&. %'e assume that the two levels have the same
lifetime ( I/I 3),

8. Mean value of the electric dipole moment
for a velocity group u,

We have assumed that Qz/I' and Qz/I are small com-
pared to 1. %'e can thus make a perturbation expansion in
power of Qz/I and Qz/I" of the density matrix of the
dressed atom. At the lowest order, the amplitude of the
dipole which radiates the phase-conjugate beam is propor-
tional to 0203. We must thus calculate the density ma-
trix to second order in the weak fields Ez and E&. On the
other hand, we exactly describe the effect of Ei. As a
first step, we shall consider the density matrix of the atom
dressed by the photons of the intense beam E, and we will
afterwards treat the effect of Ez and E3 using a perturba-
tion method.

The density matrix of the dressed atom
to seroth order in the ioeak fi id es

In this section we consider the interaction of the atoms
w'th the intense wave E~. At the rotating-wave approxi-
mation, the Hamiltonian of the dressed atom in the labo-
ratory frame is equal to
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Ho f——duo
~
b)(b

~

+ficoL ata

—8'd(D+ae ' +D ate '
) (3)

with D+ ——
~
b)(a ~. a and a are the armihilation and

creation operators of a photon in the mode (ki, a). N' is a
coupling constant.

In order to obtain the Hamiltonian in the atomic rest
frame, we make the following unitarity transformation:"

T =exp[ianna(ki r)], (4)

where r corresponds to the atomic motion

r=ro+vt .

Using (3)—(5), we obtain the Hamiltonian in the atomic
frame,

E2 ———,
'

A(5i —0),
where 0 is the Rabi frequency

(14)

The energy diagram of the dressed atom is shown in Fig.
2. It consists of a ladder of doublets separated by Anal.

The distance between two levels of the doublet A'0 is as-
sumed to be very small compared to Rco i.

To zeroth order in the weak field, the master equation
for the density matrix Otr of the dressed atom is

d 1 dOV—(Oa)=. [Hr aa]+
t i t

The pumping and the relaxation of the bare atom [Fig.
1(b)] are described by the equation

Hz —THOTt+—iA Tt

=irido ~

b) (b
~

~ficoiata —8'd(D+a +D a ), (6)

P = —I p+A,
rel

(16)

where all is the Doppler-shifted frequency (2a). The field
is described by a Glauber coherent state. In the laboratory

ig)
frame at t =0, this state is

~
a) (where a=

~

a
~
e '). At

time r, in the atomic frame, the state of the field is

iar(t))=T ia(r)),
II ~

( l )

n!

where A is a diagonal matrix

Ab 0
A 0 p e (17)

a

If we assume that 0 is small compared to the inverse of
the correlation time of creation and destruction of atoms
in these levels, the master equation for Otr is

[Hr, (p]—I (ocr)+ A—cps(t), (18)

y, = —(k, r+e, ). (8)

The average value of the number of photons in this state
is n =

~
a

~
and the resonance Rabi notation frequency

Qi is equal to

where ps(t) is the density matrix of the intense wave El
[pa(&) = ~

&z'(&))(a'z'(~)
~ ] The matrix elements of Oa in

the
( i,n ) basis(10) are

(19)

and the evolution of these matrix elements is deduced
from (18),

The eigenstates (i,n) of Hz are

with

~

l ,n) =a; [ a,n'+1)+p;
~
b, n ) (i =1,2) (10a)

[ ),n+)&
2,A+] &

a, =—pz ——sing&,

pi ——aq ——comp,

the angle gr being defined by

Qi

5l

(10b)

(10c)

where we have introduced the frequency detuning

5l =QPO —COl.

The corresponding energies are

El „(n+ 1)fmi+E;—— (12)

Ei ———,
' A'(5l+ 0), (13a) FIG. 2. Energy diagram of the dressed atom.
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d(otrj ) J +Ptoi Ajvn —I (Wjvn)+Aikn

(20)

(29)

where Hr is given by (6) and 8' describes the coupling
with the weak fields. At the rotating-wave approxima-
tion, 8'is equal to

with

A k. =(j n
I
Aevi (t)

I
k, n —p) (21)

~~1m —i (a& i+/ )
t7t Pl

2 +
Nl =2, 3

Using (21) and (7} we find that Arik„ is proportional to
exp[ —ip(toit+pi)]. In the following we shall consider
the variation of the atomic variables, we are thus not in-

terested in the information related to the index n of tr,i„.
Using the two preceding properties, we define

(22a)

(30)

= —(k ro+8 ), m =2,3 . (31)

where to2 and toi have been defined in (2b) and (2c) and

4~ has a definition similar to iI}i,

ip(~~t+/&) ~
O&jk =~ ~ O~jkn ~ (22b)

As in Sec. IIB1 we calculate trjk instead of crjk„Th.e
equation for tTjk is deduced from the master equation,

We deduce from (20) the following equation for otrjk

1—P k= (E —&—k)otrk—I'(Pk)—+Ak .J ih
J J J J (23)

We only consider the stationary solution of (23). The
value of Ajk is easily deduced from (7), (10), (17), and (21),

where

1+. g (Wj tT k
—WkO~

m =i, 2

d 1 d
ir 'k . (E' @k )tr 'k + tT 'k

dt iA j j,dt rel

(32a)

Ajk =tzjakA, +PqPkAb

and we find that otrjk is equal to

Ajk
O~jk

l +I
fi

(24}

(26)

and 00')j =0,
Using (24), we find that to zeroth order in the weak

fields the sum of the populations is

and the difference is

In particular, we note that H[ ——Hz when 5i ——0, i.e., when
the incident light is tuned to resonance.

2. The density matrix of the dressed atom
to second order in the weak fields

We now describe the influence of the weak fields E2
and E3 using a perturbation expansion. The total Hamil-
tonian is

The condition (1) implies that Q»1. Using (13), we
then deduce from (25) that the coherences otr, i and otTii

are very small compared to the populations 00» and 0022.
We can thus neglect the coherences (secular approxima-
tion) and we obtain for the stationary solution otr;;=II;
with

gr ~ M fl ( d
'(i~m ~iii+t m

m jk~
Nl =2,3

'('"m "i"+—&m &—i}—
+akje (32b)

dkj being defined as

dkj dctkPj (33)

Xe
—

& f(QP2 —co3)t+p —p ]2 3 (36a)

We now solve Eqs. (32) at second order in weak fields.
More precisely, we shall only calculate the matrix ele-
ments of 0 which contribute to the emission of the
phase-conjugate wave. The mean value of the electric di-

pole moment is equal to

j,k

Since the component D~ of D which radiates the phase-
conjugate beam oscillates like exp( —i [(toi+ top co3)t
+'Ij(}i+i}}2 ((I3]J, we have only to calculate the
components ~o kj which oscillate like
expI —i [(to2 toi)t +$2 Pi]—I. The e—xpression of the
component D~ of the electric dipole moment is thus

