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The nonrelativistic Schrodinger equation is supposed to yield a pairwise 8 attractive interaction

among atoms or molecules for large separation, R. Up to now this attraction has been investigated

only in perturbation theory or else by invoking various assumptions and approximations. We show

rigorously that the attraction is at least as strong as R 6 for any shapes of the molecules, indepen-

dent of other feat&res such as statistics or sign of charge of the particles. More precisely, we prove
that two neutral molecules can always be oriented such that the ground-state energy of the combined

system is less than the sum of the ground-state energies of the isolated molecules by a term —cR
provided 8, is larger than the sum of the diameters of the molecules. When several molecules are
present, a pairwise bound of this kind is derived. In short, we prove that in the quantum mechanics
of Coulomb systems everything binds to everything else if the nuclear motion is neglected.

I. INTRODUCTION

In particular, is there an upper bound of the van der
Waals form

e(R ~) &e +e~—C(R ~) (1.2)

for a constant C& 0 which depends on the intrinsic prop-
erties of the two molecules, but not on R ?

%e shalI prove, using a variational argument, that Eq.
(1.2) is true; in other words, we prove that "everything
binds to everything else*' when the nuclear kinetic energy
is neglected. First, several remarks are in order.

Our purpose is to explore and to answer some elementa-
ry but fundamental questions about the binding of neutral
atoms and molecules. To simplify matters, we shall use
the infinite nuclear-mass approximation in which the nu-
clei are held fixed, but many of our mathematical con-
structions can, with additional work and appropriate
changes, be carried over to the more realistic case of
dynamic nuclei. In our fixed-nuclei approximation we do
not assume that the nuclei are necessarily in the configu-
ration that minimizes the energy of the molecule.

Consider two neutral molecules (or atoms) labeled a
and p, with respective diameters 2ra and 2r~, and whose
centers are separated by a distance R ~&r +r~. (The
precise definition of r, r~, and R ~ will be given in Sec.
III.) Let the ground-state energies of the isolated rnole-
cules and of the combined system be e, e~, and e (R ~),
respectively. The question we shall address is this: Is it
possible to orient the nuclear coordinates at the two neu-
tral molecules with respect to each other (with R @ fixed)
so that after an appropriate readjustment of the electronic
wave function

e (R a~) & e +e ~ '?

(1) Equation (1.2), or even Eq. (1.1), implies binding in
the fixed-nuclei approximation. When the nuclear kinetic
energy is added, the uncertainty principle may destroy the
binding, as is probably the case for Hei. Thus we can
only say that sufficiently heavy isotopes will always bind.

(2) Density-functional theories (at least the ones known
to us) fail to predict Eq. (1.2}. Although a density func-
tional that predicts Eq. (1.2) exists in principle, ' no one
has actually constructed one. In Thomas-Fermi theory
even Eq. (1.1) fails because Teller's theorem' states that in
Thomas-Fermi theory e(R ~) & e +e~ always. When
gradient corrections are added, as in Thomas —Fermi —von
Weizsicker theory, Eq. (1.1) holdsi when Rat =r +rt
but Eq. (1.2) fails when R ~&&r +r~. The reason for
this failure of (local) density-functional theory (as ex-
plained in Refs. 2 and 3} is the following.

The R attraction comes from a dipole-dipole interac-
tion but (in the combined system) there is almost no static
dipole moment in each molecule (if both molecules were
free of static dipole moments in their ground states). The
interaction energy of dipole moments d and d on the
respective molecules is proportional to —d dt'(Rat)
Density-functional theory, since it deals only with single-
particle densities, can produce these only as static mo-
ments and at an energy cost of —,'c (d ) + —,c~(d~) .
Thus, when R ~& (c c~)'~ the optimum choice is
d =d =0 and there is no attraction.

