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The output state of a nonlinear Mach-Zehnder interferometer is shown to be an effective
number-phase minimum-uncertainty state arith reduced photon-number uncertainty. This inter-
ferometer includes an optical Kerr medium in one arm with a coherent-state input. Unusual
"crescent"-shaped squo:zing which preserves photon number is revealed in the unitary evolution as-
sociated with a self-phase-modulation in the Kerr medium. Photon-number uncertainty (hit ) can
be reduced by interference with a coherent-state reference wave. It can be mininuzed to (lt ) '~3, far
below the limit (n )i~ achieved by an ordinary squeezed state. The increased phase uncertainty due
to self-phase-modulation and the reduced photon-number uncertainty still preserve the minimum-
uncertainty product (hn ) (h4 )- ~

I. INTRODUCTION

Considerable interest has recently been focused on novel
photon states without classical analog. Ordinary squeezed
states in particular have been intensively studied. ' Such
squeezed states feature different uncertainties in two
quadrature amplitudes, ai and a2. Their product still
satisfies the minimum value allowed by the Heisenberg
uncertainty relation (ba i)(hai) =—„.Squeezed states
are a generalization of Glauber's coherent state with
(dna i ) = (4a 2) = —, directed toward the eigenstates of a i

or a2. Extensive experimental efforts ' have been de-
voted to the realization of squeezed states based on four-
wave-mixing schemes. " ' Phase-sensitive noise, a pre-
cursor of squeezing, has recently been observed in the
classical region. '0 Slusher et al. have observed the gen-
eration of these ordinary squeezed states.

Another kind of nonclassical photon state has been
predicted. It is referred to as the amplitude-squeezed
state. ' The amphtude-squeezed state features a reduced
photon-number uncertainty (b,n ) & ( n ) and an
enhanced phase uncertainty (hk i) & 1/4(n ) The pr.od-
uct of these two uncertainties satisfies the other
minimum-uncertainty relation, (LLn )(bk ) ——,'. This
is another generalization of coherent state with
(hn 2) =(n) and (942)-I/4(n) (Ref. 17) directed to-
ward the photon-number eigenstate. A reduced photon-
number uncertainty will contribute to various kinds of
nonclassical behavior; noise reduction below the shot-
noise level in direct detection, sub-Poissonian statistics in
photon counting, and photon antibunching in a Hanbury
Brown —Twiss type of (intensity-correlation) experiment.
Such a state can easily be confused with an ordinary
squeezed state in which squeezing is realized along the
direction of the coherent excitation. Although the latter
also possesses reduced photon-number uncertainty, it is
restricted by (hn ) & (n)2~ . ' Directions of squeezing
are essentially different between these two states, although

this difference is small and not clear in the region of weak

squeezing.
One possible scheme for amplitude-squeezed-state gen-

eration proposed by Yamamoto et al. ' is a combination
of quantum nondemolition measurement (QND) of pho-
ton number and negative feedback. Sub-Poissonian pho-
toelectron statistics were actually observed in a negative-
feedback semiconductor laser with a destructive photon
detector. ' A quantum nondemolition measurement
scheme of photon number was proposed using an optical
Kerr effect. This scheme may open the closed feedback
loop in the above experiment and extract amplitude-
squeezed states cut out of it. There have been other
measurement-feedback schemes proposed for the genera-
tion of light with sub-Poissonian photon statistics. '
The light produced in these schemes is weak and entirely
illcoherelit.

Theoretical difficulties common with such measure-
ment-feedback systems stem from the fact that the state
evolution in the measurement process is not sufficiently
described within the presently formulated framework of
quantum mechanics. This is much in contrast with
ordinary-squeezed-state generation schemes, in which the
state evolves from the coherent state or equivalently from
the vacuum state through unitary transformation. The in-
teraction Hamiltonian for this unitary evolution is given
byl

&t =&l&NL(a )'+&Ni.tt 'l .

This paper presents an alternative scheme for generat-
ing amplitude-squeezed states. This scheme is based on
unitary evolution which can properly be described by
quantum mechanics. The scheme is a nonlinear Mach-
Zehnder interferometer containing an optical Kerr medi-
um as shove in Fig. 1. This is almost the same scheme as
that proposed by Ritze and Bandilla 6 except for certain
details. Ritze and Bandilla treated the sufficiently weak
output field and demonstrated antibunching and enhanced
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tamty product ' are discussed I Sec. V. %e show that
the state prepared using our scheme remains a number-

phase minimum-uncertainty state until the maximum
reduction of number fluctuation is surpassed.

Section VI discusses the relation between an effective
number-phase minimum-uncertainty state generated by
our scheme and a mathematically defined minimum-
uncertainty state.

II. PRINCIPLES AND SUMMARY OF ANALYSIS
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FIG. 1. Nonlinear Mach-Zehnder interferometer with an op-
tical Kerr medium; (a) in the Heisenberg picture; (b) in the
Schrodinger picture.

Hi ——iriXNi (a t)~a (1.2)

The principle of the proposed scheme and a summary of
its analysis are presented in Sec. II.

A self-phase-modulation of the single-mode quantized
field in the Kerr medium is described in Sec. III based on
localized operators. The spatial evolution of the state is
demonstrated by QPD in the Schrodinger picture. This
evolution corresponds to operator evolution (self-phase-
modulation) in the Heisenberg picture.

%'e show in Sec. IV that photon-number variance can
be reduced to (b,n ) =(n )' . This is far below the limit
(n } ~ for an ordinary squeezed state. ' The scheme is
considered to be a displacement of QPD by interference.
Photon statistics exhibit strong sub-Poissonian charac-
teristics even when the mean photon number is relatively
sxn all.

Enhanced phase uncertainty and number-phase uncer-

bunching of the output field to be measured in a Hanbury
Brown —Twiss type of experiment. We will calculate the
quasiprobability density (QPD) (Ref. 27) (a

~ p ~
a) and

photon-number distribution (n
~ p ~

n ) of the output field
and demonstrate that the reduced photon-number uncer-
tainty and enhanced phase uncertainty maintain the
minimum-uncertainty product. The interaction Hamil-
tonian required for this unitary evolution is not as in (1.1)
but is given by

( Kerr medium output )

( reference )

C
combined output )

FIG. 2. Principle of photon-number noise reduction by self-
phase-modulation and interference; An, =0 {solid arrows),
4n, ~0 (dashed-dotted arrows), An, &0 %dashed arrows).

