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Interference of two photons in parametric down conversion
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A theoretical treatment is given of the process in which the two photons produced simultaneously
in the parametric frequency splitting of light are allowed to interfere. It is shown that, while there is
no interference in the usual sense involving quantities that are of the second order in the field,
fourth-order interference effects are present. These may be revealed by measuring the joint proba-
bility of detecting two photons at two points x,x in the interference plane with photoelectric detec-
tors as a function of the separation x —x . The probabihty exhibits a cosine modulation with
x —x', with visibility that can approach 100%, even though the integration time in the experiment
may greatly exceed the reciprocal bandwidth of the photons. The interference effect has a nonclassi-
cal origin and implies a violation of local realism in the highly correlated two-photon state.

I. INTRODUCTION

It has been known for many years that there exist expli-
citly quantum-mechanical effects in the interference of
light, particularly when the atomic sources are indepen-
dent and when very small numbers of atoms are in-
volved. ' The effects often show up more readily in
quantities that are of the fourth order in the field ampli-
tude than in second-order quantities. However, while the
early calculations by Fano already contained the essential
quantum features relating to the interference of two pho-
tons, that treatment focused on understanding the Han-
bury Brown —Twiss effect, and any differences between
classical and quantum theories remained unexplored.
Violations of the laws of classical probability in interfer-
ence have been emphasized only relatively recently. '

Fano appears to have been the first to point out that the
probability of detecting two photons produced by two ex-
cited atoms with two detectors exhibits a cosine modula-
tion with the separation of the two detectors. However,
he also concluded that the modulation would disappear in
any measurement made in a time interval that is large
compared with the reciprocal frequency spread of the
light. This seems to suggest that with wide-band optical
sources whose bandwidth b,ta is an appreciable function of
the midfrequency tao, the cosine modulation would effec-
tively integrate to zero in practice. Unfortunately, it is
just in the possibility of achieving a relatively large depth
of modulation that the quantum prediction differs from
the classical one.

In the following we consider interference between the

signal and the idler photon roduced in the process of
parametric down conversion. ' The photons usually have
a wide bandwidth, and they appear "simultaneous-
ly."' ' We calculate the probability of detecting both
photons with two detectors in some measurable time in-
terval that is much larger than the reciprocal bandwidth,
and we show that the answer becomes effectively indepen-
dent of the measurement interval. At the same time we
show that the probability exhibits a cosine modulation
with the separation of the two detectors that can be close
to 100%. We point out that this carries implications for
the existence of the same kind of nonlocal correlations
that were first discussed by Einstein, Podolsky, and
Rosen, ' and were studied in recent experiments. '

II. THE T%'0-PHOTON STATE

In the process of spontaneous parametric down conver-
sion photons from an incident laser beam interact with a
nonlinear mehum, and split into two lower-frequency sig-
nal and idler photons, that we label 1 and 2 (see Fig. 1).
We shall take the incident pump light beam to be in the
form of an intense monochromatic plane wave

i(Q r—coot)

that can be treated classically, and describe the interaction
within the nonlinear medium parametrically through the
second-order susceptibility X. Then the interaction Ht(t)
in the interaction picture is of the general form' ' '

Ht(t)= f d x i g g Xit(tao, cat, cap)(eg...)t(sf~ )i Via i, , a g, e ' ' ' ' +H.c.
ki, S I k2, S2

k,s labels the plane-wave eigenmodes of a large cubical cavity of side L„with periodic boundary conditions, &~ is a unit
polarization vector, and the integral is to be taken over the volume P of the nonlinear medium. We shall take the initial
state of the quantum field at time t =0 to be the vacuum state

~
g„„).

The state
~ f) in the interaction picture after a time t is then given by
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~
y&=exp ——

Jl a, (t')d»

and to the los&est order, in which are limit ourselves to two-photon excitations, the state becomes

, g g &,g»(o)o i tpi)«i;...);«i'~, ),.Vie
k),E) t2,s2

»n[ i (ko —k, —ki)~l~] -(in)((~ -~ ~ )(sin[ i (top —p), —tp2)t]
~
kis(, @san& .