(35)
j,k

From the zeroth-order solution (26), we find, using the
usual perturbative expansion, the first- and second-order
solution. Among the second-order terms, we only retain
those which can radiate the phase-conjugate beam. %'e

find for the population

Hg —H) 0203
pc+22 pc» —i (cov —cd3)+ 1
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~+W%

+d122

1 1+.
i—(o)) —o)3+0)+1 i (co) —a)2+Q)+ I

1 I+. 7

i (—o)p —o))+0)+I i(co3 o—))+Q)+ I

(36b)

{35)—(37) we obtain the contribution to the electric dipole
moment of an atom of velocity v located at point r at
time t. Since (35) is calculated in the atomic frame, we
have to calculate Tr(DT o T) to find the dipole moment
in the laboratory frame. However, this quantity is also
equal to Tr(TDT cr)=Tr(Do) because T and D act on
two different spaces (radiation field and internal atomic
variables). Using (2), (5), (8), and (31) we can write

D~{u, ) in the laboratory frame as

and for the coherence &rr i2,

IIp —IIi (dg2 —dii)QpQ3 I{(„,„,), +t),
peg')2 = 8

4d i (to3 —co2+ Q)+ 1"

d)2 d2i
X +.

i (to3 to)+—Q)+I' i (to) o)2—+Q)+I

To find o2, we exchange the indices 1 and 2 and we

change Q into —Q.
The four-wave-mixing process will be enhanced when

the two denominators in (36) or (37) become resonant. We
have presented in Fig. 3 several examples of such process-
es. Figures 3(a) and 3(b) correspond to a resonance on the
population while the other cases [Figs. 3(c)—3(f)] corre-

spond to a resonance on the coherences.

3. The electric dipole moment in the laboratory frame

The preceding calculations have been developed in the
atomic frame. To find the amplitude of the conjugate
wave it is necessary to change the reference frame and to
average over the velocity distribution. Using formulas

D (u, ) =D (u, )exp( —i [(~,+~L ~,") t

—(ki+k2 —k3}r

—8) —6)2+83] I +c.c. , (38a)

+i [(co2 ru3)t +—t)&—(()3}

pc ~z =~ gk pc~kj
j,k

is a static term because of the time dependence of (36}and
(37). All the atoms located at point r radiate a wave of
frequency toL, +o)'L, —co't', in the direction ki+kg —k3
whatever their velocity is. In the degenerate four-wave
mixing case (o)L ——o)'L ——to'L ), the phase-conjugate beam is
perfectly phase matched when k)+kq ——0. In the case of
nondegenerate four-wave mixing, the phase matching is
not perfect. However, we shall not discuss this point here
because in the nearly degenerate case considered in the ex-

perimental part (Sec. III}this problem can be neglected.

To find the amplitude &~ of the dipole created by all
the atoms located at point r we average (38) over the velo-

city distribution,

N~= J D~(u, )N(u, )du, ,

where

(39a)

I

l

] 4)4

I

I

, A

I
I
l

1 (d4

l
I

N(u, ) = exp
u&m

(39b)

u being equal to (2kTlm)'~'.
%e will now establish a symmetry relation concerning

&~. In the following we shall consider the case of one or
two incident frequencies a)L and coL. We have thus two
frequency detunings in the problem,

l

,
'

f24

I

I

I

I

1 Q4
(

Y

5=Q)0 —Q)L

5 =coo—coL

(40a)

(40b)

(f)
I)(

In the general case &~ is a function of 5 and 5'. Using
(35)—(37) we easily show that when we change 5, 5', and

ku, into their opposite, D~(u, ) is changed into D~(u, ). —
We then deduce from (38}and (39) thatl

I

I

l Q
I

I

I

4'~( —5, —5') = —& ~(5,5') .

4. Intensity of the phase conjugate emissio-n

(41)

FIG. 3. Resonant four-wave mixing processes in the
dressed-atom energy diagram.

In the case of a thin optical medium, the amplitude Ep,
of the phase-conjugate emission can be deduced from the
value of &~ (Ref. 5),
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L,
Epc= ~ pe ~2i~

(42)

mhjere I. is the length of the interaction region. The prop-
erties of E~ or I~=

~ E~ ~
can thus be directly deduced

from the properties of S~ or
~ N~ ~

. In the following

we shall only calculate &~, the value of E~ and I~ can
then be calculated using (42).

We now use the formalism presented above to predict
the line shapes in degenerate and nearly degenerate four-
wave mixing.

67~ =NL +kUz,

N2=6)3=NL —kUz .

(43a)

(43b}

In this case the examination of formulas (36) and (37)
shows that the contribution of the coherences is smaller
than the contribution of the populations by a factor of the
order of I /Q. Since I «Qt, we can neglect the contri-
bution of the coherences to the electric dipole moment

and we obtain for D&(v, ),

Q2Q3 (II2 —Ili}(d()—d22)
D~(U, )=

4d

2 2rx d2i
(2ku, +Q) +I'2

2I'

(2ku, —Q) +I
(44)

We see that there are two resonant denominators in (44).
The resonances occur for two velocity groups which are

—5+s(3Q +45 )'
kU~ =

3

where a=+1. To average (44) over the velocity distribu-
tion we remark that the resonant denominators vary more
rapidly with ku, than the factors II; or d;1 which vary on
a scale of the order of Q, or N(U, ) which varies on a scale
of the order of ku. The assumption (1) enables us to re-
place the resonant curves of (44) by Dirac 5 functions. '"
The velocity integration becomes obvious and gives

»Q3 2~~+ g [(llz —Ili)(di~ —d22)d. ].=.
4d

C. Dcencratc four-%ave mlxlNg

Calculation of the dipole moment

We consider in this section the case where the three
beams have the same frequency coL, . For an atom whose
velocity along the z axis is u„the three frequencies coi, co&,

and coq in the atomic frame are

velocity groups contribute to the signal at the secular limit
clearly appears on formula (46). These two velocity
groups are those for which the four-wave mixing process
in the atomic frame is enhanced [Figs. 3(a) and 3(b)] be-
cause it corresponds to a nondegenerate four-wave mixing
on a Rabi sideband. '

Using (28) and (33) we make explicit (46) and we find

d~~ QzQ3 N(A, —Ab)

S rku I
0)

(3Q'+45'}'"

s(5—kUs )(3ku~ —5) —U'/u'

(2ku, )
(47)

(49)0) 0)
The intensity I~ of the phase-conjugate emission

versus the frequency detuning is thus a curve whose value
is zero for 5=0 and which decreases for large values of 5
like (Qi/5) (Fig. 4). It is interesting to notice that I~ is
a function of 5=5/Q~. When the intensity of the
intense-pump beam increases the net effect is only to
change the scale on the frequency axis. In particular the
maximum value of I~ remains constant even if it occurs
for a different value of 5. A similar result has been ob-
tained by Bloch et a/. for a three-level atom