This paper concerns the nonlinear Mach-Zehnder inter-
ferometer containing a Kerr medium in one arm. This is
schematically depicted in Fig. 1. Figures 1(a) and 1(b)
show the operator evolution in the Heisenberg picture and
the state evolution in the Schrodinger picture, respective-
ly. A coherent-state input signal is divided into two parts
by the first beam splitter Mi. One part a propagates
along a Kerr medium in which the phase of the signal is
modulated by its intensity (photon number) via the self-

phase-modulation effect. The other part d is not dis-
turbed and is combined with the Kerr-medium output sig-

nal b by the second beam splitter Mi. The interferometer
path length difference and the beam splitter M2 phase
constant are adjusted so that the two orthogonally orient-
ed signals are combined to form an output signal c as
shown in Fig. 2. When the intensity of signal a increases
above its average value, the phase of the Kerr-medium

output signal b advances and so the combined output-
signal intensity is reduced to approach the average value
resulting from destructive interference with reference sig-

nal d. When the intensity of signal a decreases below its
average value, the phase of the Kerr-medium output sig-

nal b is delayed and the combined output-signal intensity
is enhanced to approach the average value resulting from
constructive interference with reference signal d. Thus,
the intensity noise of a coherent-state input signal a is
suppressed in interferometer output signal c.

The intensity noise of reference signal d may disturb
the intensity of output signal c. In order to avoid this
spurious noise, the reflectivity of beam splitter Mi should

be as high as possible so that the intensity noise of d is re-
jected by beam splitter M&. Although the intensity noise
of output signal c can be thus suppressed, its phase noise
is enhanced by the self-phase-modulation of signal b itself
as shown in Fig. 2,
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The goal of our analysis is to demonstrate quantum
mechanically that the reduced photon-number noise and
enhanced phase noise satisfy the minimum-uncertainty
product, i.e., that the output of this nonlinear interferome-
ter is a number-phase minimum-uncertainty state.

If the coupling of the optical field with reservoirs such
as optical-loss oscillators and the atomic system of the
Kerr medium are adiabatically eliminated, this inter-
ferometer can be described as a quantum system with two

input ports and two output ports. The input states and
output states are connected by the unitary transformation
Uas

I
q'i &..t =D(4)

I
i)'» & (2.4)

Since the nonclassical nature of the nonlinear inter-
ferometer is entirely due to the optical Kerr effect as
shown in Sec. III, the high reflectivity of Mz concentrates
the effect into one output

I %i ),„,. If
I P, );„is a coherent

state and
I Pz);„a vacuum state, namely,

(2.5)

two coherent states without a quantum-mechanical corre-
lation are prepared behind M& as

I 6& =
I ~z& ~z=(Ri)'"~ ..

(2.6)

Here Ri is the reflectivity of Mi, and ai and az are c
numbers. The state

I gi) becomes the nonclassical state

I f» ) after passage through the Kerr medium, while the
state

I t/iz) remains a coherent state
I
aze' ). The high re-

flectivity of Mz prevents
I
'Pi )«, from being contaminat-

ed by the state
I
aze' ). As a result of (2.4) and (2.5), the

state of output 1 is written as

(2.7)

Here U» is a unitary operator connecting input
I g& ) and

output
I g») of the Kerr medium, i.e., representing the

(2.1)

Equivalently, we can express the outputs in terms of two
states behind the first beam splitter M i as

Ut

(2.2)

If the second beam splitter Mz has sufficiently high re-
flectivity Rz~l, then quantum fluctuations from the
reference (lower) arm are not mixed into the output port 1

at Mz. Therefore, the contribution of
I 1(z) to

I
0 i )«, is

merely a classical driving force, which can be described by
an unitary displacement operator

e fa ga— (2.3)

as shown in the Appendix. Here, a is an annihilation
operator of the signal (upper) arm, and the c number g' in-

dicates the coherent excitation of
I gz) measured at out-

put port 1. Therefore, we can describe the output
I

qli ),„,
in resolved form as

self-phase modulation, to be determined in Sec. III. The
interference at beam splitter Mz is represented by dis-
placement operator D(g). Note that if az is sufficiently
large, g does not vanish even though Rz~1. In fact, g
has a significant role in photon-number noise reduction as
discussed in Sec. IV.

III. SELF-PHASE-MODULATION
IN THE KERR MEDIUM

Here aio is angular frequency, k =F0/U is a propagation
constant, e=noeo and eo are dielectric constants of the
Kerr medium and of a vacuum. V= A/ is a quantization
volume, where A is a cross-sectional area of the optical
beam. The localized annihilation and creation operators a
and a obey a commutation relation

[a,a t]=1. (3.2)

The Hamiltonian for the single-mode electric field in
the Kerr medium can be written as

H =Hp+Hg,

Ho %coca a =f——)coon,

H» =fig(a t) a =Sign(n 1), —
(3.3)

in the rotating-wave approximation. The anharmonicity
parameter g is real and proportional to the third-order
nonlinear susceptibility I' ' (Ref. 20) or the nonlinear re-
fractive index nz of the Kerr medium,

Acex= (3.4)
2c6'pal pA 7"

Here the intensity-dependent refractive index is expressed
as"

«
I
&

I
)=no+ —,'nz

I
&

I
(3.5)

where g' is a complex field amplitude defined by E(z, t)
= —, 8'(z, t)e +c.c. Such a Haniiltonian is valid

under the conditions that there is large detuning from
transition levels, no saturation, and no loss. Photon
number n =a a is a constant of motion since

[n,H]=0 . (3.6)

The state evolution during light propagation over a dis-

A. State evolution in the Schrodinger picture

This section investigates the state evolution in the Kerr
medium. The optical wave traveling through the Kerr
medium is assumed to be plane, polarized, and mono-
chromatic. The traveling wave is treated as a sequence of
localized wave packets moving at the speed of U =c/no,
where no is the linear refractive index of the Kerr medi-
um and c the speed of light in a vacuum. Each packet
has a temporal length of i and equivalently a spatial
length of I =m Each. packet corresponds to a single-
mode quantized field written as

' [/2

E(z, t) =i a(z)e ' +H.c. (3.1)
26U
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tance of z in the Kerr medium is expressed as

I 4«) & = Ux(z)
I PI & (3 7)

on a number basis so that the following series expansion
form solution results:

Here Ux(z) is a unitary operator generated by Hx and

~ QI) is the state at the entrance of the Kerr medium.
This is an interaction picture in the sense that the free
IIlotloll Uo(z) gcIiciatcd by uIlpcrtul'bcd HaIllllto111a11 Ho
is omitted. However, since H~ commutes with Ho, this is
equivalent to the Schrodinger picture in the present prob-
lem. Therefore we refer to such a state evolution picture
as the Schrodinger picture. By replacing the time deriva-
tive 8!BI in the Schrodinger equation by the spatial one
—uric)z, the following equation can be obtained for
Ux(z):

U x"'(a',a I )=e (e
n=O

~a)=e ~ ~
' g ~n)n!

is used. Substituting (3.15) and

a —a
I

f (a [ai) J
=e

into (3.13), we obtain the following QPD:

(3.15)

(3.16a)

(3.16b}

de(z)—EAU =&xUx(z» (3.8)
(g) g

—( II + I&) I~)
P» (a,a)=e

where [III,Ho]=0. The state at the exit of the Kerr
medium of length L is written as

2

(i /2)yn (n —1)
(a'ai)"

t
n=O

(3.17)

(3.9)

Ux(L) =exp yn(n —1)—
2

(3.10)

where

fKOoII 2Ly=
C EgAOA'7

(3.11)

Such state evolution is clearly represented as a QPD in
a complex a plane. We assume the initial state

~ gi) to
be a coherent state

~
ai). Then the density operator of

the Kerr-medium output state
~

Ir'jx ) is written as

pa= I fx&&Pre I
=Us«)

I ai&&ai
I
Ux«)

The QPD, i.e., the "diagonal" matrix element of piI in the
coherent-state representation, is

p'"'(a', a}=&a
I p. I

a-&

=
i (a iai) i i

Ux"'(a', ai) i
. (313)

Here Ux"'(a', a) is an associated normal function of
UII(a, a ), defined by

(3.14a)

in which a' and a should be regarded as independent
variables. Equation (3.13) also uses the relation

We perform numerical calculations for a relatively
small photon number ~ai

~

I (=16) by terminating the
series sum at a sufficiently large n (=64}. Since photon-
number distribution remains Poissonian with a mean pho-
ton number of

~
ai

~
„ termination error is negligible. The

results for several y values are shown in Fig. 3. The QPD
is represented by the contours of 0.75, 0.5, and 0.25 times
the maximum value. The distribution of QPD is expand-
ed in the phase direction while being compressed in the
other direction which is slightly different from the
photon-number direction. This distribution is deformed
analogous to a "crescent" shape from the isotropic distri-
bution of the initial coherent state (y=0) as y is in-
creased. This evolution is regarded as a kind of squeez-
ing, but it is essentially different from the "elliptic"
squeezing' of an ordinary squeezed state. However, this
difference is not remarkable when the value of y is small.
This difference results from the difference in the type of
interaction. The former is caused by the four-photon in-
teraction represented by the quartic Hamiltonian (1.2),

=0.1

0.06

=0.0
&a

I
U~(a ' a)

I ai & —= &a
I
ai &

U'x"'(a' al) (3.14b) Q-'4 ': ' '
o

Heffner and Louisell have proposed the normal order-
ing method which translates the SchrMinger and density-
operator equations into c-number partial-differential
equations for associated normal functions. Yuen' has ap-
plied this method to obtain the normal ordered form of
the unitary operator generated by the quadratic Hamil-
tonian (1.1). The quadratic Hamiltoman (1.1) is the
highest order one solvable in a closed form by the normal
orderinp method. Our Hamiltonian (1.2) is quartic in a
and a . On the other hand, the unitary operator (3.10)
generated by the quartic Hamiltonian (1.2) is diagonalized

FIG. 3. Quasiprobability density (QPD) (a
~ p4 ~

a) of Kerr-
medium output state

~
g~). a, =4.0, y=0.0, 0.05, 0.10, and

0.15. Contours are at 1.0 (+ ), 0.75, 0.5, and 0.25 times the
maximum value. Arrows indicate coherent excitation. P is a
phase of coherent excitation measured from initial excitation.
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while the latter is caused by the two-photon interaction
represented by the quadratic Hamiltonian (1.1).

The photon statistics still remain Poissonian at the exit
of the Kerr medium,

(b&=&a, ~b ~a, &=aie ~~'e'~.

P=4
~
ai (

ising
2

'

P= ~ai ( sing.

(3.24}

(3.25a)

(3.25b)

B. Operator evolution in the Heisenberg picture

So far, we have worked in the Schrodinger picture to
describe the state (or density operator) evolution by the
Kerr effect. As discussed in Sec. II, the propagation of
optical wave in a Kerr medium is described as a self-
phase-modulation in which the phase of optical wave is
modulated by its own intensity through the intensity-
dependent refractive index (3.5). We will next use the
Heisenberg picture to establish an analogy between a
phenom enological (or classical) description and a
quantum-mechanical description. One advantage of the
Heisenberg picture is its ease in being adapted to moment
calculation based on the initial coherent state

~
ai &. The

unitary evolution will belong to the operator side,

b = Ug(L)aUx(L), (3.19)

where a and b are annihilation operators for the input
and output modes of the Kerr medium. The free motion

i [kz -egg)
e due to unperturbed Hamiltonian is omitted.
Using (3.10) and the commutation relation

[a,n]=a,
the output mode operators are described as

b =e'&"a,

We can see that the boson commutation relation

[b,b t]=1

(3.20}

(3.21a)

(3.21b)

(3.22)

is properly preserved after the unitary evolution (3.19).
From (3.2la) and (3.21b), we can also see that the photon
number is preserved,

b b=a a=n .

The field experiences a phase shift proportional to its pho-
ton number. The phase uncertainty is expected to be in-
creased by the photon-number uncertainty of the initial
coherent state through such self-phase-modulation. This
accounts for the expansion of QPD in the phase direction
Sho%V11 in Fig. 3.

The coherent excitation of the Kerr-medium output
field is determined from (3.21a) to be

(3.18)

This accounts for the fact that the squeezing direction
differs slightly from the photon-number direction in the a
plane. Ho@eever, crescent-shaped squeezing is more ap-
propriate to reduce photon-number noise than the usual
elliptic one. This will be shown in Sec. IV.