The true source of the R term in Eq. (1.2) is a corre-
lation effect between the electrons in molecule a and those
in molecule P. It is essential to think of electrons as parti-
cles and not as a simple fiuid. In the language of quan-
tum mechanics the molecules make a virtual transition
(simultaneously and not separately) to an excited state.
The energy to create d and d~ is then (from second-
order perturbation theory) proportional to (d d~) . The
minimum with respect to d and d~ for fixed R ~ of
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(d d~} d—~d~(R ~) is the required —(R ~} .Apart
from the fact that quantum mechanics is needed in order
to give meaning to the concept of the ground state, the ef-
fect is classical insofar as no interference effect is in-
volved. There is simply a coherence in the motion of the
electrons in each molecule so that the (time) average
dipole-dipole interaction is not zero even though the aver-
age dipole moment of each molecule is essentially zero.

(3) When one studies the question of the additivity of
the van der Waals forces between pairs of molecules the
correlation effect appears even more strikingly. The
Coulomb interaction correlates the dipole moments
d and d~ with the displacement R ~ between them
in such a way as to give the directional factor
—3(d R ~)(d~ R ~)+(d d~)

~
R ~

~

as function of
direction its minimal value, —2 [ d

~ ~

d~~
~

R ~~,
simultaneously for all pairs. Thus the nonstatic dipole
moments d do not depend on the single molecules, but
only on the pairs of molecules which interact with each
other. As a consequence, our bounds on the effective in-
teraction potentials will add together like scalar potentials
and not like dipole potentials. This does not, of course,
imply that the true effective interaction potential has this
property.

(4} The analysis in remark (2) was based on the
Coulomb potential, but presumably this is not essential.
If the electron-electron interaction were r ~ instead of
r ', we should expect the appropriate modification of Eq.
(1.2) would have R & in place of R . We shall not
pursue this aspect of the problem, however, and will con-
fine our attention to the Coulomb potential.

(5) It is not at all essential that the dynamic particles
are electrons. They could be any mixture of bosons and
fermions. Also, for example, matter and antimatter will
bind in the infinite nuclear-mass approximation —which
carries the physical implication that there is no quantum-
mechanical Coulomb barrier to the annihilation process.
There are several variational calculations of the depen-
dence of the energy on the nuclear separation, but with
different conclusions. "

(6) No assumption is made about the spherical symme-
try of the two molecules and they could have permanent
electric dipole or higher-pole moments in their ground
states (but not monopole moments). Parity conservation
does not preclude this since the nuclear coordinates are
fixed. A feature of Eq. (1.2) is that it is independent of
any assumption about the permanent moments; if any ex-
ist then the binding could be stronger, but not weaker
than R

(7) There is, of course, an enormous amount of litera-
ture about van der Waals forces (see, e.g., Refs. 7—9). In
a certain sense our results are thus not new, but from
another point of view they are new. The drawback to the
usual theories is that they are always based on perturba-
tion theory in two ways: (i) One assumes that R is suffi-
ciently large so that the 1/r Coulomb interaction can be
expanded up to the dipole-dipole order, and all higher
terms ignored. Although it can be shown that this expan-
sion is asymptotically exact, ' we are usually not told how
large this R has to be. (ii) One uses second-order quan-
tum perturbation theory —and this is usually calculated

A, p1(
y (~a,p)a, p

(1(a~p& K)

The A, p are adjustable constants and the m p and n p are
adjustable vectors. Since (g ~ p ) =0, the normaliza-

m~p

tion (P
~

it ) will be of the form

1+ g A, iiXconst.
a,p

(ag p)

However, (g ~
HP) will have a cross term proportional to

the A~& coming from the intercluster Coulomb potential.
We should like (g ~

Hg) to be of the form

g e ( P ~ P) + g A. iiX const

+ g A,~p(R ~) )&const .

Minimizing the ratio (f
~
Hg) /(g

~
g) with respect to

with some unverified assumptions about the excited-state
molecular or atomic wave functions. Our point is that
none of this is necessary. While we make no pretense to
getting the correct constant C in Eq. (1.2), we do get a
lower bound to the binding energy of the correct form
(when R & r +r~) by a fairly simple and direct variation-
al argument.