It can also be emphasized that even if the curve of Fig.
4 looks like the curves predicted using a motionless atom

lp,
(ar b.
unit s)

2. Case ofan infinite Doppler width

When Qi «ku, if we study a range of detunings 5 of
the order of a few Qi, we find that the solution U, of (45)

—V~/g
is very small compared to u. The factor e ' can then
be replaced by 1. This approximation is similar to the
infinite-Doppler-width approximation made in several
preceding papers on four-wave mixing. s 9'" In this case,
we obtain by gathering the two terms of (47)

di/tr Q2Q3 N(A, Ab) 5(1—5+195 +g5 )

32 I ku I ( 1 +52)3

(48)

—V2/u2
X

(3Q', +45')'" 8

where d+ —di2 and d =d2, . The fact that only two

FIG. 4. Intensity of the phase conjugate emission as a func-
tion of the frequency detuning 5 in the case of backward satura-
tion and assuming an infinite Doppler width (theoretical curve).
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theory, its characteristics are considerably different. " In
particular the maximum value of I~ is much larger for a
Doppler-broadened medium. " [On the other hand, even
if (48} differs from the analytical formula obtained in the
case of a closed two-level atom, its general characteristics
are the same. j

3. Case ofa finite Doppler ioidth

When the preceding assumptions ( ku »Q i and
ku »5) are no longer verified, we cannot use the simpli-
fied formula (48} and we must use (47). We have
represented in Fig. 5 two curves corresponding to the
same value of Qi, but to two different values of ku. The
straight line corresponds to Qi/ku =—,

'
while the dashed

line corresponds to Qi/ku = 10 . The two curves do not
differ very much close to the center but they are strongly
different in the wings. The effect of Doppler broadening
can thus be detected by analyzing the wings of the experi-
mental curves. As we shall see thereafter (Sec. III), this is
experimentally an important effect.

As a matter of fact, (47) caimot be used for any values
of 5 (or Qi) since we have neglected at the beginning of
the calculation the nonsecular terms. If we consider de-

tunings larger than ku (5 & ku), the ratio secular terms di-
vided by nonsecular terms is of the order of

(Qi/I ku)e ' where U, is a solution of (45). A nu-

merical analysis'~ made for different values of Qi/ku
(I'/ktt being equal to 10 ) shows that (47) is almost ex-
act as long as Qi/ku & 1. Generally speaking (47) can be
considered as correct when the solutions v, of (45) are
such that

~
U,

~

&u.

4. Gaussian beam effects

Up to now we have considered the incident beams as
plane waves. Experimentally, the preceding theory can
only be applied if the transverse dimensions of the probe

beam are smaller than the transverse dimension of the
pump beams (and if the transit time through the probe
beam is longer than I '). Very often, one uses pump and
probe beams of similar transverse dimensions. It is thus
important to study the line shape in these conditions.
Furthermore, it has been shown theoretically that for a
motionless atom model, the line shape is strongly different
in the case of plane waves and in the case of Gaussian
beams. This point has been verified in experiments done
in the Rabi Hmit (Qi & ku ) (Ref. 3).

We assume that the pump and probe beams can be
described by Gaussian beams. The Rabi frequencies Q;
(i = 1,2, 3) are now a function of the position. If the Ray-
leigh range is much larger than the dimension of the cell,
we have

Q;(x,y) =Q; exp[ —(xz+y2)/2a; ] . (50)

with

+~ dX (15+19X+8X )

X (1+X)
(51)

(52a)

(52b)

We have plotted on Fig. 6 two line shapes correspond-
ing to a=2 (three beams of equal diameter) and a=5
(weak beams narrower than the intense-pump beam). In
this last case, the line shape is practically identical to the
one presented on Fig. 4 for three plane waves because the

We assume that the transit time through these beams is
much longer than I' '. When this condition is fulfilled
the atom follows adiabatically the intensity variations and
the intensity of the phase-conjugate beam is proportional
to

Ip,
(orb,
uni ts}

0,
ktt 4

FIG. 5. Influence of the Doppler effect on the phase-
conjugate emission in the case of backward saturation. The
dashed line which corresponds to OI/ku ~10 does not differ
very much from the curve obtained in the infjnite Doppler-
width limit. On the other hand, when Q~/ku =0.25, the wings
of the curve strongly decrease because of the influence of the
Boltzmann factor. (Note that in the experimental situation
where ku is constant and Q~ varies the scale of the frequency
axis varies with Q~.)

FIG. 6. Effect of the radial distribution of intensity on the
phase-conjugate emission. The case a=2 corresponds to three
Gaussian beams of same radius, while o.=5 corresponds to a sit-
uation where the intense-pump-beam radius is much larger than
the probe-beam radius. In this last case, the curve is very close
to the one obtained with plane waves (Fig. 4}. Vfe note that
when the three beams have the same radius, the theoretical
curve does not qualitatively differ from the curve obtained with
plane waves.
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conjugate beatn is radiated in a volume where the intensi-

ty of the intense pump beam is almost constant. The
comparison between the cases a=2 and 5 shows that the
corresponding hne shapes do not qunJttattvely differ. This
result is strongly different from the one obtained with
motionless atoms' The difference can be easily under-
stood. In the present situation, the contribution of atoms
at the edge of the beam is multiplied by

~
Qq(r)03(r)

~

while in the c'Lse of motionless atoms this factor is bal-
anced by the fact that the phase-conjugate intensity varies
like Qi (r). The influence of the edge is thus much
more importtmt in the case of motionless atoms.

D. Near1y degenerate four-wave mixing: case of t~o
weak beams of I~~e frequency

The dressed-atom model can also predict the line shape
in the case of nearly degenerate four-wave mixing. We
consider the case of two light sources of different frequen-
cies aiL, and aiL, . In the backward-saturation case studied
here there are three possible situations according to which
beam (intense pump, weak pump, or probe) has a frequen-
cy different from the two other beams. We have studied
the three cases and we first discuss the case where the
intense-pump beam has a frequency aiq and the two other
incident beams a frequency toL, [Fig. 7{a)]. The frequency
difference between the two light sources is

(53)

The line shape now depends on two parameters: the fre-
quency detumng 5=coo—alt and lL.