The operator theorem'

(a
~
e '

~
a & =exp[(e' —l)a'a] (3.26)

is used in the calculation of (3.24). The same coherent ex-
citation of the Kerr-medium output field is also expressed

by using the QPD in the Schrodinger picture

o, =— ap„'"' a', a d cf

(3.27)

Such coherent excitations are indicated by arrows in Fig.
3.

IV. REDUCTION OF PHOTON NUMBER
UNCERTAINTY BY INTERFERENCE

I
+i & =D(k)Ux«)

I
ai &, (4.1)

where
~
4i &,„,= ~

4, &. In the Heisenberg picture this in-
terference is expressed as the superposition of the classical

field g on the Kerr-medium output field b

c = Ux(L)D (g)aD(g)Ux(L)

=b+g=e'r"a+/ . (4.2)

Here c is an annihilation operator of the output mode in
port 1. We used Eqs. (3.19) and (3.21a) and a property of
the unitary displacement operator

D (g}aD(g)=a+g . (4.3)

The boson commutation relation

[c,c ]=1
is properly preserved after interference (4.2}. The photon
number of the output mode is written as

A. Photon-number variance evaluation
in the Heisenberg picture

This section discusses reduction of photon-number un-

certainty by the interference of the Kerr-medium output
field with the undisturbed coherent-state field at the
second beam splitter M2. First, we work in the Heisen-

berg picture to calculate the normalized variance of the
photon number and to minimize it. Next, we take the
Schrodinger picture to describe state and density-operator
evolution. Photon-number statistics and QPD after in-

terference are also discussed.
We assume the reflectivity R2 of beam splitter M2 to

be sufficiently high as stated in Sec. II. Then, the in-
terference at Mz is written by (2.7} in the Schrodinger pic-
ture. For the sake of simplicity, this can be rewritten as
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n =ctc=n+ ~(~ +(e'""ag'+H. c.) . (4.5}

Here n is the photon number of the Kerr-medium input
field a, and the sum in parenthesis is an interference term.
This interference term depends on the phase difference of
b =e'r"a and g, which is modulated by n. Therefore, we
can compensate for the fiuctuation of n with the interfer-
ence term by an appropriate choice for g, as discussed in
Sec,. II.

We seek the g which will minimize the photon number
uncertainty of output field c. For this purpose, it is con-
venient to write g as

g =i)a,e "&+" . (4.6)

Here g~O is the relative amplitude normalized to the
coherent excitation ai of the initial coherent state and 5 is

the phase difference between g and (b ). P is the phase

shift of (b ) due to self-phase modulation and is given by
(3.25b). According to the principle stated in Sec. II, the
optimum value of 5 is

S=—— (4.7)
2

'

Thus the mean and variance of the output photon number

n, are expressed as

(n, )=—(ai ~n, ~ai)= [ai (~(1+3)i)

(«'. & =(n, &+ &(c t}'c '& —&n. )'

=(n, ) —((at) a +4~('~ ata+ ~g( +2(gt te'"'"+"a +H c ). .
+(g'2e'"'i" +"a 2+H c )+. 2.

~ g ~

(g'e'r"a+H. c.)) (n, —)
= (n, ) —2 ) ai

~

43) [2e ~~isiny —3)[1—e z~ cos(y —Psiny)] j,

(4.8)

(4.9)

where Eq. (3.26) is used and

p'= (a, ~'sin'y . (4.10)

The photon-number variance normalized to the mean
photon number can then be written as

o =—& b n,' & i(n, &

2nV en}—
1+g

(4.11)

p =2
) ai )

ie ~~ siny,

q =
[ ai ['[1—e ~ cos(y —Psiny)] .

(4.12a)

(4.12b)

&2)

(n, )
(4.13)

Although we assume y )0 (n2 )0} in the present discus-
sions for the sake of simplicity, the case of having an op-
posite sign is straightforward. By differentiating (4.11),
we obtain the optimum value of 31 for a given

~
a,

~

and

p as

(+2+~2)1/2
go— (4.14a)

The normalized variance o defined by the first equality in
(4.11) is regarded as a factor which expresses the deviation
from the Poisson photon distribution. Namely, o =1 cor-
responds to the Poissonian distribution, o')1 to the
super-Poissonian, and cr &1 to the sub-Poissonian. It is
also related to the second-order coherence function g'i'
measured in the Hanbury Brown —Truss experiment as

I

ExamPles of numerical calculation for o;„and 3)o are
shown in Fig. 4. According to the numerical results in
Fig. 4, the dependence of cr;„on y is divided into three
regions: (i) a weak squeezing region where cr;, is slowly
reduced as y increases, (ii) a strong squeezing region
where o;„ is rapidly reduced in proportion to y, and
(iii) a degraded region where o;„sharply increases in pro-
portion to y . These three regions are clearly observed in
case with a large photon number and are indicated in
Figs. 4(c) and 4(d).

%%en the mean input photon number is large, i.e.,
~
ai

~
&&1, all of these three regioris satisfy y &&1. Ap-

proximate expressions can be obtained in this region. If
we use

slDQ

p- p'-y'
I ai I

'
(4.15a)

(4.15b)

(4.15c)

instead of the relations in (3.25) and (4.10), the solutions
of (4.14) can be simplified as follows (P« 1):

dmin= 1 24[(4 +1} 0]
~o=(~'+1)'"

(n, )=
~
2a~ [1—P[(P +1)' —P]j .

(4.16a)

(4.16b)

(4.16c)

1 182o . = +—Rllllll 2 + 6P l (4.17a)

These are valid in regions (i) and (ii). Moreover
(P&1, P))1),

which minimizes o to be

2no(p Vno}—
omia= 1—

21+go
(4.14b)

1
90 (4.17b)

(4.17c)

are valid in regions (ii} and (iii}. The two approximate
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solutions (4.16) and (4.17) agree with each other in region
(ii) (P«1 and P»1), and in good agreement with the
exact numerical calculations as shown in Fig. 4. From
Fig. 4, o . takes the minimum in the transit region be-

tween (ii) and (iii). This restriction on the reduction in

o~„ is due to the increase of P in (4.17a). The absolute
minimum of cr;„ is deteimined from (4.17a) and (4.17c)
to bc

' 7/6

( )—2/3 (4 18)
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' 1/6
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J
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h
CC
V

P, g~ - aa
sly
CC:

~g

V &0-
II

(c
O 104-

10-a
10 10-r 10 lM 10 $0 lO

o $O-s .
Y

SO-s:.. a
ei

CC go

II $9-4 „

0
19-a - )o

~+'I
II
O

According to (4.18a) photon-number variance can be re-
duced to

' 7/6

(«,'). = — &n, )'"& (n, ) '" .c 8 4

Note that this is far below the limit (n )2/3 which is the
minimum variance achieved by an ordinary squeezed
state. "

(4.21)

p„„=—(n
I p I n) =

I (n I +, ) I'.
Using the following two expressions,

D(g) —(1/2) igni ga e
—g o

(4.23)

B. Photon-number statistics and QPD
in the Schrodinger picture

Next we investigate the photon-number statistics and
QPD of the output state

I
4'i ) in the Schrodinger picture.