~ (kp —ki —ki) i (~o-~i-~~)

Here R is the midpoint of the nonlinear medium which is assumed to be in the form of a ro:tangular parallelopiped of
sides Ii,li, l3, and

~
k(s),kis2 & is a two-photon Pock state. If the interaction time t is sufficiently large, we can replace

the sine factor sin[ —,
'

(top —»pi —»pi)t]/ —,
'

(p)p —»pi —»02) by 2n5(top »pi —to&) t—o a good appraximation, and the oscillatory
factor exp[ —i (top p) i

—»pi—)t /2] can then be discarded by a regularizing procedure.
Finally, if the two down-converted signal and idler waves are recombined at some distant point from which the pump

beam is excluded, as shown in Fig. 2, and if the two photons arrive at ri and rz at time to, respectively, we may take the
resulting two-photon state, which is the initial state for the interference experiment, to be expressible in the general form

(t)(k(s), kis2} is a weight function that is derivable from
Eq. (4), which, by virtue of the sine factors, is appreciably
different from zero only when

O=~+Z

kp= ki+ k2
(6)

k].si, 2s2 ——1.

and the exponential factor has been pulled out for con-
venience of interpretation Equa. tions (6) will be recog-
nized as the usual phase-matching conditions. We have
taken both signal and idler photons to be in definite polar-
ization states si,s2, and have assumed that the directions
of the signal and idler wave vectors ki and k2 do not
overlap, so that ki+ki in the double sum. Moreover, as
we are particularly interested in interference effects, we
shall suppose that we are dealing with the degenerate case
in which both si~nal and idler waves are centered at the
same frequency , o)o, although—both have an appreciable
frequency spread hot. As a result of the spread of ki, k2,
both signal and idler photans are pretty well localized in
space and time, and this has bN:n demonstrated experi-
mentally. ' "' ' Normalization of the state ( f& requires
that

It is not difficult to see, at least when the weight func-
tion ((}(k(s),k2s2) is real and non-negative, that the state

~ P & given by Eq. {5)corresponds to two photons having a
spatial distribution with peaks at ri and r2 at time tp
For this purpose we consider the projection of

~
P& onto

the two-photon "position state" in the Heisenberg picture

I ri ti r2 »2& ~ (r'1 tl)~ (r2 »2) I O.RO&

V(r, t)= i 2 ga)„e) e""'
I 3/2

It has been shown that the state Vt(r, t)
~ g„„& is a one-

photon state in which the hoton is (more or less) local-
ized at position r at time t, provided no attempt is made
to determine position to an accuracy better than a few
wavelengths or the time to better than a few optical
periods. Fram Eqs. (5), (8},and (9}together with the com-
mutation relations for ai, a i... we readily find for a sym-
metric function

P{kis i,kist ) =(I}(kissy,k)s i }

that in the limit I.~ao

Puap

Ito

Neliaea
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FIG. 1. Outline of the geometry for generating two down-
converted photons.

FIG. 2. The geometry for the iwo-photon interference experi-
ment.
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( ' '' '-')= dk dkvg(k k j(
~k1 ( 1 1)+ 2 { 2 2) 1( 1 0} +2{~2 ~0)~

r2.&2 r].tt I V =
(2m )

1 &k s &k~ ~
I 1 2

'~ "2 ("1—'2'+ "1 (*2—'1)—2{'1—'0)— 1{'2—'O) j
)+~WPk( 1'

The square of this probabihty amplitude gives the proba-
bility of locating one photon at ri, ti and one at, ri, t2 in
the foregoing restricted sense. Now if ${k,s(,k2s2) is a
real non-negative weight function, then the double Fourier
transform in Eq. (11}is a (tensor) correlation function in
the variables r'i, t„r2,t2, and the first term has its greatest
absolute value when

r~ ——r~ at time t~ ——to,

r2 ——r2 at time t2 ——to,
whereas ri and r2 are interchanged in the second teim.
Hence the two-photon wave packet represented by ( ttt) is
peaked at ri and r2 at time to Nat.urally, in performing
an interference experiment one would strive to make both
photons arrive at the same locality at the same time.

GI. THE PHOTON-DETECTION PROBABILITY

We now calculate the probabihty of detecting a photon
out of the superposed signal and idler waves at some point
r at time t. This probability P(r, t) is given by the expec-
tation value of V (r, t) V(r, t), where V(r, t} is the detec-

tion operator in the Heisenberg picture, which we take to
be defined by Eq. (9). Thus

P(r, t)=E(itti Vt(r t) V(r, t) i f)

k', s' k",s"

iI'{k"—k') r-(e"—op')t)&&k's" &k"s"e

where E is a proportionality factor. In order to evaluate
the matrix element we make use of Eq. (5), and we ob-
serve that