The situation is thus very similar to the one found in the
case of degenerate four-wave mixing. The enhancement
of the four-wave mixing process also corresponds to Figs.
3(a) and 3(b), and the results previously obtained can be
very easily extended to the present case. For each value of
toL, and coL, two velocity groups contribute to the signal at
the secular limit. These velocity groups are

—25'+5+s[3Qi+(5+ 5'}2]'~
ku, =

3
(55)

As in the degenerate case the velocity integration is per-
formed by replacing the resonant curves by Dirac 5 func-
tions and give for the electric dipole moment

d~~ QpQ3 N(A, Ab)—
8 ku I

0)
[3Q,+(5+5') ]'

(5—5,)

(ku)

5,(5'+5—35,)

(5'+5—25,)

(56)

2(5+5'}—s[3Qi+ (5+5') ]'~
5,=5—ku, =

1. Mean oalue of the electric dipoie moment

In the case considered here [Fig. 7(a)], the two weak
beiuns have the same frequency in the atomic frame,

(54a}

We see that, apart from the Boltzmann factor, all the oth-.
er terms only depend on (5+5').

(b)
Z. Line shape: case of an infinite Doppler ioidth

When 5, 5', and Q& are much smaller than the Doppler
width ku, the Boltzmann factor in (56) can be replaced by
1. In this case, we can gather the contribution of the two
velocity groups and obtain a simple analytical formula for

d~~ Q,Q, X(A. A,)—
rku r

X
(5+5')[60+19{5+5 ')'+2(5+5')']

[4+(5+5') ]'

FIG. 7. 4,
'a) Four-wave mixjng emission in the case of weak

beams of same frequency. Variation of I~ vs 5 and O'. The
surfaces are calculated (b) in the infmite-Doppler-width bmit
and (c) in the case Q~/ku =0.I.

where 5'=5'/Q, . We remark that this formula can be
obtained by replacing 5 by {5+5')/2 in the formula (48)
obtained in the degenerate case. This corresponds to the
fact that in the atomic frame this nearly degenerate four-
mave mixing situation is physically equivalent to the one
found in the degenerate case.

The surface which represents the variation of the inten-
sity I~ of the phase-conjugate emission versus 5 and 5' is
shown on Fig. 7(b). In an actual experiment, one of the
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frequency detunings (for instance, 5) is kept constant and
we vary 5'. The corresponding theoretical curves are asso-
ciated with a section of the surface I~(5,5'). These
curves have a line shape simHar to the one of Fig. 3, but
the cancellation of the phase-conjugate emission now
occurs when 5'= —5.

3. Line shape: Case ofa finite Doppler iuidth

Using formula (56) it is possible to describe the effect of
a finite Doppler width. We have plotted in Fig. 7(c) the
intensity of the phase-conjugate emission versus 5 and 5'
for Qi/ku =0.1 (this value has been chosen because it
corresponds to a value obtained experimentally). We see
that the Boltzmann factor has a strong influence on the
shape of the surface W. e have shown in Fig. 8 several
sections of the surface corresponding to different values
of 5. We see that the main effect of the Boltzmann factor
on the hne shape (I~ versus 5') is to give asymmetrical
curves when 5+0.

E. Nearly degenerate four-wave mixing: case of two

pump beams of same frequency

We now consider the case where the two pump beams
have the same frequency toL, the frequency of the probe
beam being air [Fig. 9(a)]. (This situation has been exten-
sively studied in the perturbative limit and for motionless
atoms. '

) We have now a new situation where the three
frequencies are different in the atomic frame,

(59a)

l. Position of the resonances

I.et us first consider the term corresponding to popula-
tidn (36). In order to have a fully resonant process, we
must have oi2 ——co3. Using (59b) and (59c) we see that it
implies toL,

——col. , i.e.
„

=0. (60)

This resonance (called b,o) is describod by the diagram of
Figs. 3(a) and 3(b) and corresponds to a degenerate situa-
tion.

We now consider the case of resonances occurring on
the coherence trii (37). Using (59b) and (59c) we see that
a first resonance condition is

the second resonance condition being either

(61)

(62)

(59b)

(59c)

We now calculate using (36) and (37) for which values of
5 and 5 a fully resonant four-wave mixing process can
occur in the energy diagram of the dressed atom. The
main difference with the preceding case is that we have no
longer two velocity groups which fulfill the resonance
conditions whatever the values of b, and 5 are. It means
that if we keep 5 constant and if we vary b, we should
now observe narrow resonances.

5—2ku, = —[Qi+(5—ku, ) ] . (63)

We first consider the resonance hz obtained using (61)
and (62). Using these two equations we find the velocity

(ti)
L

FIG. 8. Four-wave mixing emission with weak beams of
same frequency. The theoretical curves describe the variation of
I~ obtained for different values of the frequency of the intense
pump [8={i00—rot. )/Q~] when the frequency of the weak beam
is scanned.

FIG. 9. (a) Four-eave-mixing emission in the case of two
pump beams of same frequency. Variation of I~ versus 5 and
6'. (b) The surface is obtained in the infinite-Doppler-width lim-
it.
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group for which the four-wave mixing is fuay resonant
and the resonance condition. The velocity group corre-
sponds to the solution u of (45) and the resonance condi-
tion is

a=a;= —-', [5+(45z+3Q', )'/z] .

We now consider the resonance lLi associated to (61) and
(63). We first observe that this resonance should occur for
u, =0 and we then deduce the position of this resonance,

b, =a', = —(5z+Qzi)'/z .

If we consider the coherence crzi instead of cr, z, we find
two new resonances: 5i which is located at

b, =hi ——(5 +Qi)'

and which also corresponds to the velocity group u, =0,
and b,z which is located at

~=~z=-', [—5+(45z+3Qzi)'/z]

and which corresponds to the solution U+ of (45).

2. Amplitude and width of the resonances: general
considerations

The analytical formulas that give tr;; and tr,j [(36) and
(37)] imply that the width of the 5 resonances should be
of the order of I'. To find the shape of the b; resonance
we replace in formulas (36) and (37) b, by 5i+g, where g
is a small quantity of the order of I and 5; is given by
(60), (64), (65), (66), or (67). In all these calculations g is
considered to be small compared to Qi and we shall only
retain the terms at lowest order in g'. Afterwards the
mean value of the electric dipole moment is obtained by
averaging (38b) over the velocity distribution assuming an
infinite Doppler width. The integration over U, can then
be easily performed using the residue theorem.

We do not make such a derivation for the five reso-
nances, since the properties of the 6'i and b,z resonances
are deduced from the properties of the 5i and 5z reso-
nance using (41).

5 e( —5)
16 ku 1 (1+5z)z I +t'(Q —Q&)

The hi resonance can only be observed for 5&0 (at the
secular limit). Its width is also equal to 21. This reso-
nance corresponds to the diagram of Fig. 3(e).

S. Amplitude and width of the b,z resonance

For 5 close to b,z the mean value of the dipole moment

~ 1s

d~~ QzQz A, Ab—
16 ku I

(~z-2S)(-'z ~z-S)ze(-,' -5)
X

b, z(3+45 )'/ i(b, —b,z)+
( 3 +45 2

)
i /z

where Zz ——hz/Qi and hz is given in (67). At the secular
limit this resonance should only be observed for 5 & Q&/2.
The width is equal to

4I"b 2

(3+45')'" (71)

and its asymptotic value for 5« —Qi is 4I'. This reso-
nance corresponds to the diagram of Fig. 3(d).

