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Suitable equations for lasers with injected signal are derived in the case of a population decay
much slower than the other damping processes. A perturbative approach for a small input field €
shows evidence of anomalous pushing of the laser frequency away from the external reference one.
A threshold for the appearance of antisynchronized solutions is analytically found and numerically
checked. A double-point bifurcation explains the switch from pulled- to pushed-frequency solutions
as an exchange with a second branch of auto- Q-switched periodic trajectories. The final analysis of
locking threshold allows us to relate the small- and large-¢ behavior.

I. INTRODUCTION

Synchronization of two coupled oscillators has already
a standard treatment,! whose result corresponds to a
locked state with a frequency intermediate between those
of the free oscillators. A class- A laser? [with polarization
y. and population y, damping constants much larger
than that (k) of the field], when injected, behaves exactly
in that way. As the amplitude of the external signal is in-
creased, the frequency of the laser changes continuously
from the free-case value toward the frequency of the
external field.

The scenario is more complicated for class-B lasers
(k ~y,>>7)), since a third time constant (the frequency
of the relaxed oscillations around the lasing state) enters,
involving resonance phenomena. As a consequence, the
frequency of the coupled system turns out to be, for some
parameter values, pushed away from that of the injecting
laser. A perturbative approach allows, in the small-
coupling approximation, the determination of a critical
pump value separating the pushing from the pulling
behavior. Such a result is confirmed by numerical investi-
gations in the strong-coupling limit as well. Moreover,
numerical simulations indicate the existence of a second
branch of periodic solutions corresponding to an auto- Q-
switched behavior? with a diverging period for vanishing
external amplitudes. The two branches of limit cycles fol-
low different routes to the locked state: While one does it
through vanishing oscillation amplitudes (i.e., a reverse
Hopf bifurcation, here theoretically predicted), the other
shows a vanishing frequency at the critical point. The ini-
tial pushing-pulling phenomenon is shown to be related to
an exchange of route between these two families of solu-
tions in correspondence of a double-point bifurcation.®
The variable position of the Hopf bifurcation on the hys-
teresis curve indicates the existence of a codimension-two
bifurcation* where the system is marginally stable in two
independent subspaces.

The paper is organized as follows. In Sec. II the model
is introduced starting from the Maxwell-Bloch equations
and following an improved adiabatic elimination (AE)
procedure recently introduced.’> Modified rate equations
are obtained and the amplitude of corrections are dis-
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cussed. In Sec. III a second-order application of
Lindstedt-Poincaré perturbative technique is performed,
yielding an expression for the frequency of the coupled
system in the small external field approximation. In Sec.
IV the locking region is fully analyzed by using a suitable
smallness parameter. Section V is devoted to a numerical
analysis of the model for different values of the external
signal and of the detuning between the two lasers. In Ap-
pendix A, a perturbative analysis shows that no
anomalous behavior occurs in class- A4 lasers. Finally, in
Appendix B the numerical technique used to compute
periodic solutions is briefly sketched.

II. ADIABATIC ELIMINATION

We start writing the usual set of Maxwell-Bloch equa-
tions for a single-mode, homogeneously broadened ring
laser forced by an external signal with a frequency wg,

E=—k[(14i0)E —P —a],
P=—y,[(1+i8)P—EA],
A=—y [A—Ag+(EP*+E*P)/2].

Here, E is the complex field amplitude normalized to
its saturation value, P the complex polarization, A the
population inversion, A the pump rate, and « the injected
signal normalized as E. Moreover, having written (2.1) in
a frame rotating at the external frequency wg, 6 is the
cavity mistuning [0=(w,—wg)/k, @, being the cavity
frequency] and & is the atomic detuning [6=(w,
—wgr)/Y,, w4 being the atomic transition frequency].

When the polarization (the electric field) decay rate v
(k) is large compared to k (y,) and y,, the system (2.1)
can be reduced to a three-dimensional flow by a simple-
minded AE procedure consisting in solving the equation
for the fast relaxing variable at equilibrium and introduc-
ing that value into the other equations.® Here, we operate
a reduction of dimensionality based on a more accurate
procedure.’