& k2s2gklsl I
u k't'uk"t-

I klan 1 k2s2)

is nonzero only when

k",s"=k'»s(, k', s'=ki„s 1, kz, s2 ——k2, s2

or

k",s"=k2,S2, k', s'=k2, s2, k'(, S'(=ki,s(.
Then P(r, t) reduces to

P(r, t)=K 9 g g (3(g'(kis»k2s2) g p(kis(, k2s2)(ek, s'k, , )e
k1,g1 k2, s2 k1,s 1

{k1~k2)
{k1~k2)

i[(k2—k2) (t—t2)-(ggg2 —ggg2)(g go))—+ 1}gi ($1, 2$2 1'LEk+ 'E&i ~ )8

(k2~k1)

Because the wave vectors k(, ki both belong to the signal wave, and k2, k2 both belong to the idler wave, there is no
cos[(k( —k2) r] modulation with position r, and P (r, t) does not exhibit interference fringes. This simply reflects the ab-
sence of a phase relation between the signal and idler waves. We shall see, however, that there are higher-order interfer-
ence effects.

IV. TWO-PHOTON-DETECTION PROBABILITY

Next we suppose that the superposed signal and idler waves are detected by two photoelectric detectors located at two
points r,r in a plane approximately perpendicular to k(+k2, in the neighborhood of ri, r2 (see Fig. 2). Then the joint
probability P2(r, t;r', t') of detecting one photon at r at time t and another at r' at time t' is expressible in the farm

P2(r, t;r', t') =E((I(g
~

V g (r, t) V (r', t') VJ(r', t') Vg(r. , t) ~
gtg)

=E gg g g (/~uk, ak;ak-, -ak-;- ~f)(ek, );{@,),.(ek-,-)t(ek-, -);
kit ktlgtt ktttgttt

i I'{k'" —k) r+ {k"—kt) r' —(a)'"—m)t —(ra" —es}')t']Xe

On introducing the expansion (5}for
~

(((}),and observing that the matrix element
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l ~ t
klsi k2s2 I

u icru 1I'r u(I-r-~)I-'- I
k(s 1 k2s2 &

is nonzero only for the four combinations

k",s"=k2,s2, k"',s"'=ki,si, k,s =ki,s„k',s'=k2, s2,

k",s"=k'»s'» k"',s'"=k2, s2, k, s =k2,s2, k'rs'=k(rs»

Or

k",s"=k2,s2, k'",s"'=ki, si, k,s =k2, s2, k', s' =ki,si,
we arrive at

P2(r, t;r', t')

(k s k s )y(k's' k's' )e 1 1 1 2 2 2 1+ 2 1 2 Oj

I 12
k ,s k ,s

&i(kl —kl) r+(k2-k2) r' —(Nl —Nl)t —(N2-N2)t']
X[(ei,... e„, , )(ei,+, e„, , )e11 klsl 22

eir(k2-k2) r+(kl-kl) r-(u2™2)t-(Nl-Nl)t']+ (&1,+, e„,)(ei,... e„, , )e
2 2 1

iI;(k2 —kl) r+(kl —k2) r' —(cd —e)1)t -(a)l —co2)t')
+(ei,... e„, , )(ei,+, e„, , )e

2 2 2 lsl

~ (k1 k2 .r+(k2 kl }'r (1 2)
+(es~, e„, , )(ek, e„, , )e

2 2 kls1 1$1

In the limit I ~ (x) the sums over the wave vectors ki, k2, ki, k2 can be replaced by integrals, and if the polarizations and
the directions of the waves are taken to be well defined, each three-dimensional integral with respect to dik reduces to a
one-dimension~ integral ~2d~ with re t to frequency.

»nally, we integrate P2(r, t;r', t') over the tinm interval T for which the measurement proceeds, which we shall take to
be much longer than the reciprocal bandwidth 1/hcI). Then the measured probability becomes, with it =k/k,

t( +T/2
(rPrt')=co tXttrf f P, (r t;r', t')dtdt

to —T/2

=&o&st X

ia(.(r—r()(u)'1 — )u/)(c iE2 (r' —r2)(u)2 —ru2)/c sin[(( t01)T /21 sin[(2 2) T/2]