The density operator of
I +i ) is

p =
I +i & & +i I

=&(k)pxD'(4)

=&(g)UE(L ) I al) &al I UE(L )&'(p,
where g is given by (4.6), (4.7)„and (4.14a). The photon-
number distribution is expressed by diagonal matrix ele-
ments on a number basis,

(1): (io:y (Hi)

$-1t )o-10 go-a )O-a )O-1 )OH )0-a )o-4
(g~ t)k oo ( ge ~)m

k=0 m =0kI I
(4.24a)

FIG. 4. Minimum photon-number variance cr;„and op-
timum reference wave amplitude go as a function of y. (a)

I ai I
=16, (b) 10, (c) 10, (d) 10~. This figure compares exact

numerical solution (solid curves), approximate solutions given by
(4.16) (dashed-dotted curve) and by (4.17) (dashed curve}. The
minimum cps for an ordinary squeezed state is indicated by dot-
ted lines. For regions (i), (ii), and (iii) see text.

0 (k &n)
(n I(+ ) + = ' +n((n —k+ni)!

n —k+m
I

(k &n)

(4.24b)

and series expansion form (3.16a) of
I ai ), we can obtain

wave function (n I%', ) =(n ID(g)Ux(L) I a, ). Then p„„
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can be expressed as

—
~ I&l I

+ lkt')
pnn =e

{gk( ge )m n —k+m

x n! k~~ ~o k!m!(n —k)!

C Ã2)y(n —k +~)(~ —& +~ —& )Xe

(4.25) Here we used

= &a —0 I px I
a —0& .

(4.26)

statistics even when the mean photon number is relatively
small.

Next, we will consider the QPD of the state. The QPD
of

I
+i ), given by the coherent diagonal element of (4.22),

IS

P'"'(a* a)-=&a
I p I

a &

= &a
I
D(g)pxD (g)

I
a)

D'(g) Ia&=D( —() Ia&= Ia —4& . (4.27}

0 5» & & ! t & s &

l
c v s s

l
~ r r r

0.4—

0.3—

0.2—

0.1

0 0 L
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Photon-number distributions can be numerically calculat-
ed using this expression. Numerical examples where
mean photon numbers are kept constant [ I a~

I
(I+g )

=16) for all distributions are shown in Fig. 5(a). The
narrowest distribution is for the y value chosen to mini-
mize variance & hn, ) with & n, ) as a constant. The oth-
ers are with the two-thirds and one-third y value. Nu-
merical examples in Fig. 5(b) are for an ordinary squeezed
state'

I Po,p, v) with minimum photon-number variance,
and for the coherent state

I
ap) ~ 80th of these have tile

same mean photon numbers, which are depicted for com-
parison. The states

I
4i ) exhibit strong sub-Poissonian

Using the definition in (3.13), this can be rewritten as

p'"'(a', a) =p x '(a* —g', a —g), (4.28)

which is equivalent to P)r"'(a', a) simply displaced by g in
the a plane. A change in QPD before and after interfer-
ence is depicted in Fig. 6. The effect of interference at
Mz on

I 1(x ) is merely a disPlacement of QPD in which
the shape of QPD does not change. This is because the
second beam splitter with a high refiectivity prevents
quantum fiuctuation of the coherent state in the other
arm from entering into the output mode. However, this
displacement changes the direction of squeezing to the
direction of the photon number. This fact accounts for
the reduction of photon-number uncertainty by interfer-
ence.

We depict the QPD's for
I

'jlii ) in Figs. 7(a)—7(c). The
QPD's for an ordinary squeezed state' and a coherent
state are also depicted in Figs. 7(d) and 7(e) for compar-
ison. A comparison of Figs. 7(a) and 7(d) will clarify the
difference in the squeezing direction between

I
%'i ) and an

ordinary squeezed state. The former is squeezed in pho-
ton number, while the latter is squeezed in quadrature am-
plitude Rea. The QPD's of

I 4, ) roughly from a cres-
cent shape along a circle with radius & n, ) '~ . This results

I ~ I I ! I I I l ! f I I I ! I I ~ I ! ~ I I 10 5~ %t 4--

OA—

0.3—
:Re&x

g--8'
I

0 0
-0 gy

6 10

+e--o..e~ +-tL -ck w ~
20 25

FIG. 5. Photon-number distributions p„„=(n
I p I

n ). {a)

I
4&) with y=0. 15 {~}, 0.1 {0),and 005 {0);{b} I'0&) with

y=0. 15 (~ ), ordinary squeezed state IPo,p, v) with v=0. 8
which minimizes photon-number variance (CU), coherent state

I ao) with ao ——4.0 {O). Mean photon number is (n ) =16 for
all states.

FIG. 6. Displacement of QPD by interference at M2. QPD's
are shown by contours at 1.0 (+ ), 0.75, 0.5, and 0.25 times the
maximum value;

I t(x) before interference (dashed curves),

I
4'~) after interference {solid curves). Coherent excitations be-

fore and after interference are indicated by dashed and solid ar-
rows, respectively. Reference wave is indicated by open arrow.
y=0. 15 and

I
a&

I

~{1+g2)=!6.
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in strong sub-Poissonian photon statistics in Fig. 5 and
extremely reduced photon-number variance. On the other
hand, the above described state enhances phase uncertain-

ty more than an ordinary squeezed state. This enhance-
ment of phase uncertainty is treated in Sec. V.