(8) Another point about the standard theory that needs
to be addressed is the well-known effect of retardation
discovered by Casimir and Polder" and elaborated by
Lifshitz. ' The R term in Eq. (1.2) is replaced by R
when R is "large. " However, large means (Bohr
radius)/(fine-structure constant) and this is huge com-
pared to r +r~ (for molecules that are not too large).
Thus, for distances of major interest for binding, it is
physically correct to use the Schrodinger equation without
retardation, and hence Eq. (1.2) is meaningful. For small
R, nuclear recoil effects may play a role (see Ref. 13).

The calculation and notation in this paper wi11 seem to
the reader to be complex. Actually, the complexity is
more apparent than real, and a few words about the stra-
tegy of our proof may be helpful. The implementation of
the strategy will be given in detail later.

We start with several small units (molecules) which we
call clusters. There are 4' clusters and a=1,2, . . . , Ã
designates the cluster. The ground-state energy and wave
function of each cluster is e and (to. A conveniently
chosen point in each cluster, called the "center, " is denot-
ed by R~. The problem is to construct a variational trial
function P (of all the variables in the system) whose ener-

gy is lower than g e by an amount constx g (R~~)
Step 1: Apply a cutoff to each $0 in a large ball cen-

tered at R, in such a way that the balls are disjoint. By
the variational principle the energy must increase, but
since g decays exponentially, this increase of the energy
will only be by an amount proportional to g exp( —R~),
where R is the radius of the cutoff. The cutoff function
is denoted by P .

Step 2: Let g =m g,".
, V;((}~ where n is the num-

ber of electrons in cluster a and
~
m

~

=1. The trial func-
tion is given by

~= rr ~.+ r (1.3)
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each A,~& would then lead (more or less) to A, ~-(R ~)
and hence to

E & ge —const' g (R ~)
a a, p

{a&p)

Step 3: Unfortunately, the intercluster Coulomb in-
teraction is not simply A, gR ~} . Its calculation is
complicated by the fact that each cluster is not spherically
symmetric. To avoid this difficulty and to get a rigorous
bound to the A,~~ term, we consider all spatial orientations
of the clusters and orientations of the m~~ and n ~ (which
enters in the definition of P). By averaging over the
orientations of the clusters and also averaging over certain
selected orientations of the m p and n p, a bound of the
desired form is obtained. This implies that there exists
some orientation of the clusters and the m's and n's so
that (g l Hg) ( (average over orientations) & ( ge + van
der Waals term} ( it

l P ) .
In any particular case, the wave function 1( which we

construct is not the best possible one within the frame-
work of functions of the type (1.3}. We use it because we
are striving for simplicity and generality —not for good
constants in the energy bound.

II. THE GENERAL PROCEDURE

First, some more notation is needed. There are 4 clus-
ters indexed by a, a =1,2, . . . , 4 and R~E R i denotes
the center of the cluster a. X;, i =1,2, . . . , M are the
coordinates of the nuclei in a relative to R . This is also
denoted collectively by X~. Similarly, Z; C& and Z
denote the charges of these nuclei. We suppose that all
the nuclear coordinates X are contained in a ball, 8, of
radius R &0, centered at R~ and that the K balls are
disjoint. In fact, we can define R by

R~= —,'minI lR ~l I, (2.1)
a,p

with R ~=—R~ —R~. Later on we shall specify how large
R must be in order that our bounds have a simple form.