We show that if ¥, <<k, ¥, or more precisely, when
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(y,+k)
nmTP e g (2.2)

ky,

and for any choice of ¥ =y, /k, a suitable variable to be
correctly eliminated always exists, namely,

R=(1/gu)P—E), (2.3)

where g =%/(1+%). Indeed, introducing the new time
scale

1-='y“t/y, , (2.4)
Egs. (2.1) can be rewritten as
R=-1—:—7’- R(1/g +i8)
L w+i| L s E+—f—l
8u Y 8YH
E=R —i6E /gu+a/gu , 2.5)

w=D —E?>—u[w+gRe(E*R)],

where the variable w=(A—1)/u, and the parameter
D =Ay—1 have been introduced as well. A linear stabili-
ty analysis around the equilibrium values (for a=0)
Ro=0, E}=D, wy=0, shows® that despite the presence
of two large damping constants k, ¥, in Egs. (2.1), there
is only one rapidly contracting direction with a rate given
by

Yr=(14+772/uy (2.6)

in rescaled time units. Therefore, the R variable, whose
decay rate coincides with the largest negative eigenvalue
YR, is well suited for being adiabatically eliminated. In-
cidentally, let us notice that y g, as a function of 7, has a
minimum value equal to 4/u, hence condition (2.2)
guarantees the correctness of the AE of R, independently
of 7. In particular, in the two limit cases ¥ >>1 (CO,
laser) and ¥ << 1 (raser,’ laser with radio wave amplifica-
tion by stimulated emission of radiation), it yields the
same results as for the AE of polarization and field,
respectively.

At variance with Ref. 5, where the resonant case is dis-
cussed, here particular care must be taken in eliminating
R because of its complex character. There are, indeed,
two frequencies involved in its evolution, namely, the
damping (1+47%)gu and the rotation (1+7%)8/u. The first
of Eqgs. (2.5) is of the type

u=—(y+iQu +v, 2.7
which can be formally solved as
u)= [ _expl—(y+iQ)t —Dlo(rdr,  28)

dropping the irrelevant dependence on the initial condi-
tion. Here the AE is a good approximation provided v (7)
is slow compared to the rate y +i{). In order to minimize
the rate of v(r), we go to a reference frame 7 where the
average rotational part of the motion of v (r) is already in-
cluded. In such a new reference frame, it is then ap-
propriate to state that
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v(7) .

— <<y +i.

vir) <r+
Let us go now to the laser variables. While before cou-
pling, E rotates at a frequency . and P at rate w4, after
coupling the asymptotic solution both for E and P will
rotate at frequency w;, which has to be evaluated self-
consistently. Thus R will rotate at w;, and hence, in the
frame rotating at wg, we must introduce an extra shift
(wg — @y ), which in scaled time units reads as
172
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((OR -—CL)L) . (2.9a)

In the new reference frame, R obeys an equation like (2.5)
but with § of the first parenthesis replaced by

o=b4 P (2.9b)
Notice that this change would introduce a factor e ~*#" in
the term, but if we represent again R in original reference "
frame of Eq. (2.1), the equilibrium solution is

w+ -
u

E-2% .

R(1+iog)= —
Yu

9 s (2.10)

Y
By inspection, Eq. (2.10) could have been simply obtained
by solving Eq. (2.5) with R =0, and at the first & replaced
by o.

We recall that relation (2.10) is valid practically for any
value of 7, as for any choice of 8 and 6. However, for
simplicity, we will restrict our analysis to small detunings
6 and 8, of order u. This condition is a very important
one in order to have a nontrivial dynamics owing to the
comparable strength of the population coupling (w term)
and of the detuning effects. Substituting Eq. (2.10) into
Eqgs. (2.5) yields

E=E|w+2& —f———& —IiE 9+% +wog
b7 p
+2 1422
K Y

(2.11)

=D —E*—pw(1+gE})+ —2—(E +E*),
2(14+7%)
where p? terms have been neglected. In this set of equa-
tions, we recognize zero-order terms corresponding to a
reversible mode® plus many corrections of first order in .
Let us analyze them in detail. The term with gw in the w
equation is the only unavoidable correction since it intro-
duces losses in a system otherwise conservative in large-
parameter regions.® All the other terms are not structur-
ally relevant: The first one in the E equation is a constant
correction to the growth rate w, the second one slightly
modifies the rotating part, while the last one changes only
the normalization factor for the external field. The last
term in the right-hand side of the w equation, though,
compared with D —E? is generally negligible. However,
it is important to notice that all these corrections become
relevant for large values of w and E, thus offering the op-
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portunity for an a posteriori check of the correctness of
the AE.