V. ENHANCED PHASE UNCERTAINTY
AND MINIMUM UNCERTAINTY PRODUCT

So far we have shown that the states with reduced
photon-number variance are prepared at an output port of
the nonlinear interferometer. According to the Heisen-

berg uncertainty principle, this preparation is only possi-
ble with an increased conjugate-variable uncertainty.
However, this situation is somewhat more complicated
than with cases for other conjugate sets of variables such
as position q and momentum P of a free mass, or two
quadrature amplitudes a I and aq for a harmonic oscilla-
tor. This is because the Hermitian phase operator 4,
which is supposed to be a conjugate variable to photon
number n, does not exist. ' Therefore, we will start
with a brief review of phase variables and the number-

phase uncertainty relations, according to Susskind and

4

I I I I r I
r I r r I

0

1

1

I I r».
r I r I

r

0

-4--

I I I r
I I

0
I l I I r r
I I 1 r I r

I
I

I
I
I

I
'I

«4 «4

4--

I r I I
~ l r r

II I »

FIG. 7. QPD (a ~p~ a) of output state
~
%r) with (a) y=0. 15, {b) y=0. 1, (c) y=0.05, and of (d) ordinary squeezed state

~ Pop, v) with v=0. 8, (e) coherent state
~
ao) with ao ——4.0. Contours are at 1.0 {+ ), 09, 0.8, . . . , 0. 1, and 001 (dashed curve)

times the maximum value. Mean photon number is (n ) = 16 for all states.
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Glogower, ' and Curruthers and Nieto. ' Then we will

consider the phase uncertainty and uncertainty product of
output state

~
%i ).

sufficiently large, say (n » 10."~
The expectation values for a coherent state

i a), with
aeR and 0,2)~1, are given by3'~

A. Brief review of number-phase uncertainty relations

Boson annihilation and creation operators a and a ~ are
decomposed into photon number n and phase factors E+
~41,31

(a is ia) =o,
&~~C~~&-1,

(5.8a)

(5.8b)

(5.8c)

a =(n+1)'~2E

a t=E+(n+ I)'~2 . (5.1b)

1P~-4 .
Accordingly, the uncertainty product I'~ becomes

5.1a
(5.9)

Inversely, phase factors E and E+ are written as

E =(a+I)-'"a,
E,=a '(n+1)-'".

(5.2a)

(5.2b)

Operators E+ act on highly excited states as if they
~ere unitary operators since the states are almost orthogo-
nal to the vacuum state

i 0) in (5.3a). Therefore, we may
safely adopt an Hermitian phase operator 4 to write

E+ =e"~ (5.10)

E,E =1-
~
0) (0

~
(5.3a)

We cannot adopt the Hermitian phase operator 4 defined
e

by E =e' and E+ ——e ', because E+ are not unitary
as shown by" 4'

as a ood approximation for highly excited coherent
states. We may also arbitrarily choose a phase starting
point so that

(4)=0. (5.11)

E+ ——1.
Well-defined Hermitian operators '

(5.3b)

If states are assumed to have a sufficiently small phase
uncertainty,

(5.12)

S——(E E )ll

C= —,
' (E +E+ ),

(5.4a)

(5.4b)

can be used instead of 4. Their commutation relations
are

then operators S and C are well approximated by

S=d8=b4 +-—h4,
6

C= 1 ——h4 + —1

(5.13a)

(5.13b)

[n,S]=iC, (5.5a)
Accordingly, we treat h4 and M identically and refer to

&~~')-&~')
[n, C]= iS . — (5.5b)

Heisenberg uncertainty relations directly follow from (5.5)
as

(5.6a)

(5.6b)

It is more convenient to rewrite them into the following
form.

as phase uncertainty. Thus, the commutation relation
(5.5a) and the uncertainty relation (5.7a) are reduced to

[nk] , i-
s„,= (sn ') (sc ') &

(5.14a)

(5.14b)

%e can use the above-mentioned approximate expressions
for discussing states with a large mean photon number
and small phase uncertainty.

(&-')(~')
(C)'

&ae')(sc'&
Pnc =-

(S&' 4

(5.7a)

(5.7b)

Jackie has mathematically constructed precise
minimum-uncertainty states which minimize P~ or P„c.
He has also shorn that no coherent states can minimize
them exactly. However, highly excited coherent states are
effectively number-phase minimum-uncertainty states.
This is because P~ and P„c are very close to the
minimum value 4 when their mean photon numbers are

a=(n, +1)' e

b=(nq+1)'i e

(5.15a)

(5.15b)

8. Enhanced phase uncertainty

%e turn back to our problem and calculate the change
in phase uncertainty in the nonlinear interferometer in the
Heisenberg picture. We assume that fields a, b, and c
have large mean photon numbers and small phase uncer-
tainties so that above approximations are safely applic-
able. Then, the fields are decomposed into the following
forms:
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"=(n +1)'"~" (5.15c) (hn,') =(n, )'~' (5.22a)

Here Eqs. (5.1a) and (5.10) are used. The number and
phase uncertainties of field ti, which is in a coherent state

~
ai ) with ai && and ai » 1, are deternuned from (5.8c)

and (5.13a),

(bn,') =(n, ) =ai, (5.16a)

(5.16b)

The uncertainty product is very close to the mimmum,

(an.')(S4.') --,' . (5.16c)

The phase fluctuation of the Kerr-medium output field

his

54b -h4, +yhn~ -M, +yhn, , (5.17)

(bn, bS, )=—ai((n, +1) '~ ) = —(M, hn, ) . (5.19)

where (3.20a) and (5.15) are used. The phase uncertainty

of b is written as

(b,e ) —(a, )+yi(hn, )+y((bn„dkS, I &, (5.18)

where the first two terms are given by (5.16b) and (5.16a).
Here the average of the anticommutator [rh,n„d8, }
=hn, dS, +AS, hn, vanishes completely This. is due to
the following relation derived using ai ER:

y= —,a = —,&.)1 —4/3 1 ~ 2/3 (5.22b)

the uncertainty product is still very close to the minimum
value

&an,'&(ae,')- (5.22c)

n,' =r +dr, (r, =—a ),
III, =4, +bi@, ,

(5.23b)

(5.23c)

(5.23d)

Here, the first terms are mean values and the second
terms are small fluctuations. Then the fields can be ex-
pressed as

This is because the second term of (5.21c) is still negligible
(merely 1% contribution).