(tI)1—cI)()/2 ((212—tO2)/2

itr2 (r r2)(u)2 r.u2)—/c iE) (—r' —ri)(ru') ru()/c sin[—(t02 2)T/2] sin[(~1 ~()T/2]
(F02—e12)/2 (CO( —to) )/2

i tK2N2 ~ (r—r2)/c —Klcol-{r—rl)/c]+ Ie),r, e)~, I
e

i[Eiu)'1 (r' —r()/c —Ezu)2 (r' —rz)/cj sin[(t02 t01)T/2] sin[(tol i(12)T/2]
Xe

((A)2 —&01)/2 (CO1 —/A)2)/2

i [alcol.(r—r
1 )/c —x2m2 {r—r2)/c) i [r2co2 ~(r' —r2}/c —xlcgl ~(r' —rl }/c]+

I e)I(E( e)c2E2 I
e

»n[(ei( —F02)T/2] sin[(a)2 —~i)T/21
X

(ct)'( —it)2)/2 (C02 —CO()/2
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The integrals can be simphfied if we substitute co') —p)) ——p)')', co&—p)z ——A@2' in the first two terms, and integrate with

respect to p)')', rp2'. We shall make use of the fact that over a small frequency range of order 1/T the factors outside the

large parentheses do not vary much, whereas

1 " d, sin(p)T/2)
2'it —~ co/2

where 8(x) is the unit step function that vanishes for negative argument. Provided T is large enough, the co')', (o2' integrals
within the large parentheses then yield unity. We handle the third and fourth terms in Eq. (15) in a similar manner, by
substituting p)z —co) ——p)z', p)') —co2 ——p)')', integrating with respect to p)z', co')' and using Eq. (16). We then obtain for suffi-
ciently large T, with the assumption that (}I)(p)),p)q) is symmetric with respect to p) i, rpq,

p, (rr')=constX f f d~, dry~'m, '~ p(ru„ru, )
~

'
i [f1(x2—x1 ) {r-rO)/c +eu2(g1 —g2) ~ (r' —rO)/c) i [a2 (r2 —r0) —z1 ~ (rl —rO)](cd —u1)/c

X (1+ e

[~2 +1 +2)' 0 &+1 +2 ~1 ' rO)/&] & ["2 2 rO ~1 r1 r0)](2+ e

We have introduced a reference point rp in the detector
plane on the line containing the points r, r' (see Fig. 2).
We note immediately that the probabihty is independent
of the integration time T, as one would expect, provided
T is long enough to detect the localized photons. More-
over, the interference terms have not integrated to zero,
despite the fact that we have taken the measurement time
T to be much longer than the coherence time I/hp). Be-
cause of the symmetry of (}}(p)),p)2) under the exchange
co)~~u2, the second interference term in Eq. (17) is just the
complex conjugate of the first.

Let us examine the interference pattern in more detail.
In practice one would like r) and r2 to coincide with rp.
However, (co2 —p)) )/c is bounded by the reciprocal coher-
ence length of each photon, so that even in the worst case
the exponential factor.

8
i [K2 ~ (r2 —rP) —K1 ~ {r1 —rO)](072-071)/c =1

p«»ded lr2 —ro~ and (r) —rp( are both much smaller
than the coherence length c/b, .p)Henceforth we assume
that this is the case.

If the points r, r', rp all lie in a plane perpendicular to
the vector «)+«2 characterizing the direction of the in-
cident light, then from Fig. 2 we have, since

(«) —«2) ~ (r—rp) =x58,

(«z —«) ) ~ (r' —rp) = —x'58,

(«i —«z) ~ (r—r') =(x —x')58 .

(18)

Now two light waves of wavelength 2A,p or frequency
cop/2 traveling in the dire:tions «),«i, which are inclined
to each other at some small angle 58, give rise to interfer-
ence fringes with spacing

S =2g/58=~~c/~o58 . (19)

If the frequency density function (})(io),p)2} has each fre-
quency centered on p)o/2, and we substitute
p)) ——p)p/2+p)', p)2 ——p)o/2+a)" in Eq. (17) and make use
of Eqs. (18) and (19), we can write

P2(r, r')=const X f f dec'dc'"(pio/2+p)') (p)o/2+a)")
~

p(cpo/2+co', p)o/2+p)")
~

X(1+
~

& .&
~

e ~i( — ')/
e

'(m' —u"x') / +c c )k1s1 k2 2
(20)

The factor exp[i (p)'x —ip"x'}58/c] represents an effective
spread in phase difference between the field at r, r'. We
can interpret its significance by introducing the two-
dimensional Fourier transform

F(~),~2)= f f dp)'da "(p)p/2+a') (~ p/2+i')

X
i
Q(p)o/2+co', a)p/2+co")

i

—& {07T1 —M T2)Xe

As the integrand, apart from the Fourier kernel, is real
and non-negative, F(~),~2) is a correlation function. Then

Eq. (20) can be expressed in the more compact form

Pi(r, r')=constXF(0, 0}I1+
~

e)'..., e),... ~

X }f(x'58/c, x58/c)
i

Xcos[2n (x —x ') /8 +a]I,
(22)

where f(~),r2) is the normalized correlation function
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f(ri, r2) =F(~i,r2)/F(0, 0), (23)

and Cx is the pllase of E(Ti, 'r2).