Summarizing, the relevant corrections to the naive ap-
proach (especially, for the case of CO, lasers where 7 can
vary from three to ten partly come from the multiplica-
tive factor g of E in the w equation, and partly are hidden
in the time scale adopted here [see Eq. (2.4)]. The final
form of the equations is

E=Euw —inE +¢€,

(2.12)
w=D —E?>—pw(1+gE?) ,

where 7=(0+8)/u and e=a/u. Section III is devoted
to a perturbative analysis of these equations.

III. SMALL EXTERNAL FIELD CASE

Equations (2.12) can be rewritten, separating the field
variable E into its amplitude r and phase ¢ with respect
to the external field, as

F=wr+€cosd ,
$=—n—(e/r)sing , (3.1
W=D —r*—u(l+griw .

These equations allow an intuitive picture of the underly-
ing dvnamics: The existence of the external field induces
a nonlinear coupling between a damped Toda oscillator
(r,w) (Ref. 9) and a rotator (¢) with constant action.

A perturbative analysis of Egs. (3.1) for small-¢ values
reveals the existence of a family of solutions whose fre-
quency is pushed away from the injected one. This an-
tisynchronization effect can be explained as a simple reso-
nance between the rotator and the damped Toda oscilla-
tor.

In order to take into account the frequency variation of
the perturbed solutions, a Lindstedt-Poincaré technique is
performed for small injected amplitude €. More precisely,
we write

r(r)=ro(T)+er(r)+exry(n)+ -,

¢(1)=(Bo+eB1+€*By)r () +egy(7)
+e¥y(r)+ -, 3.2)

w(r)=wo(r)+ew () + 2wy (r)+ -,

where the expansion of f [Eq. (2.9a)] is introduced in or-
der to eliminate mixed secular terms. In the zeroth order,
a damped Toda equation is recovered, and the stationary
solution of the unperturbed laser obtained,

r0=‘/b—’ Bo=—n, wo=v%o=0, (3.3)

where the laser frequency 7 is given by the usual pulling
condition.

Knowledge of the zeroth order allows the immediate in-
tegration of the phase equation [second one of (3.1)]

1
Pi(1)=— /D cos(n7), B=0, (3.4)

showing that no first-order corrections to the average
laser frequency exist. Some algebraic manipulations on
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the remaining two equations yields the following linear
differential equation for r;:

F1+u(1+gD)ry +2Dr = —nsin(yt)
+u(14gD)cos(nr) . (3.5)

This is the equation of a damped oscillator of frequency
V2D (the same of the laser without injection®) externally
forced with a frequency 7 (the normalized detuning).
With p being small, the resulting motion is underdamped
with a resonance at
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Wog—WR = k+y1

where wq is the explicit frequency of the unperturbed
laser, thus far hidden in 7. The asymptotic solution of
Eq. (3.5) has the form

ri(r)=asin(n7)+b cos(n7) , (3.7)

where
a =1QL[172—2D +u*(1+gD)], b =2ﬂg( 1+gD),

Q=02D —*)* +u’n*(14gD)*.

Now we can evaluate the second-order corrections, by us-
ing the first-order ones. In particular, the solution of the
phase equation yields

B=(2D —n*)/1Q ,

1
" 4Dq

(3.8a)

" a+ —717— sin(2gr)+bcos(2yr) . (3.8b)

Expression (3.8a) indicates that the laser frequency w; is
pushed away from the external one when the condition

n>V2D (3.9

is satisfied. The critical % value, separating the two dif-
ferent behaviors, coincides with the resonant one [see Eq.
(3.6)], thus showing the relation of the this phenomenon
with the oscillatory behavior of the unperturbed laser.
Indeed, such an anomalous behavior does not occur for
class- 4 lasers (see Appendix A).