6. Amplitude and width of the ibz resonance

The properties of this resonance are found using (41)
and (70). Around the hz resonance (64), &~ is equal to

4. Amplitude and width of the h~ resonance

Using (41) and (68) we find that the component of the
dipole moment which generates the phase-conjugate beam
close to the 6, i resonance (65) is

3. Amplitude and width of the hr resonance

Using the method that we have presented in Sec. II E2,
we obtain the following value for &~ for values of b,
close to 5i (66}:

dv/~ Q,Q, A. Ab 5 e(5)—
ku I. (1+5 )

I.+i(~—~, )
'

di/~ QzQz A, Ab—
16 ku I

(Z z' —25)( —,5 z' —5)'e( —, +5)
I

Z (3+45z)'/z i(S S;)+—
(3+45 z)i/z

(72)

where e(5}is the Heaviside function which is equal to 0
for 5 & 0 and 1 for 5 ~ 0. We thus predict that the hi res
onance should only be observed for 5~0 at the secular
limit. Its width is 2I" md its intensity is proportional to
5 /(1+5 )". I.et us finally note that the b, , resonance
corresponds to tile diagram of Fig. 3(f).

where Zz ——b,z/Q, . This resonance corresponds to the di-
agram of Fig. 3(c).

7. Amplitude and width of the 50 resonance

Using the same method we find the value of 5&~
~ound the a, r~onmce (60),
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d~~ QiQp A, —Ai,

32 ku I

X—5(15+195 +85 )

( 1 +52)3 (73)

The analysis of formulas (36}and (37) shows that the res-
onances occur for the values of 6 found in Sec. IIE but
that their intensities are now completely different.

l. Amplitude and width of the ht resonance

When b, varies, we obtain a resonance when b, =0. The
width of the resonance is 2I and its intensity is equal to
the value (48}predicted for the degenerate case.

8. Conclusion

Using the preceding formulas we have calculated the
surface which represents the variation of the phase-

conjugate intensity versus 5 and 5 [Fig. 9(b}]. For a given

value of 5, when we vary 6 we generally observe only two
resonances. In fact, the hi and b, 'i resonances are about 2
orders of magnitude smaller than the ho„hz, and hz reso-

nances and are not visible on the same scale. The main
resonances are 50 and hz for 5&0 and l}o and b.i for
5 p 0. It can be emphasized that the resonances which are
important in the geometry of Fig. 9(a) do not correspond
to U, =0. For each value of 5, the velocity group changes
and the relation between the position of the resonances
and the dynamic Stark effect is not obvious.

F. Nearly degenerate four-wave mixing: The intense

pomp beam and the probe beam have the same frequency

We finally consider the case where the intense-pump
beam and the probe beam have the same frequency tot, ,
the frequency of the weak pump beam being toL, [Fig.
10(a)]. In the atomic frame, the frequencies now become

2. Amplitude and width of the L} 't resonance

Using (41) and (75) we find for 5 close to b, 'i (65),

dV m Q2Q3 Aa Ab 5[(1+5 )' —5]N
16 ku I' (1+5i)2

X
e(-5}

I i (a—l},', )—
(76)

The hi resonance can only be observed for 5 &0 and its
width is 2I . This resonance is described by the diagram
of Fig. 3(d).

3. Amplitude and width of the l4 resonance

Using the method presented in Sec. IIE2 we calculate

&~ for 5 close to 6i, 5i being given in (66),

d~~ Q2Qi A, —Ab

16 ku I'

5[5+(1+5 )'~ ] e(5)
(1+5'}z 1" i (5—6, )—

We see that the hi resonance can only be observed for
5~0 and that its width is 21. This resonance is described

by the diagram of Fig. 3(c).

co i =cog +kU»

C02 =Nl —kaz,

6)3=6)L —kU

(74a)

(74b)

(74c)

For 5 close to hi (67), we find

d~g QzQi A, —As

16 ku I'

(E&—25) X [e(—,
' —5)]

X

(3Qi+45 )'~

(77)

The lLz resonance should only be observed when 5 & Qi/2.
The width of the resonance is given by (71). The diagram
of Fig. 3(e) corresponds to this situation.

FIG. 10. (a) Four-wave mixing emission in the case when the
frequency aoL, of the weak pump beam is different from the fre-

quency arL, of the intense pump and of the probe. Variation of
I~ vs 5 and 5'. (b} The surface is obtained in the infinite-
Doppler-width hmit.

4. Amplitude and width of the bt resonance

Using (41) and (77) we find for dL close to b,z (64),

d~~ Q2Qs A, —As

16 ku I
(Z 'i —25) X [e(—,

' +5)]
X

Z (3+45')'", ,„,—( —,')
(3Qii+45')'"

The diagram of Fig. 3(f) corresponds to this resonance.

(78)
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5. Amplitude and width of the 60 resonance

The value of 4'~ for this resonance is identical to the
value (73) found in Sec. IIE7. Here also, this resonance
corresponds to the diagrams of Figs. 3(a) and 3(b).

6. Conclusion

Using the preceding formulas, we have plotted in Fig.
10(b) the intensity of the phase-conjugate emission versus
5 and 5'. As in Sec. IIE, when we vary 5 we observe two
resonances. However, these resonances are now bo, hi,
and hi, the hz and b,2 resonances having an intensity
weaker by 2 orders of magnitude. This point is clearly
very interesting because the b, i and 6'i resonance corre-
sponds to the velocity group u, =0. The geometry of Fig.
10(a) enables us to directly measure in an atomic vapor
the dynamic Stark effect without any correction for the
Doppler effect. Another advantage of the geometry of
Fig. 10(a) is that the S, i and b, 'i resonances are expected to
be narrower than the h2 and hz resonances. We thus ex-

po t that tllc spcctia obtained 111 thc geometry of Fig.
10(a) should contain narrower resonances than the spectra
obtained in the geometry of Fig. 9(a).

In conclusion, the comparison between the results ob-
tained in Secs. IIE and II F shows that the best conditions
to observe the dynamic Stark effect in an atomic vapor by
nearly degenerate four-wave mixing are those of Sec. II F.
This explains some of the problem encountered by Steel
and I.ind'~ in observing the dynamic Stark effect in sodi-
um vapor using two pump beams of the same frequency.
(In fact, their experiment was done with two beams of the
same intensity. In that situation, the Rabi frequency is
spatially modulated in the laboratory frame and the
theory is more complex than the one derived in Sec. II E.)