With a smaller (() [region (i) in Fig. 4], (bCI, ) cannot
be directly related to ( bk b ), because the superposed field
amplitude becomes comparable to the coherent excitation
of b, i.e., t)o& 1, as shown by Eq. (4.16b). However, the
method of quantum-mechanical quasilinearization~ can
be applied to this case. The phases and amplitudes of a
and c can be decomposed into

4, =4, +IsIk, (4, =0), (5.23a)

Phase uncertainty is represented by

&&@b)-,+y'&n. &=,+P,
4x] 4a)

(5.20a) 10 .
C

where (4.16) is used. On the other hand, photon-number
uncertainty remains constant,

(hn s & =a) . (5.20b)
CC= 1O~-

Therefore uncertainty product is increased to

&an', &(aC,') - ,'+y'- (5.20c)

before the interference„where (4.15c) is used.
Next we will consider the phase uncertainty of the out-

put field c. This will be done by considering cases with
varying values for ((). If (() »1 [regions (ii) and (iii) in Fig.
4], the phase uncertainty of c is almost the same as that of
b,

(bk,') —. (h4b)-p (p»1) . (5.21a)

This is because the superposed field is negligible iso « 1 as
shown by (4.17b). Therefore, using (4.15) and (4.17), the
number uncertainty and number-phase uncertainty prod-
uct are

CC

)00
CV

C

Cf

CC 10~-

1/4

y

I

I

10~ I I I I

10~ 10-& 10~ 10-5 10-~

(hn,') =a', , +—P',
2

(5.2 lb)

(5.21c)

When the photon-number uncertainty reaches its
m1011T1UQ1

FIG. 8. Number uncertainty (dashed curve), phase uncertain-
ty (dashed-dotted curve) and number-phase uncertainty product
(solid curve) of output state

~

III, & as a function of y.
i

a
gi

f
=10 .
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a =exp(i@, )[(r, +hr, )+ir, b,4,],
c =exp(i@, )[(r,+hr, ) +ir, h4, ],

(5.24a)

(5.24b) (6.3e)

where linearization is performed by ignoring the higher-
order fiuctuation terms. Substituting them into (4.3) with

ir—iaie, we seek the conditions for minimizing the
normalized photon-number variance o =4(hr, ) and ob-
tain the same results as in (4.16a)—(4.16c). When we
choose ri=rio= (P—+1)'~ —P, the mean phase of c be-
comes

4, =P—arctan[((() +1)'~ —(()] . (5.25)

Then, phase and number uncertainties and their product
can be represented as

(5.26a)

(5.26b)

(5.26c)

VI. NUMBER-PHASE MINIMUM UNCERTAINTY
STATE

This section discusses the relation between mathemati-
cally constructed number-phase minimum uncertainty
states and the output state of the nonlinear interferome-
ter. From general argument of the Heisenberg uncertain-
ty relation, a minimum-uncertainty state of two non-

commuting Hermitians n and $ should be the eigenstate
of the new operator,

J~ n+i($ ——(gCR) . (6.1)

This is an orthogonally linear combination of the original
Hermitians. The eigenvalue equation is given by

(6.2)

Jackie has mathematically constructed normalizable
states which satisfy this equation with ($)=0. These
states are of the form

(6.3a)

A, =(n), (6.3b)

(6.3c)

where (5.16a) and (5.16b) are used. These expressions
coincide with (5.21) at P)p 1, as long as the second term
of Eq. (5.21c) is negligible, i.e., y&yi. The results of
number and phase uncertainties and the uncertainty prod-
uct obtained in (5.21) and (5.26) are depicted in Fig. 8.

To conclude this section, the output state of the non-
linear interferometer

i
4i ) is effectively a number-phase

minimum uncertainty state as long as mean photon num-
ber is sufficiently large and y &yi. The photon-number
uncertainty can be reduced to (n ) 'i'.

A =aUaUt (~&0), (6.5)

with eigenvalue aa. Because [a,a ]=1, 3 obeys the
commutation relation

[A, A t]= ia i2. (6.6)

However, as indicated in (5.5a), J~ obeys a completely
different commutation relation,

[4 J~]=2gC (6.7)

Therefore i%'~) cannot be obtained from a coherent
state through a unitary evolution. Of course, no viable
physical preparation scheme for

i
4'„s) has yet been pro-

posed.
On the other hand, the output state

i
+, ) of the non-

linear interferometer is obtained from a coherent state
iai) through the unitary transformation (4.1). This is

physically realized in the nonlinear interferometer. Ac-
cordingly,

i
'0i ) cannot be exactly identical to the

number-phase minimum-uncertainty state
i
%'~ ). How-

ever, as long as (n) ~ (bn ) ) (n)'i, we can generate
i
0 i) with both (n ) and (hn ) to be exactly equal to

those of
i %~) by adjusting y, as shown in Sec. IV. As

long as (n ) ))1, (E$ ) will be almost the same as that
of corresponding

i 4~). This is because (bk ) &&1
and (dn )(hk ) ——, are preserved in

i
'Pi). Accord-

ingly, i%'i) is expected to be very close to
i %~). The

only difference is that
i %~) maintains mathematical

equality in (5.3a) while
i

'll i ) does so only approximately.
The QPD of these two states with the same (n ) and

the same (b,n ) =(n)' are calculated using (3.15),
(4.28), and (6.3a) and are depicted in Fig. 9. They are
quite similar even with a relatively small (n ).

Here I„(g) is a modified Bessel function of the first kind
of order p. The parameters A. and g, respectively, denote
the mean photon number and the ratio of number uncer-
tainty to phase uncertainty. They cannot be chosen in-
dependently. From the constraint in (6.3d), A, must be
chosen as A, &[2k, 2k+1] (k =0, 1,2, . . . ) and g ()0) is
uniquely determined by lI,. g is a convex function of A,

within the range [2k, 2k + 1], which takes zero at
boundaries A, =2k, 2k+ 1 and takes a maximal value
determined by k near the midpoint. Jackiw has excluded
photon-number eigenstates (A, =0, 1,2, . . . ; /=0) from
these states because they do not minimize I'„s defined by
(5.7).

It would be interesting to test the possibility of making
a rigorous number-phase minimum uncertainty state

i 4~ ) from a coherent state or equivalently from a vacu-
um state through unitary transformation. This can be
done as follows. A trivial case

i %~ ) =
~

0) is excluded.
If the state i%') is generated from a coherent state

i
a)

(a
i
a ) =a

i
n) ) through a unitary transformation

i
4) =U

i
a) (U U=UU =1), (6.4)

then
i
+) is the eigenstate of the operator
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VII. DISCUSSION

\

I

I I
I r

1

I

4--

I I I I I I I
f I I I I

\

I
I ~

-4--

FlG. 9. Ql'D (a
~ p ~

a) of number-phase minimum uncer-
tainty states; (a) mathematically constructed state

~
%~ ) with

A, -16.0, /=5. 3, (b} effective minimum-uncertainty state
~
rpr)

with y =0.0832. The mean and variance of photon number are
(n ) = l6 and ( hn ') = (n ) '/' for both states. Contours are at
1.0 (+ ), 0.9, 0.8, . . . , 0.1, and 0.01 (dashed curve) times the
maximum value.