It is important to notice that in the neighborhood of the
resonant point, the expansions (3.2) becomes singular. In
fact, when

|2D —5*| =0(u), (3.10)

with u << 1, r{(7) diverges as u~! and the expansion (3.2)
becomes nonuniform. Nevertheless this does not affect
the qualitative agreement between numerical simulations
and the previous results (3.8) and (3.9). Indeed, as shown
in Fig. 2, the behavior in the singular interval (3.10) fol-
lows smoothly the overall shape obtained by expansion
(3.2).

IV. LOCKING REGION

At variance with Sec. III, where small external fields
were considered, here we investigate the locking region
where € can no longer be considered a small parameter.
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While only a qualitative analysis was performed in Ref.
2(b) (for slightly different equations), here, exploiting the
smallness of i, we are able to obtain exact results in a per-
turbative way. After a preliminary evaluation of the
steady-state solutions, we present a detailed linear stability
analysis, showing the existence of a codimension-two bi-
furcation.

Let us start with the zeroth-order approximation
(=0) of Egs. (3.1). The stationary solutions are given by

I=D, w=+(A4/I—9*)'? A4 >Dn? 4.1

where I =r? is the output intensity, and 4 =¢? the input
one. As it is easily seen, the lower branch of the original
hysteresis cycle is lost, while the middle and upper ones
collapse [in the (A4,I) plane] onto the half line I =D (see
Fig. 1). The degeneracy is, however, only apparent, since
different w values (opposite in sign) are associated with
the same intensity I. Therefore, for 4 =D%? a tangent
bifurcation occurs, and, as a second step, we are interested
in evaluating the corrections due to a finite u. The gen-
eral solution of Egs. (3.1) is given by the implicit relations

D—-1I)
A=Tw+n?), w=-2=D
(w*+7n%), w (1+gD

well approximated by a narrow parabola whose equation
can be evaluated by substituting the second of Egs. (4.2)
into the first one, and replacing I with D everywhere ex-
cept for the (D —1I) term as follows:

A =Dn*+n*I —D)+D(I —D)*/(14+gD%u*.

4.2)

(4.3)

Therefore, the coordinates of its vertex, correct up to or-
der p?, are straightforwardly given by

2.2
I,=D —E"1 (14gD)?,
v ZD( +gD)

s 2 4.4
Av=D 2B 1 2
y=Dn 4D< +gD)
1 B it
8..
4..
0 l 2|0 4b l ﬁb A

FIG. 1. Stationary-state diagram of laser with injected signal.
The output intensity I is plotted vs the input one A4 for D =9,
n=1.58%10"2% and n=1 [see Egs. (4.2)]. Lower branch, being
very close to A axis, cannot be located. Parabolic approxima-
tion (4.3) of middle and upper branch is almost indistinguishable
from the exact result in this parameter range. Hatched straight
line represents the degenerate case u=0.
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To investigate the local stability, we rewrite Egs. (3.1)
using Cartesian, instead of cylindrical, coordinates

X=wx +ny—+e,

y=wy—mnx, (4.5)

w=D —pw—(x2+y*)(14+ugw) ,

and, linearize around a generic fixed point x,, yo, wo.
The associated characteristic polynomial

A+ A u(1+gly)—2w,]
+AMw§ —2won(1+8lo) +2Io(1+pgwo) +7°]
+ wop(1+glo) — 2L gwo(1+pgwo) +7°u(1+gl,)
(4.6)
reduces, in the limit case u =0, to

A —2woA2 + Mwd + 21+ 1% — 2L we =0 . (4.7)

Therefore, imposing wy,=0 (the value corresponding to
the tangent bifurcation) we have

AMA 421 +7%)=0. (4.8)

We notice that, besides the expected A =0 solution, a pair
of purely imaginary solutions A=+i(2D +7?)'? is
present, showing the existence of a codimension-two bi-
furcation. The superposition of tangent and Hopf bifur-
cations persists independently of D and 7 values, owed to
the reversible structure of the flow for u=0 (see Ref. 8
for a detailed discussed on a generic two-dimensional re-
versible flow). However, a finite u destroys the degenera-
cy and a codimension-two bifurcation is expected only on
a critical line in the (D,n) plane. Having already comput-
ed the corrections to the tangent bifurcation value [see Eq.
(4.4)], we now turn our attention to the Hopf one.