III. EXPERIMENTAL STUDY

A. Description of the experimental setup

1. The neon cell

We have performed the experiments in a neon
discharge. Even if the four-wave mixing in neon is less
efficient than in sodium, the simplicity of the neon spec-
trum, and in particular the lack of hyperfine structure in

Ne, makes this element more interesting for quantitative
comparisons. We recall in Fig. 11 some of the excited lev-

els of neon. Most of our experiments have been done on
the 607-nm transition which couples the 1s4 (J=1) reso-
nance level of neon and the pi (J=0) excited level. The
main interest of this transition is that it corresponds to a
perfect two-level atom when the incident beatns have the
same polarization and a perfect three-level atom when
cross-polarized pumps are used. ' Some experiments
have also been performed on the 640-nm transition which
couples the 1s5 (J=2) metastablc level and the 2p9
(J=3) excited level. The four-wave mixing process is
more efficient (by about 1 order of magnitude) on this
transition but the difference of the Clebsch-Gordan coef-
fments and the Zceman optical pumping makes a quanti-
tative interpretation more problematic. The maximum
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FIG. 11. Energy levels of neon. Our experiments are done on
the ls5-2p9 transition (6402 A. ) and on the lsd-2p3 transition
(6074 A.).

2. The light source

The experiments have been done with a homemade cw
dye laser' pumped by an Ar+ laser. This single-mode
dye laser delivers about 0.5 W at 607 nm using Rhodam-
ine 590 and 0.4 W at 640 nm using a mixture of Rhodam-
ine 590 and 640.

9. The four-wave mixing process

In the degenerate four-wave mixing experiment, the
three beams come from the same laser. Using a thick
glass plate I., (see Fig. 12), we separate two weak beams

cw dye
laser f'

FP
75 MHz

chart Y2

recorder
Yg

OUt

reF

lock-e ompl.

FIG. 12. Experimental setup.

value of I~/I3 (phase-conjugate reflectivity) on the 640-
mn transition is 0.5X10 . This value is coherent with
the assumption of a thin optical medium. We have used a
5-cm quartz cell, filled with 0.6 Torr of neon in the case
of the 607-nm transition and with 0.1 Torr in the case of
the 640-nm transition.
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Et and E3 from the intense beam Ei. The intensities of
I2 and I3 are less than 10 Ii. The mirrors Mi and M2
are used to have a perfect superposition of the pump
beams inside the experimental ce11. The pmbe beam E3 is
reflected in the cell by a semitransparent mirror I.z. The
angle between E2 and E3 is of the order of 10 rad.

In the case of nearly degenerate four-wave mixing we

used two identical light sources. The laser whose frequen-

cy is scanned is controlled using a 75-MHz free-spectral-

range Fabry-Perot (FP) interferometer. We use another
Fabry-Perot interferometer (1.5-GHz free spectral range)
to determine when the two frequencies coL and coL are
qUal.

4. Detection

Before being transmitted into the neon cell using I.z,
the probe-beam intensity is modulated at 800 Hz. The in-

tensity of the phase-conjugate beam is detected with the
photomultiplier Di and analyzed with a lock-in amplifier.
We record on the Fi trace of a chart recorder the intensi-

ty of the phase-conjugate emission and on the F2 trace
the transmission peaks of a 75-MHz free-spectral-range
interferometer.

5. The restive values of I; Qi, and ku

Since our theoretical model has been developed for a
peculiar hierarchy of the parameters 1, Qi, and ku, it is
important to check that (1) is fulfilled in our experimental
situation. The Doppler width ku at 300 K in neon is of
the order of 0.8 GHz. To estimate the value of the relaxa-
tion rate I', we have measured the width of a saturated
absorption line shape. We have found 20 MHz for the
half width at half maximum in the case of the 607-nm
line and 15 MHz in the case of the 640-nm line. (These
values include the jitter of the laser. ) With an incident
power equal to Pi ——10 W/cm we obtain Qi-100 MHz
for the 607-nm line. In the case of the 640-nm line we
have several Clebsch-Gordan coefficients and we can only

define a mean value of Qi which is of the order of 160
MHz.

B. Experimental study of degenerate four-wave mixing

1. Case of the 640-nm line

a. Variation usth the pump beam intensity W. e show in

Fig. 13(a) a curve obtained with three linearly polarized
beams of incident intensity equal to Pi-10 W/cm,
P2-0.05 W/cm, and P3-0.01 W/cm . The probe beam
has been focussed at the center of the pump beams to be
in a situation where a plane wave theory can be applied.
The general features of this curve qualitatively correspond
to theory (see Fig. 4). We have measured the distance be-

tween the two maxima of Fig. 13(a) for different values of
Pi and plotted this distance as a function of Pi in loga-
rithmic scale in Fig. 14. We see that the points are on a
straight line of slope —,', in agretsnent with theory.

b Gau.ssian beam effects. If we do not focus the probe
beam the three incident beams have the same radius. The
phase-conjugate intensity versus 5, obtained in these con-
ditions, is shown in Fig. 13(b). This line shape is in quali-
tative agreement with the theoretical curve of Fig. 6. In
particular, contrary to the case Qi&ku experimentally
studied by Kleinmann et al. ~ the line shapes of Fig. 13(a)
and Fig. 13(b) are very similar.

c. Discussion. We have not tried to perform a qualita-
tive comparison because the 640-nm line is not an excel-
lent situation to test the model of Fig. 1(b). The lower

25
(MHzl

5 10 50 It
(orb. units)

FIG. 13. Degenerate four-wave mixing on the 6402-A transi-

tion in neon. {a) Experimental recording of I~ obtained with a
probe-beam radius smaller than the pump-beam radius (case
where the plane wave theory can be applied). (b) Recording in a
situation where the three incident beams have the same radius.

FIG. 14. Distance between the two maxima of emission in

degenerate four-wave mixing as a function of the intensity of
the pump beam. We find a square-root law in agreement with
theory.
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J=2 level is a metastable level and the situation should
be quantitatively discussed using the theory developed for
a resonance line. " Furthermore, because of the different
~man sublevels, it is not possible to consider that we
have a real two-level atom. It is the reason why most of
our quantitative experiments have ben developed on the
607-nm line.

2. Case of the 607 nm-line

We show in Fig. 15(a) a line shape obtained at 607-nm
for Pi ——20 W/cmi (Qi ——165 MHz). This curve has been
obtained with a probe beam focussed at the center of the
pump beams. We have compared this curve with theoreti-
cal points obtained using formula (48) valid for an infinite
Doppler width. The agreement is rather good at the
center of the line but a large discrepancy is observed on
the wings. If instead of (48) we used (47) and take into ac-
count the finite Doppler width effect we obtain the points
of Fig. 15(b) which are in excellent agreement with the ex-
perimental results. This study clearly shows that a quan-
titative agreement can be obtained when the Doppler velo-

city distribution is included in the theory.