If only cluster a were present, it would have
n = g,. Z; electrons to be neutral. The coordinates of
these n electrons (relative to R ) are denoted by x;
and collectively by x . The wave functions we shall use
will be sums of functions of the forin
4=/'(x')P (x2) P (x+}with P (x )=0 if any x; is
outside of 8 . Each P satisfies the Pauli principle but 4
does not. (The electron spins should be included but,
since they play no essential role, we omit explicit reference

H =g —a;,.+
i, k

{1&i&k&n~)

l
x;—xk

I

—QQZJ lx; —X, l

i =1j=1

i, k

{1&i&k&M~)

Z Zk lX; —Xkl (2.2)

The interaction between two clusters again involves an
electron-electron, an electron-nucleus, and a nucleus-
nucleus interaction,

V ~= g l x, —x,'+R ~
l

-' —g l x, —XJ~+R ~
l

-'ZP

—g l

~—X'+R ~l 'Z.

+ g l X; Xj~+ R—~~
l

'Z; Z,~ . (2.3)

The total Hamiltonian consists of H, the sum of the
cluster Hamiltonians, and the interaction V between them

H(X,R Ii) =H'+ V = g H +
a=1 a, p

{1&a&P&4)

yap (2.4)

To formalize the averaging procedure denote by 9t' Xk
a rotation of the coordinate Xk around the center R and
by d9F the normalized volume element (Haar measure)
of the rotations. We denote g dent by 1%'. What we
shall show is that for some trial functions 1t(X~,m),
which in addition to the nuclear coordinates also depend
on some collection of golarization vectors, m, we have for
sufficiently large

l
R

to the spins for simplicity of notation. } However, if 4 is
antisymmetrized no cross terms appear in {4

l
H4) or in

(4
l
4) (because the 8 are disjoint) which means that

we can simply ignore the antisymmetrization of
Therefore it makes sense in the full problem to continue
to speak of n electrons being associated with cluster a.

Because of translation invariance, R will not appear in
the Hamiltonian H of cluster a but only in the combina-
tion R p=R —Rp in the interaction between cluster o,

and cluster P. In atomic units, R=e =2m, =l, and, in
the above notation, H is written as

na

Id~+ &P(~X m}IH(~ x 8 ~}lf(~ & ~}&—ll@(~ & m}ll' g e —g U (18 ~l}
m a=1 a, p

a)p

&0, (2.5)

where u ii(R)=C&/(8 +Cq). We shall use the symbol

g~ for an average over the polarization directions, whose
precise nature will be given in Sec. VI. Since the average

in (2.5} is negative, we reach the conclusion that there are
some orientations such that the clusters attract each other
at least as much as the van der Waals energy.
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III. THE TRIAL FUNCTION

H 00 —e 0
we shall use a function

P'(», X )=$0(»,X )f(x ),
where

(3.1}

(3 2)

f(x )= g X(lxk I »
k=1

(3 3)

where X(s) is a smooth function which' is 1 for s &R —1

and 0 for s & R„and such that
I
X'(s) I, I

I"(s)
I

&4 for
R —1 &s & R~ and zero otherwise. For P~ we have

H P =e P g(2V—„Q V„f+gdFf), (3.4)

For our results we require the clusters to be clearly
separated. By this we mean that the wave functions
should not overlap. This, of course, is not true for the
ground-state wave functions which decay only exponen-
tially, but may be achieved by a slight adjustment of the
wave function which will not cost too much energy. If $0
is the (real-valued) ground-state wave function of H,

a,P
(1 pa gPg 4)

xP,y~"

=4+ g A,~ti+~ . (3.9)
a, P

(a gP)

Here A~tiE R and mlitt, n~tiES2 are variational parameters
to be chosen later. Notice that the polarization vectors m
and n of the clusters depend on the pair of clusters a and
P. Because of the orthogonality (3.7) there are no terms
linear in the A, 's in the norm of g,

This quantity still depends on the direction m. However,
in our results only the scalar product averaged over
rotations of the nuclear coordinates will appear and

f dSt&y Ilt &=—e
is independent of m. At the end of the paper we shall col-
lect simple estimates for the various constants such as H
which will enter our result. For now we go on to exhibit
the trial function P for the total system (the products are
always in the sense of tensor products)