The condition for the Hopf bifurcation is easily derived
recalling that, whenever a real solution —a coexists with
a pair of imaginary solutions +iV’b, the characteristic
polynomial has to be written as

A +ar2+bA+ab=0. 4.9)

Hence, we have to impose that the A° coefficient be equal
to the product of A' and A? coefficients. By assuming p’
corrections to the zeroth-order estimate I =D (i.e., wy of
order u), and neglecting higher-order terms in Eq. (4.7),
the condition reads as

[u(1+gly)—2wy 1214 +7*) = —2Izwy

+n’u(l+gly),  (4.10)
whose solution yields
2 2
Iy=D— Dy (1+g2D) .
D+
By comparing Eq. (4.11) with the first of (4.4) we have
(14+-gD)*(p*+2D)(n*—~D)
D +q? ’

which shows the existence of a codimension-two bifurca-
tion for

(4.11)

2
Iy=I,+& (4.12)
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In other words, for 7 <V'D (> VD), the Hopf bifurcation
occurs in the unstable, middle (stable, upper) branch. A
more detailed analysis of the bifurcation unfolding re-
quires formal tools as the normal forms, hence it goes
beyond the aims of the present paper, and is left to a fu-
ture work.

Finally, coming back to the frequency (n*+2D)!/? of
the oscillations, we see that it is larger than the free laser
frequency 7, thus indicating the possible extension of the
pushing phenomenon, so far predicted in the limit of
small ¢’s by Eq. (3.8), to large external fields. It is suffi-
cient that, increasing ¢, the free laser trajectories are de-
formed with continuity until the locking is reached via a
reverse Hopf bifurcation. However, the persistence of the
Hopf bifurcation even for & values smaller than V2D
seems to suggest that, after an initial pulling-pushing
behavior, pushing always prevails at large €’s. But this is
in contrast with the standard results on locking mecha-
nisms for class- 4 lasers where a divergence of the period
is observed. As a consequence, a second family of solu-
tions can be reasonably guessed, and a detailed two-
parameter numerical investigation is needed to get a glo-
bal picture of the bifurcation diagram.

V. NUMERICAL RESULTS

In this section we present a numerical investigation of
Eqgs. (3.1) for different 1 and ¢ values, and for fixed values
of pump (D =9) and damping (£=1.58X10"2). The
periodic solutions have been evaluated by means of a
Newton’s method on a suitable Poincaré section (see Ap-
pendix B for a brief discussion of its application).

We start checking the existence of the resonance around
n=V2D. In order to keep track of effects due to the
locking on a stationary state, we perform our calculations
along the straight lines

n=me (5.1

in the parameter space (17,€), thus rescaling the € interval
of unlocked states to (0, ) independently of 7. Since
small €’s correspond to large angular coefficients m, we
have performed a numerical analysis for m =35, 25, 20,
and 15 (curves a, b, ¢, and d, respectively, in Fig. 2). The
agreement with the theoretical results [Eq. (3.8a)] is quite
good for m =35, while increasing the external field has
the double effect of decreasing the resonance frequency
and introducing hysteresis phenomena.

In Fig. 3 we have reported the laser frequency versus &,
for fixed 7, in order to better investigate the effect of
large injection amplitudes. The first evident result in the
persistence of the pushing phenomenon even for large
values as inferred in Sec. IV, with the only difference that
the threshold between the two distinct behaviors does not
coincide with the perturbative estimate Vv2D. In fact,
looking at the curve of Fig. 3 corresponding to
7=3.9< V2D =4.24..., we notice that, after an initial
frequency decrease, the anomalous asymptotic growth sets
in. The discontinuous switch from one behavior to the
other again suggests the existence of a second family of
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B+n

d
0.01
Cc
b
a
wf
-0.01-

—

61

FIG. 2. Frequency difference between injected (8) and free
(—mn) laser case vs detuning n for fixed m(=m/¢g) values.
Curves a, b, ¢, and d correspond to m =35, 25, 20, and 15,
respectively.