The output state of a nonlinear Mach-Zehnder inter-
ferometer has been investigated. The distribution of the
qrrnSiprObabi1ity denaity iS defOrmed by Self-phaSe-

modulation in a Kerr medium to be a crescent shape.
After interference at the high-reflectivity beam splitter,
photon-number uncertainty (hn ) can be reduced to
(n)'/, far below the limit (n) / for an ordinary
squeezed state. The state exhibits strong sub-Poissonian
statlstlcs and quaslprobablhty dc11S1ty squcczcd ul thc
direction of the photon number. The reduced number un-

certainty and increased phase uncertainty satisfy the
Heisenberg uncertainty principle with near equality. The
state is effectively a number-phase minimum-uncertainty
state.

We have summarized the difference between the state
generated by the present scheme and an ordinary squeezed
state in Table I. The state discussed here is obtained from
a coherent state through unitary transformation
N(y, g)=D(g)Ux(1. ) which is different from S(g}of an
ordinary squeezed state. The isotropic QPD of an ini-

tial coherent state is squeezed into a crescent shape by
N (y, g), while it is squeezed into an elliptic shape by S(g)
as shown in Fig. 7. The former is more suitable to reduce
photon-number uncertainty than the latter. The differ-
ence stems from a difference in the type of nonlinear in-

teraction. The former is generated by the four-photon in-

teraction in the signal mode, while the latter by two-

photon interaction.
The two-photon interaction necessary for ordinary

squeezing is realized in four-photon mixing in a Kerr
medium by introducing two strong pump waves in other
spatial modes as first proposed by Yuen and Shapiro. "
Howeverrec, ent experiments ' employing copropagating
four-photon mixing in a Kerr medium seem to deviate
from the initial intention in the strict sense and resemble

TABLE I. Effective number-phase minimum-uncertainty state and ordinary squeezed state.

Effective number-phase
minimum-uncertainty

state
Ordinary squeezed

state

Nonlinear

interaction

Output state

Output mode

QPD

Hi ——~(a t)~a 2

~e) I=N(},g)~a&

N(y g) era pa~(i/2)y(a —I a

e=N (y, g)aN(y, g)
=e'I' 'a+/

Crescent

~s=&[X(a )'+X'a 2]

S(g) e(r/2)g a —(1/2)r(a

b =S~(g)aS (g)
=0 coshf' —8 e smhT

(/=re' )

Elliptic

Minimum number

uncertainty

Uncertainty product

(dn ');„=(n )' '

& d,a 2I & ( d a 2) = —,',
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our four-photon interaction. Even these copropagating
schemes can be well approximated by ordinary squeezing
under the following experimental conditions: a small non-
linearity P-1 and a large photon number &n ) & 109.
This is because the quartic Hamiltonian (1.2) is reduced to
a quadratic one (1.1) under quasilinearization
& = &a ) +b,a with fluctuations higher than those of
second order ignored. However, this approximation
cannot be extended to cases with an arbitrarily large non-
linearity or a small photon number, since ordinary squeez-
ing generated by quadratic Hamiltonian does not preserve
the photon number, though self-phase-modulation (cres-
cent squeezing) generated by quartic Hamiltonian does.
Our analysis has revealed the rather encouraging results
that such high nonlinearity makes it possible to reduce
photon-number uncertainty below the previously known
11mlt.

Frequency domain (multimode) analysis which picks
up a coupling between a couple of sideband modes is also
linearized and necessarily results in ordinary squeezing.
This linearization is justified with a small nonlinearity
and a large photon number. However, the extension of
the frequency-domain analysis to cases with a large non-
linearity or a small photon number has not yet been
developed. Just as for an angular modulated wave with a
large modulation index, an infinit number of sideband
modes coupled together are required to describe self-
phase-modulation properly in the frequency domain.

Recent calculation of the channel-capacity dependence
on photon states '" reveal that photon-number eigen-
states are far better than ordinary squeezed states in opti-
cal communications. The amplitude squeezed state (or ef-
fective number-phase minimum-uncertainty state) gen-
erated by the present schemes may find important appli-
cations in various optical systems.

Although the reduction in photon-number variance is
limited by & n ) ' in the present scheme, further reduction
may be achieved by a cascaded configuration of a non-
linear interferometer. This will be treated in a future pub-
lication.
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APPENDIX: INTERFERENCE AT A HIGH
REFLECTIVITY MIRROR

We show that interference at beam splitter Mz is ex-

pressed by unitary displacement operator for b or a

modes when the reflectivity of M2 is 82~1.
The combined output mode c is written as

c =QZ, b+ Ql It,—d, (Al)

Since d is in a coherent state
I
a2e' ),

l&d&l = 1~21,

& gd &) I/2
& gd 2) 1/2 (A3b)

If d is highly excited, i.e., I
a2 I

»1, then we can let
R2~ 1 while retaining

+1—Ji, &d)=g,
where g is a c number. However,

Ql —R2hd;~0 .

Accordingly, (Al) becomes

c=b+g .

(A4a)

(A4b)

(A5)

The boson commutation relation is properly preserved as

[c,c t)=[b,b tjj= 1 . (A6)

Using the unitary displacement operator for the b mode,

(g) e fb gb— (A7)

Equation (A5) can be written as

c =Db(g)bDb(g) .

In terms of a„ it is expressed as

(A8)

c = Ug(L)D (g)aD (g) Ux(L), (A9)

where (3.19) is used and

(A10)

is the unitary displacement operator for the a mode.
In the Schrodinger picture, the output state

I
4, ),„, is

connected to the Kerr-medium input state
I
u&) and out-

put state
I Px ) as

I
q'i&-t=D(k»~«) I~i&=D(k)

I WK& (A 1 1)

where (3.9) is used.

where b is the Kerr-medium output mode and d is the
reference arm mode. The reference arm mode can be
decomposed into mean and quadrature fluctuations as

d=&d)+Ad, +ibd2 .
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