0= g0+
a~1

and, by some partial integrations,

(p IH p )=e + g f dx 1/01 I Vkf I, (3.5)
k=1

&itt lit&=i+ g ~'till@ .,II'lid II'
a,P

(a gP)

(3.10)

p (x) & exp[c(r —
I
x

I )j for
I
x

I
& r

We take r~ as the definition of the cluster radius The ad-.
ditional terms in (3.4) and (3.5), which involve only the re-
gion R —1 & I

x
I
&R, will thus be exponentially small

(as a function of R~ } when R~ & r ~+ l.
Next, we need a wave function that describes a polar-

ized cluster and there are many choices possible. We
found the most convenient form to be

=m- g Vkp, mER', Iml =1 . (3.6)

It is easily seen to be orthogonal to e},
(3.7)

and its norm is the expectation value of the square of the
total momentum of all electrons in cluster a in the direc-
tion of m,

n~ 2

&4 14 &= f d» m. g Vkk (3.8)

where we assumed (P 1$ ) = 1.
The radius R was defined in (2.1) and it increases with

increasing separation of the clusters. It will turn out that
the error in the energy caused by replacing $0 by P de-
pends only on the single-particle electron density pa(x},
defined in the usual way [see (5.2) but omit the spherical
average . It is own t at p x decays exponen-
tially, which means that for some r~ and c & 0,

IV. THE EXPECTATION VALUE OP Ho

Where the bOundssry term b i Will be leSS than
c exp( —R~). The orthogonality (3.7) makes the contribu-
tions which are hnear in A, vanish,

(4.2)

The terms quadratic in A, require some rearrangement be-
cause w' wan«o comp«e & @ I

H
I @& with

I lit I
I' g e

and not just with g e, which we get from (4.1}. To
achieve this we use the following identity, where we

momentarily abbreviate gk, m Vk by P = —(P )',

= ——,'(y 1[i",[H,~ ]1+H (z )'+(a )'H
I y )

U»ng (3.4), H(I' ) (P ) H ind—eed yields —e
I
I+i

I I

(4.3)

In calculating (Q I
H g) we first note that the term in-

dependent of lt, is almost e except for the exponentially
decreasing contribution in (3.5),

+a

&@IH @&=e + g f dx 14o I'I Vkf I'=—e'+bi
k=1

(4.1)
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[P,H ]=—gm p VpZ) lxk —X
l

k,j
(4.4)

[P,[P,H']]= —y (m p Vk) Z,'lxk —X, l
'. {4.5}

k,j

and some boimdary te~~~s, which we call bii and which

are also exponentially decreasing. As regards the double
commutator, we first see from (2.2) that the only term in

H that is not invariant under a common displacement of
all electrons is the electron-nucleus attraction

A further simplification of the expectation value of this
expression results if we carry out the integrations

f ddt' j ddde T.he integeatinn IdB'e mahee ~(ttd

independent of n p and I d9P makes the expectation
value of (4.5} independent of m p. The reason is that
after rotating the nuclei there is no distinguished direction
left S. ince the result is independent of m p, we may free-
ly average over three orthogonal directions of m~p and
thus replace —(m Vk) by —35k which just gives

(4ir/3)5(xk —Xj ) in (4.5). Upon collecting the contribu-
tions we end up with

& =e &'+ + Z, Xk —,
k,j

=—& II& II'+(b2+Q )~ (4.6)

where Q is 2n/3 times the sum of the electron densities at the nuclei in cluster a.

U. THE EXPECTATION VALUE OF V

Jl d9F 1 dA'P(P (g,9F g.)PP( P 9PPXP)
l

V P( gP 8F X 8FP+P,R P) )iI} (
.8F X.)PP( P,SPPXP)) .