C. Experimental study of nearly degenerate
four-wave mixing

We describe here experiments done on the 607-nm line
of neon with three incident beams which have the same
linear polarization. The light at frequency coL and c0L

come from two different lasers. The frequency toL, of the
intense beam is kept constant and we record the intensity
of the four-wave mixing emission versus tot, . This experi-
ment is repeated for several values of 5=too —cot, .

1. Case of tue toeak beams of the same frequency

We show in Fig. 16 several recordings of the four-wave
mixing emission obtained for several values of
5=too —c0L. The value of the Rabi frequency of the
intense-pump 1m' Q~ is 100 MHz. The asymmetry ob-
served for 5&0 is related to the influence of the
Boltzm ann factor. Indeed, the comparison with the
theoretical curves of Fig. 8 is very good and shows that a
quantitative comparison needs to take into account the
Maxwell-Boltzmann velocity distribution.

2. Case ofa probe beam and an intense pump beam

of the same frequency

%e now present the situation theoretically studied in
Sec. II F. The case of two pump beams of equal frequen-
cy will be discussed afterwards and compared to the re-
sults of this section.

a. Position of the resonances Th.e experiments are done
by scanning the frequency tot, of the weak pump wave.
We have done several recordings for —300 MHz
&5&600 MHz. We show in Fig. 17 an experimental
curve recorded for 5=250 MHz. We observe two reso-
nances which are 60 and h~. The positions of the reso-
nances are reported in Fig. 18 where they are compared to

FIG. 15. Quantitative comparison between experiment and
0

theory in the case of degenerate four-wave mixing at 6074 A.
The experimental curve obtained for I~ vs 5 (5 & 0) is compared
with theoretical points calculated using (a) an infinite Doppler
width and (b) a realistic Doppler width. The excellent agree-
ment obtained in this last case demonstrates the influence of the
Boltxmann factor.

FIG. 16. Nearly degenerate four-wave mixing at 6074 A.
Case of two weak beams of the same frequency. The different
experimental recordings of I~ correspond to different values of
5=coo—~L. They are obtained by scanning the frequency ~q of
the weak pump beam. For each value the distance between the
two arrows corresponds to a scanning of 0.75 GHz. The value
of QI is 90 MHz. The different curves correspond to 5= —0.6
GHz (a), —0.4S GHz (b), —0.3 GHz (c), —0.1S GHz (d), 0 (e),
0.1S GHz (f), 0.3 GHz (g), and 0.4S GHz (h). The asymmetry
observed when 5&0 is related to Boltzmann factors which differ
for 5' & —5 and 5' & —5 (see theoretical curves, Fig. 8).
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1

0

] MHz)

0

FIG. 19. Nearly degenerate four-wave mixing at 6074 A. In-

tensity of the 5» and h, » resonances vs frequency of the intense

pump beam. The experimental points are compared with the

theoretical curves obtained in Sec. II F.

0
FIG. 17. Nearly degenerate four-wave mixing at 6074 A.

Expcxlmcnt8Ll recording of thc four-lvvavc mixing emission. Thc
intense pump beam and the probe have the same frequency ~L,

(coo—cuL, ——250 MHz). The frequency of the w'eak pump beam is
scanned. Two resonances (d~ and 4~ ) are observed.

the theoretical values (obtained with Q& ——90 MHz). We
note that the h~ and 5& resonances correspond to the velo-

city group u, =0 and that they are directly connected with
the energy levels of the dressed atom. The width (-75
MHz) of the b, t and h~ resonance is much smaller than
the Doppler width. We have thus observed a Doppler-free
spectrum of atoms dressed by optical photons in a cell. 's

We have observed neither the bz nor the b,z resonance.
This is in good agretmient with the theoretical predictions

100 9Hz

(Sec. II F 6) since we have calculated that the intensity of
b2 and b,z should be 100 times smaller than the intensity
of Q) and Q(.

b Widt. hs of the resonance Th.e width of the b,
&

reso-
nance of Fig. 17 is 75 MHz. This curve is broader than
the saturated absorption line whose width is 40 MHz.
Theoretically we have predicted that the two curves
should have the same width. The difference comes from
the fact that we use two independent light sources. We
must also take into account the residual Doppler effect in-

duced by the angle between Eq and E3.
When 5 varies, the width of the 5& resonance remains

almost constant and of the order of 70 MHz. This
behavior is in agreement with our theoretical calculations
which predict that the width of b, ~ should remain con-
stant (see Sec. IIF1).

c. Intensity of the resonances. We have plotted in Fig.
19 the experimental intensities of the b,

~
and h~ reso-

nances versus 5. These points are compared with the
theoretical curve calculated in Sec. II F. We see that the
agree&ent is good. However, we must add that the rela-
tive intensities of 4~ and b,o differ from the theoretical
prediction. For large values of 5 we find a ratio equal to 3
while the theory predicts a ratio equal to 1. We have
shown' that this discrepancy comes from the fact that we
have used one single relaxation time I to describe the re-
laxation of all the quantities: optical coherence, popula-
tion of levels

~
a) and

~
5), etc. If we used a morerealis-

0

O

FIG. 18. Nearly degenerate four-wave mixing at 6074 A. Po-
sition of the resonances vs frequency of the intense pump beam
(which is equal to the frequency of the probe beam). The experi-
mental points are compared with a theoretical curve obtained in
Sec. IIF.

FIG. 20. Nearly degenerate four-wave mixing at 6074 A.
Case of two pump beams of the same frequency. Intensity of
the phase-conjugation emission vs the frequency of the probe
beam. The pump frequency detuning is 400 MHz. The two ob-
served resonances are dko and 52.
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realistic model for the relaxation (as in Sec. III C2c) per-
mits an understanding of this point.

IV. CONCLUSION

200 MHz

~0
~t

~t
~t

~O
~O

~O

~OOgg

0
~O

~0
~t

~O
~O

P

FIG. 21. Nearly degenerate four-wave mixing at 6074 A.
Case of two pumps of the same frequency. Position of the reso-
nances vs frequency of the pump. The experimental points are
compared with the theoretical curve obtained in Sec. IIE.

tic model with different relaxation rates, we can explain
this difference.

9. Case of two pump beams of the same frequency

a. Position of the resonances The .experimental curves
are obtained by scanning the frequency toL, of the probe
beam. We have done several recordings for —500 MHz
& 5 & 500 MHz. A recording obtained for 5=400 MHz is
shown in Fig. 20. We observe two resonances which can
be identified as b,o and b2. We have plotted the experi-
mental position of the resonances (Fig. 21) together with
the theoretical prediction for the b,o, h,z, and hs reso-
nances (Qi is equal to 90 MHz). We can note that the b, i
and 5i resonances have not bren observed in agromnent
with the theoretical predictions of Sec. II E 8.

b. Wdth and inte'nsity of the resonances The wid. th of
the hz resonance of Fig. 20 is of the order of 150 MHz.
We recall that the theory predicts a width equal to 41
when

~
5

~
&)Qi. This width is larger than the width of

the hi resonance of Fig. 17. This is in agreement with
our theoretical model which predicts that the ratio should
be equal to 2.