V. DISCUSSION OF THE INTERFERENCE PATTERN

It is clear fmm Eq. (22) that the joint probability
P2(r, r ) exhibits a cosine modulation with the separation
x —x' of the two detectors. This is a form of interfer-
ence, although it involves a correlation function that is of
the fourth order in the field. If the spectral density
(too/2+ra') (rao/2+ra")

~

P(too/2+a)', too/2~to")
~

2 is
unchanged under the transformation co'~ —to', r0"
~—co", then F(ri, rz) is real and the phase a is zero.
The relative depth of modulation is determined by the po-
larization factor ~ei"..., e),. ~

and by the magnitude

~ f ~

. For two photons that are similarly polarized

~

e)', ... ei,+ ~

will be close to unity. Let us examine the

magnitude
~ f ~

more closely.
As (()(t0o/2+to', tao/2+ra") has a spread of order bra in

both frequencies ro', to", it is clear that f(ri, vt) has a
range of order I/Et' in both variables v'i &z Moreo er

~ f (~i,~2)
~

is close to f(0,0)=1 when ri, rz &&1/bto. It
follows that the "visibility" of the interference pattern
will be close to unity when x,x' are sufficiently small,
despite the fact that the measurement or integration time
T is much longer than the coherence time 1/b, ta, because
the two photons are so briefly localized in time.

It is convenient to express x,x' in multiples N, N' (not
necessarily integral) of the fringe spacing S given by Eq.
(19). Then

x =N4mc/rurtt's8,

x ' =X'4rrc /too58,
(24)

x58/c =4m'N /tao,

x'58/c =4m%'/too .
(25)

The condition for ) f(x'58/c, x58/c)
~
=1, which re-

quiret the delay times to be much less than 1/hto, can be
expressed in the form

when the relative bandwidth 2bto/coo is small, but may be
difficult to satisfy when the bandwidth is appreciable.
Still it seems that at least one or two interference maxima
and minima, or interference fringes, should be resolvable
when 2b r0/coo is 10% or less.

Let us examine the case 26~/coo~~1 a little more
closely. Under these conditions the visibility of the in-
terference pattern should be close to 100% over many
fringes. It then follows from Eq. (22) that the joint detec-
tion probability Pz(r, r') vanishes when

x —x'=(n+ —,
'

)S, n =0,+1,+2, . . . . (27)

In other words, two photons can never be detected at two
points separated by an odd number of half interference
fringes, despite the fact that one photon can be detected
anywhere, because there is no interference pattern in the
second-order sense. This conclusion is without classical
analogy. It can be shown that with two independent clas-
sical sources the maximum reahzable visibility of the
modulation would be 50%, so that P2(r, r') can never van-
ish. '

The vanishing of Pz(r, r') for two photons at widely
separated points r, r' confronts us with another example of
quantum-mechanical nonlocality, for the outcome of a
photoelectric measurement at r appears to be influenced
by where we have chosen to place the r' detector. At cer-
tain positions r' we can never hope to get a count at r
when there is a count at r', whereas at other positions r' it
is possible. This conclusion is related to the fact that in
quantum mechanics we cannot associate an objective
physical reality with the two photons that is independent
of the measurement we choose to make. The phenomenon
involves the same violation of local realism that was re-
cently tested in the experiments of Aspect and his colla-
borators, ' ' and was first discussed by Einstein, Podol-
qky, and Rosen. '

%"e conclude that two photons produced in the process
of spontaneous parametric down-conversion should exhib-
it interference effects, despite the fact that the phase of
each interfering component is undefined and the measure-
ment or integration time greatly exceeds the coherence
time. These are clearly nonclassical interference effects.

X,N' g(a)o/4mhco . (26)

In other words, the number of fringes separating r from
ro and r' from ro must be much less than the reciprocal of
2m times the relative bandwidth. This is easy to satisfy
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