1 1

9 €

-t
({1

FIG. 3. Laser frequency B vs external amplitude ¢, for fixed
detuning values. Reported numbers indicate the respective 7
values. Hatched segments stand for unstable solutions.



solutions which has been, indeed, found. It corresponds,
for decreasing & values, to short pulses separated by a
divergent period. Their frequency behavior is sketched in
Fig. 4 where the different curves (corresponding to the
same 7 values as in Fig. 3) have been vertically shifted
(see the respective caption) for clarity. A picture comple-
mentary to that shown in Fig. 3 emerges. In fact, for any
7 value the curves of the two different families show op-
posite asymptotic behaviors: One reaches the locking
through a frequency decrease, while the other through an
amplitude decrease. This last route, which cannot be in-
ferred from Figs. 3 and 4, corresponds in practice to a fre-
quency increase up to a maximum value at the bifurcation
point. In Fig. 4 the four high branches (p=2 to 3.5) end
at the Hopf bifurcation.!® For each of these curves the os-
cillation amplitude increases with the square root of the
separation of € from its critical value. This was checked
in the numerical solutions. In Fig. 3 the three upward
branches (7=3.9 to 5) end also into Hopf points which
are located outside the figure edge.

A comparison of Figs. 3 and 4 thus suggests an ex-
change between the two different small-e behaviors with
the two asymptotic ones. In Fig. 5, where both cases have
been drawn in an enlarged picture, the existence of an ex-
change mechanism is already transparent. The further
specialized analysis gives evidence of a double-point bifur-
cation for p=3.853... (see Fig. 6). As a consequence we

-t
1=

©
o™

FIG. 4. Second family of periodic solutions. The laser fre-
quency f is plotted vs the external amplitude € for fixed 7. De-
tuning values have been chosen equal to those in Fig. 3. Start-
ing from above, curves have been vertically shifted by incre-
ments of 3.0, 2.3, 1.5, 0.5, 0, —1.0, and —2.0, respectively, to
prevent a confusing superposition. Hatched segments indicate
unstable solutions.
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3 L "/‘1”"‘/ 1 1
0.4 1.2 €

FIG. 5. Laser frequency S8 vs external amplitude ¢ for n=3.8
(curves a;,a,), and 7=3.9 (curves b,,b;), below and above the
double-point bifurcation, respectively. Subscript j indicates
whether the branch belongs to the first (j =1), or to the second
(j =2) family of solutions.

notice that two distinct thresholds exist for the pushing-
pulling phenomenon: a “local” one referring to the
small-€ region, and a “global” one corresponding to an ex-
change between the different branches.

We end this section with a few comments on the
asymptotic behavior of the different cases of solutions.
Looking at Figs. 3 and 4 none of the decreasing curves are
terminated. This is due either to increasing difficulties
dealing with larger periods (7=2.0 and 2.5 in Fig. 3), or
to the existence of a reverse period-doubling bifurcation
(n=3.0 and 3.5 in Fig. 3) where the branch ends up col-
lapsing on the corresponding branch denoted by the same
symbol in Fig. 4. However, according to a second
double-point bifurcation, the families corresponding to
7=3.0 and 3.5 are exchanged with a third branch (not
displayed in Figs. 3 and 4) which still reaches the locking
through a diverging period route.

38

B

3.6

34

11

FIG. 6. Laser frequency f3 vs external amplitude € for five n
values close to the double-point bifurcation n=3.853. Letters a,
b, ¢, d, and e refer to n=3.85, 3.853, 3.854, 3.855, and 3.86,
respectively. Subscript numbers have the same meaning as in
Fig. 5.



VI. CONCLUSION

An improved method of adiabatic elimination has
yielded a modified set of equations for a class- B laser with
an injected signal. An anomalous pushing behavior of the
laser frequency has been evidenced through a second-
order perturbative technique and confirmed by a numeri-
cal analysis which has also clarified the relations between
the small behavior and large phenomena around the lock-
ing region. A codimension-two bifurcation naturally fol-
lows from the competition between the normal pulling
and the anomalous pushing phenomenon.