Concerning the intensities, we observe only the ho, 52,
and hz resonances. This is in agreement with our theoret-
ical model which predicts that hj and 5& should be 2 or-
ders of magnitude smaller. The experimental variation of
the intensities of b,z and h2 versus 5 is also in agreement
with theory. On the other hand, we find, as in Sec. III C 2
that the relative intensities of h,o and hz differ by a factor
of 3 from the theoretical prediction. Here also, a more

In conclusion, we have developed a new theoretical ap-
proach which makes use of the dressed-atom model, to
study the effect of saturation in four-wave mixing. We
have done experiments in neon to verify the validity of the
model. Our main results follow.

We have verified that this theory permits us to correct-
ly interpret most of our experimental observation both in
degenerate and nondegenerate four-wave mixing.

As in the preceding study of Bloch and Ducloy, s our
experimental results cannot be interpreted using a
motionless-atom model. On the other hand, we have
shown that a quantitative analysis of the experimental ob-
servation cannot be done with the assumption of an infin-
ite Doppler width. A quantitative understanding needs to
take into account the correct Boltzmann factor of the
velocity distribution.

In the case of nearly degenerate four-wave mixing, we
have shown that the phase-conjugate emission is strongly
different according to the choice of the beam which has a
different frequency. We have also shown that narrow res-
onances can be observed which correspond to a Doppler-
free spectrum of atoms dressed by optical photons.

We have considered in this paper the case of three in-
cident beams of same polarization. Another important
situation corresponds to the case of cross-polarized beams.
We will show in a forthcoming paper that the dressed-
atom model also permits us to clarify the underlying
physics in that situation and leads to predictions which
are in agreement with the experimental results.

The study presented here has the great advantage in
clarifying the real effect of Doppler broadening in nearly
degenerate four-wave mixing. However, the results can-
not be directly applied to experiments in optical phase
conjugation where the two pump beams generally have
similar intensity. In the case of two-level atoms, a
theoretical study of the effect of two saturating pump
beams is not a straightforward extension of the present
model. If the case I &Qt«Qi can be included in the
theory, " the case Q~-Qq&~I nexis a special and more
complicated analysis, this last situation being similar to
the problem of a spin —, interacting with a static field and
two intense nearly resonant radio-frequency fields. On
the other hand, in the case of three-level atoms, the effect
of two intense cross-polarized pump beams can be solved
analytically. Thus, we feel that a closest approach to situ-
ations usually encountered in optical phase conjugation
should be easier in the case of cross-polarized pump
beams.

ACKNO%LEDGMENTS

The I.aboratoire de Spcctroscopie Hertzienne de l'Ecole.
Normale Superieure is "associe au Centre National de la
Recherche Scientifique. "



P. VERKERK, M. PINARD, AND G. GRYNBERG

Optica/ Phase Conjugation, edited by R. Fisher '(Academic,

New York, 1983).
~R. %. Helhvarth, J. Opt. Soc. Am. 67, 1 {1977),A. Yariv and

D. M. Pepper, Opt. Lett. 1, 16 {1977).
~D. H. Bloom, P. F. Liao and N. P. Economou, Opt. Lett. 2, 58

(1978); R. C. Lied and D. G. Steel, ibid. 6, 554 (1981); B.
Kleinmann, F. Trehin, M. Pinard, and G. Grynberg, J: Opt.
Soc. Am. 8 2, 704 (1985);P. Kumar, Opt. Lett. 10, 74 (1985).

4E. Le Bihan, P. Verkerk, M. Pinard, and G. Grynberg, Opt.
Commun. 56, 202 (1985};E. Le Bihan, M. Pinard, and G.
Grynberg, Opt. Lett. 11, 159 (1986}; M. Pinard, D.
Granclement, and G. Grynberg, Europhys. Lett. (to be pub-
lished); J. R. R. Leite, P. Simoneau, D. Bloch, S. Leboiteux,
and M. Ducloy, ibid. (to be published).

5S. M. %andzura, Opt. Lett. 4, 208 (1979); J. Nielsen and A.
Yariv, J. Opt. Soc. Am. 71, 180 (1981); M. Ducloy and D.
Bloch, J. Phys. (Paris) 42, 711 (1981);43, 57 (1982).

6R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978); 3, 205
(1978); G. J. Dunning and D. G. Steel, IEEE J. Quantum
Electron. QE-1$, 3 (1982); G. P. Agrawal, A. Van Lerberghe,
P. Aubourg, and J. L. Boulnois, Opt. Lett. 7, 540 (1982); G.
Grynberg, B. Iaeinmann, and M. Pinard, Opt. Commun. 47,
291 (1983);S. Stuut and M. Sargent III, J. Opt. Soc. Am. B 1,
95 (1984); M. Pinard, B. Kleinmann, and G. Grynberg, Opt.
Cognmun. 51, 281 (1984).

7D. Bloch, R. K. Raj, K. S. Peng, and M. Ducloy, Phys. Rev.

Lett. 49, 719 (1982).
~D. Bloch and M. Ducloy, J. Opt. . Soc. Am. 73, 635 (1983); 73,

1844 (1983).
9G. Grynberg, M. Pinard, and P. Verkerk, Opt. Commun. 50,

261 (1984).
'oD. J. Harter and R. W. Boyd, IEEE J. Quantum Electron.

QE-16, 1126 (1980);D. J. Barter and R. W. Boyd, Phys. Rev.
A 29, 739 {1984).
G. Grynberg, M. Pinard, and P. Verkerk, J. Phys. (Paris) 47,
617 (1986).

~M. Ducloy and D. Bloch, Opt. Commun. 47, 351 (1983).
' C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy, edited

by R. Balian, S. Haroche, and S. Liberman (North Holland,
Amsterdam, 1977), p. 3.

~~M. Pinard, B. Kleinmann, G. Grynberg, D. Bloch, and M.
Ducloy, J. Phys. (Paris) 46, 149 (1985).

'5D. G. Steel and R. C. Lind, Opt. Lett. 6, 587 (1981).
6M. Pinard, P. Verkerk, and G. Grynberg, Opt. Lett. 9, 399

(1984).
~~F. Biraben, Opt. Commun. 29, 353 (1979); F. Biraben and P.

Labastie, ibid. 41, 49 (1982).
'sP. Verkerk, M. Pinard, and G. Grynberg, Opt. Commun. 55,

215 (1985).
&9P. Verkerk, Ph.D. dissertation, University of Paris, Paris,

1985.
M. Pinard, P, Verkerk, and G. Grynberg (unpublished).








