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We present an analysis of the factors that affect selectivity in resonant multiphoton ionization.
After a discussion of the formalism in terms of the density matrix in the context of two-photon-
resonant three-photon ionization, we apply the theory to Li and Sr, demonstrating the effects of
laser bandwidth, power broadening, and pulse duration.

I. INTRODUCTION

Although a substantial body of theoretical work on
resonant multiphoton ionization has been published,!
most of it has been presented in terms of rather general
formalisms not directly useful to those experimentalists
who are interested in the application of such processes to
selective ionization. The role of saturation, ac Stark shift,
laser bandwidth, and intensity fluctuations are aspects
about which important questions seem to exist among ex-
perimentalists active in the field. Moreover, most theoret-
ical papers have concentrated on rate approximations hav-
ing thus underemphasized the very important role of
laser-pulse duration.

Our purpose in this paper is to present a brief discus-
sion of the essentials of the formalism and to show by
means of realistic calculations how the above aspects af-
fect isotopic selectivity. We have, in fact, chosen to dis-
cuss numerical results on two atoms Li and Sr, upon
which experimental interest has recently been focused.’

A typical scheme of resonant multiphoton ionization
(RMI) envisaged in connection with isotope separation,
measurement of cross sections of excited states, and relat-
ed problems involves a transition between two bound
states |g) and |a) and ionization from the energetically
higher of these two states |a ). In general, the transition
| g)— |a) can involve any number of photons as can the
transition |a)—continuum. No real transitions to other
states are assumed. The strengths of the above two transi-
tions are thus determined by the appropriate multiphoton
effective matrix elements® and the laser intensity. Both
bound states |g) and |a) will in general undergo ac
Stark shifts under the influence of the laser that causes
the transition. These shifts are proportional to the inten-
sity of the laser.

If the laser is not monochromatic,* allowance must be
made for its finite bandwidth which affects the saturation,
the selectivity, the dependence on laser power, etc. If in
addition to the nonzero bandwidth, the laser undergoes in-
tensity fluctuations, the ac Stark shift is generally
enhanced® by a factor depending on the details of the sto-
chastic behavior of the field. In that case it is not given
simply by the polarizability multiplied by the intensity.
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Intensity fluctuations do of course affect more than the ac
Stark shift. They affect the multiphoton transition rate
from |g) to |a) and from |a) to the continuum, the
saturation behavior of the process, the total yield, and
hence the selectivity.

If maximum ionization is desired (as is the case in con-
nection with isotope separation), a time-dependent
analysis of the process is often necessary. In fact, one of
the parameters that determine the maximum of ioniza-
tion, given a desired degree of selectivity, is the interaction
time. Obviously, if this time is too long, selectivity will
suffer because the off-resonant isotope will also be ionized
significantly. Also, if the interaction time is too short,
selectivity will suffer because both on- and off-resonant
isotopes will be ionized only by a small percentage. The
amount of ionization of the on-resonant isotope will then
be comparable to that of the off-resonant isotope. There
is an optimum interaction time which is related to the sat-
uration of ionization. We must therefore consider the
solution of the density-matrix equations incorporating all
necessary effects. Under certain circumstances, rate equa-
tion approximations to the full density matrix may be use-
ful, at least as a first estimate. In what follows, we dis-
cuss examples of such rate equations and the limits of
their applicability in the context of two-photon-resonant
three-photon ionization.

Power broadening of the intermediate excited state (due
to both Rabi oscillations and ionization) has a profound
influence on selective ionization. Higher laser intensity
helps the ionization but at the cost of selectivity. Good
selectivity, on the other hand, requires low intensity in or-
der to avoid power broadening. But low intensity implies
sacrifice of ionization. Thus with a single laser, one is
forced to a compromise between selectivity and amount of
ionization dictated in each case by the magnitude of the
atomic parameters. In particular, the relative magnitude
of Rabi frequency and ionization of the intermediate
states is the most important factor as we will also see in
the specific examples of the two atoms examined later on.
If, on the other hand, a second laser of larger intensity is
employed for the ionization step (with frequency chosen
so as to leave the bound-bound transition unaffected) one
has the option of increased ionization combined with good

3954 ©1986 The American Physical Society



34 SELECTIVE IONIZATION: EFFECTS OF POWER ...

selectivity. In this fashion, the power broadening due to
the Rabi oscillation is minimized which is especially
necessary when the Rabi-frequency matrix element dom-
inates that of ionization, as is the case with Sr. Of course,
this is particularly important in two-photon-resonant
three-photon ionization where Rabi frequency and ioniza-
tion width are both proportional to the laser intensity.
Thus an additional aspect analyzed in this paper is the op-
timization of selectivity and ionization achieved by the
use of a second laser. This requires a slight modification
of the existing formalism as discussed in the following
section.