They involve only the one-electron density which upon integrating over 9P becomes spherically symmetric (around the
center R ) since 4 (xN, A' X~)={{}~((9t) 'x,X~). The one-electron density is

(5.1)

For the evaluation of (1(t l
V

l f) we shall heavily use Newton s theorem according to which the potential of a spheri-
cally symmetric charge distribution with net charge zero vanishes outside the support of this charge distribution. This
theoeem makes the (4

l
V

l
4) term vanish upon rotation of the nuclei because it becomes the electrostatic interaction

between two nonoverlapping spherical charge distributions of net charge zero. To demonstrate this formally we note
that

V x, x, X
is a sum of terms

p (xi)—=n J d9F J dx2 f dx„, lP (xi,x2, . . . , x„„9Fg')l (5.2)

For
l
x

l
&R~—1, we have p (x)=[1+Cexp( —R )]pa(x) for some C) 0, where po(x) is the "true" electron density cal-

culated with {4}0.

With the averaged nuclear charge

M
n'(

~
x

~
)= jddtn X 5(x % Xi), — '

j=l
and similar definitions for cluster P, (5.1) becomes

(5.3)

x dy p x —n x p~y —n~y x—y+R ~ '=O. (5.4)

In the terms proportional to A, we have the factor P P P = —,'P (P ) . After partial integration, the gradient acts on
the potential, and thus we obtain the dipole-dipole interaction directly:

f d~- Jd~P(~-~Pl v-Pl~- P).
d & dx dx&—,

' I q; ~x, X ' n p. ~ &a~, I'XI' 'V x,x&, X, ~XI',a ~

=
d J dx I dyp (x)p (y)(m p V, )(n p Vq) l

x—y+R Pl

= dn np[3(m~p. R p)(n p R p) —(m n ) l
R pl ~]

l
R pl (5.5)
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Newton's theorem has been used again in order to per-
form the dx and dy integrations. The contribution
(Q~

I
V ~

I P ~} is analogous to the term (P I
V ~

I P }ex-

cept that the one-electron density is now calculated with

g =m g". , VJP instead of P . If we call this density

p (x) it will not be spherically symmetric, but

p~ (9Fx)=p (x). Since it is quadratic in m it must be of
the form

I
m

I
'f, (

I
x

I
)+(m.x) f2( I

x
I
). Adding in the

averaged charge of the nuclei will give a charge distribu-
tion Q(x) with no net charge, and no dipole moment
since Q(x) =Q( —x). However, it may have a quadrupole
moment and we may pick up a term

(5.6}

0
0
0

0, —1

0
0

0

0
0
0 0

0 0
1, 0
0 —1

two directions completing the orthogonal basis. Then
average the polarizations over the following nine pairs of
vectors:

of unknown sign. 0 0 0 0 0

VI. CHOICE OF THE POLARIZATION
DIRECTIONS

0, 0 0,
0

0, 0

Our goal is to make the term proportional to A, , which
will be negative for a suitable choice of A, , as big as possi-
ble while the term proportional to A, should be kept
small, Only (5.5) contributes linearly in A, and its maxi-
mal value 2,n n~I R ~l is reached if we choose m ~
and n ~ in the direction of R~~. However, this leaves us
with the quadrupole term (5.6). We can get rid of the
latter if we average over mN~ and n ~ in the following
way. Let

In this way the quadrupole term (5.6) vanishes since Q (x)
becomes spherically symmetric. On the other hand (5.5)
averages to ,' n n—~

I
R ~

I
. Since A, will be proportional

to 8 3 the quadrupole term (5.6) will contribute to the
order R " and the first choice (i.e., no averaging) will
give a better estimate for large R. On the other hand, for
smaller distances averaging may be better, as (5.6} is not
easy to estimate accurately.