Numerical evidence of a  frequency-pushing
phenomenon was already given by Gu et al.!! in a param-
eter range far away from that explored here. Indeed, they
use a pump parameter D =39 and p=0.41 which does
not make our perturbation expansion fully applicable.
However, we can notice that their single choice of 7
(=2.44), being much smaller than the critical value
V2D =8.8, yields a small-¢ pulling behavior according to
our Eq. (3.8a).
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APPENDIX A

The pushing effect discussed in Sec. III appears to be
strictly related to the existence of damped oscillations in
the unforced laser. In fact, we show in this appendix that
such a phenomenon does not exist in class-A4 lasers
(71,7, >>k). After the AE of both polarization and pop-
ulation inversion, the equations are

F=—r+Ag/(14+r¥)+acosé ,
. (A1)
¢=—n—(a/rising ,

where the time scale is normalized to k. These equations
were given by Spencer and Lamb'? and analyzed by Ya-
mada and Graham'? in the case of modulated external
amplitude.

An application of the perturbative expansion of Sec. III
leads, with the obvious meaning of symbols, to

(A2)
(A3)

Fy=—2Dr/(1+D)+cos(nt) ,
By=—2D/[4D*+5*1+D)] .

Expression (A2) shows an exponential decay towards the
asymptotic oscillation of frequency 7, without any reso-
nance phenomena. As a consequence, the second-order
correction 3, to the laser frequency does not change sign
and hence no antisynchronized effects are possible. Let us
recall that the second-order dependence of the laser fre-
quency from the external amplitude ¢ is in perfect agree-
ment with old studies on laser phase locking.'*

For completeness, the linear stability analysis of Egs.
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(A1) close to the locking threshold has also been per-
formed. The characteristic equation is a second-order one
of the type A>+bA+c =0. The critical value ¢ =0 (con-
dition for a tangent bifurcation) separates the stable
(¢ <0) from the unstable (¢ >0) branch. On the other
hand, a positive ¢ is the requirement for complex eigen-
values so that no Hopf bifurcations can influence the
stable branch and the locking threshold remains fixed at
(Iy,Ay) for any parameter choice.

APPENDIX B

Here we briefly describe the numerical method used for
the computation of the periodic solutions. The approach
is based on a standard Newton’s method on the Poincaré
section defined by the zero crossing of the field imaginary
part y.

We first notice that in order to avoid stiffness problems
on the phase, we have integrated the flow (3.1) in Carte-
sian coordinates [see Egs. (4.5)]. Moreover, in order to get
the best possible accuracy on the determination of the
Poincaré section, we have followed the method outlined
by Henon,'® which is based on the exchange of roles be-
tween y and the time # The former variable is
transformed into the independent one, while ¢ becomes a
dependent variable.

In the following we will refer for simplicity to a generic
three-dimensional flow in a space (x,y,z), with the Poin-
caré section determined by the condition y =0. The

dynamical behavior is then described by a two-
dimensional recursive relation from (x,z) to (x',z’),
x'=F(x,z),
(B1)
z2'=G(x,z) .

The study of periodic solutions can be transformed into
the quest for the zeros of a two-variable function, namely
(for period-one trajectories),

0=x¢—F(x¢,29) ,
o (B2)
0=20—G(Xo,20) .

A straightforward application of Newton’s method leads
to the linear problem

e |3 Ly OF
x'—x= % 1 5x+ay6y,
(B3)
. . _0G BG_
y y——ax6x+ —ay 1oy,

where 6x and 8y are the corrections to the initial trial
values x and y, respectively. We now have to evaluate all
the derivatives by exploiting the flow equations. The re-
cursive map (B1) is, in principle, determined by the condi-
tions

x'=X(T,x,z),
z2'=2Z(T,x,z), (B4)
0=y'=Y(T,x,z) ,



where the third relation provides an indirect estimate for
the return time T which, in general, depends on the start-
ing point on the surface of the section. Now, taking the
derivative of Eqs. (B4) we obtain the requested relations.
Referring for instance to dF /9x, we have
oF 3X oT
dx  Ox +X(T) ox ’

where 8T /0x is evaluated from the third of Egs. (B4)

(BS)
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aY oT
0= e +Y(T) ax (B6)

As a consequence, integrating three linearly independent
vectors of the tangent flow, we are able to collect the
whole information needed to apply Newton’s method. In-
cidentally, we notice that, as a by-product of this pro-
cedure, the stability of the periodic solutions (related to
the derivatives of F and G) is straightforwardly evaluated.
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