VII. CHOICE OF THE A. p

0

be the unit vector in the direction of R ~ and

0 0
1, 0
0 1

So far we have evaluated expressions such as
(+~I V ~

I Q ~ ) where all three index pairs (aP),
(a'P'), and (a"P") are equal. The orthogonality (3.7) in-
sures that terms in which they are not equal vanish. Simi-
larly ( tjP~

I
H"

I Q ~} is not zero only if (aP) =(a'P') and

y is either a or P. Thus collecting our results we arrive at

X Jd~&01& lf&=g f d~ g e IIIII'+gb7 +-,'
a=1 a,P

(1 ga &Pg 4)

+ g &'p[(b2+Q')8+(bf+Q~)&]
a, P

(1&a&p&X}

(7.1)

To get an upper bound for the energy we have to extract a factor II/II =1+g &A ~ r& from the term in large
square brackets. The minimization with respect to the A, ~s then leads to a coupled system of cubic equations which
cannot be solved analytically. For our purpose, however, it is sufficient to minimize the last two terms by putting

X.,= ——,', n n~lR t'I -'[(Q +b, )H+(Q~+b f)e]-'.
By extracting

(7.2)

II@II'=I+ X(n n~)'&+ IR pl '[«+be)++(Q~+b~z)&] ',
(18)

we obtain
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g I ~~&41H14&= X I &~IIIII' X &e +bt&IIPII'&
NS a=1

(n np)

p (18)'[(g +b')++(Qp+b2)&]
(i &a&p&4')

X fR P/'+
O,p

(1 ger &pg 4')

(n nt') HH

(18) [(Q +b2)H+(Q~+bi)r )

(7.3)

Taking m~ and n p in the direction of R would change
the factor (18)2 into 4 and add c p~ R pr s to
(Q +b2)rp+(Qp+bp2)&.

VIII. SOME ESTIMATES

Our result (7.3) contains two parameters, the squared
center-of-mass momentum r, and Q, the density of the
electrons at the nuclei. For the former we have the trivial
estimate (where Ta is the kinetic energy in the ground
state)

H(n (p
—g 6 p l=«T'—

k=1
(8.1)

(8.2)

Using the fact that
~
x

~
& —4h, the right side of (8.2)

can be bounded by the kinetic energy. Again, keeping
max

& IZI ) fixed, we get a bound proportional to (n ),
whereas we conjecture it should be proportional to n

From the proven bounds the coefficient in front of the
large parentheses in (7.3) becomes independent of the n'
For the conjectttred bounds it would be proportional to
n n p, thereby indicating a linearity of the van der Waals
forces with respect to the electron number in each cluster.

If one calculates our constants r and Q for a hydrogen

From the stability of matter one knows that for states of
negative energy the kinetic energy is bounded by n, ' so
that i (c(tt )i. We conjecture that actually r &Ta.
Similarly, for the Q the bound from Ref. 15 for the
atomic case can be extended to the inolecular case to give

atom one gets a constant in front of R s which is about
an order of magnitude below the known constant for the
van der Waals force between two hydrogen atoms. The
reason is that our way of generating polarization by a rig-
id shift is a rather brutal act. In particular, shifting the
electrons near the nucleus is energetically costly; it is
much better to adjust only the outer parts of the electron
cloud. The best way to do this will depend on the exact
shape of the cluster, and a simple, general bound which is
numerically good in all cases seems to be beyond reach.
Our result shows that irrespective of these details one can
always get some R s attraction by a rigid shift.

It will be noted that the factor in large parentheses in
(7.3) contains a constant term, g, in addition to

~

R p
~

While this term is asymptotically negligible for large
~R p~, it unfortunately grows with 4'. Our result is

therefore useless if 4' is very large, e.g. , in a crystal where
Ã —10 . To circumvent this difficulty a better trial
function 4 is needed. We believe that the following
choice is adequate, but we have not actually pursued the
matter: Define the "operator" D p by D pp pp

~P DaPyag DaPyayP DaPyag (). Then a
natural generalization of (3.9) is

e= g (I+X.pD P) gy (x.,X ). (8.3)
a, p a=1

(a& p)
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