Our intention in this paper is neither the elaboration of
theoretical intricacies of field-fluctuation effects nor the
review and evaluation of possible schemes for selective
ionization. We aim instead at the demonstration of the
relation between theoretical understanding of selective
ionization and application to experiments.

II. THE AVERAGED DENSITY-MATRIX EQUATIONS

Let |1) and |2) be the lower and upper resonant
states with energies fiw; and #w,. A laser of frequency o
tunable around the two-photon transition |1)—|2) is
assumed; which means 2w =w,—w®,. The laser is allowed
to have a nonzero bandwidth denoted by ;. The third
photon ionizes the atom in state |2) with a rate denoted
here by ¥, (also referred to as the ionization width of state
|2)). It is given by the photoionization cross section of
state |2) multiplied by the photon flux. If it takes more
than one photon to ionize from state |2), 7, will be given
by the appropriate generalized cross section multiplied by
the corresponding power of the photon flux. Certain im-
portant aspects of the process depend significantly on
whether y, is linear in the photon flux or not. We shall
proceed here with the assumption that y, is linear in the
flux which is equivalent to considering two-photon-
resonant three-photon ionization. The excited state |2)
can in general decay back to | 1) via a cascade of spon-
taneous emissions, the net rate of which we denote by I',.

If we consider the matrix elements p;;(¢) of the atomic
density matrix and introduce the standard transformation
Pu(t)——:au(t)em” and pj;(t)=o0(t), j =1,2, we can write
the equations in terms of the slowly varying quantities
;;(¢). The electric field of the laser is written as

E(t)=[e(t)e’® +€*(t)e ~“']e , m

where e is the polarization vector and e(z) the amplitude
whose slow fluctuations (slow compared to 1/w) give rise
to the nonzero bandwidth and possible intensity fluctua-
tions. The interaction between atom and field in the di-
pole approximation is given by —pu-E(t) with p being the
usual dipole operator. Without going into the details of
the derivation,* we quote now the equations of motion of
the slowly varying density matrix o;(¢).

%(a”(t))=F2(022(t))+21m{uf2(a,2(t)[e"(t)]2>} ,

%(022“»:—(r2+?’2)<022(1)>
—2Im{ph{op([e* (D)}, (2b)
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%+iA+%(I‘2+372+2yL) (oD OT)

=iﬂ122€(4)[<022(t)>—<0’11(I)>] ’ (2¢)

where

HimPm?2
=%y —— (3)
H12 % O —@

is the usual two-photon effective dipole matrix element,>*
involving a summation over all virtual intermediate states
and

A=260—(021—3F21 4)

is the dynamic detuning from exact two-photon reso-
nance. It is referred to as “dynamic,” because it includes
the ac Stark shift F,; of the resonance transition. F,; is
given by the difference F;—F, between the shifts of
states |1) and |2), respectively, and is proportional to
the laser intensity, the constant of proportionality being
the polarizability of the respective state. The detuning
from resonance changes, therefore, with laser intensity.

The model on which the above equations are based as-
sumes that the complex amplitude e(?) of the electric field
fluctuates around an average value €,. This gives rise to a
bandwidth [full width at half maximum (FWHM)] y;,
and in general to intensity fluctuations. The rigorous
treatment of the problem including intensity fluctuations
is extremely complicated and has been discussed elsewhere
in more than one context.>® Here we adopt a simplified
version of the theory which was developed in a much ear-
lier paper* and where some of the details of the derivation
can be found. It is simplified in that the effect of ampli-
tude fluctuations is treated perturbatively while that of
phase fluctuations is treated exactly. The factors of 3 ap-
pearing in front of ¥, and F,;, as well as the factor of 2 in
front of €} in Eq. (2c), have their origin in amplitude fluc-
tuations. They should be replaced by one, if the ampli-
tude is perfectly stabilized. The effect of phase fluctua-
tion, on the other hand, is properly taken into account
through the presence of y; in Eq. (2c). In this phase dif-
fusion model, the laser spectrum is Lorentzian near the
center with FWHM 2b and has a cutoff around B ( > b).
The v, is expressed as’

BZ
A 4p

It is for the sake of simplifying the discussion in this
paper that we speak of amplitude and phase fluctuations
as if they were separate. In general, it is the correlation
properties of the complex amplitude that enter through
the correlation functions which in turn depend on the ori-
gin of the stochastic behavior of the field. The factor of 3
mentioned above is obtained through a model of Gaussian
fluctuations for e(¢) corresponding to a chaotic field. It
should be noted that the ionization width fluctuates as
| (2) | 2 fluctuates. Thus ¥, is the average over such fluc-
tuations while the factor of 3 accounts for their effect.

YL =2b (5
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The same holds true for the shift. In general, quantities
depending on |e(t)|? are affected only when there are
amplitude (and hence intensity) fluctuations. They are to-
tally unaffected by phase fluctuations whose sole effect is
to add to the width of the resonance, as evidenced by the
additive presence of y; in Eq. (2¢).

As indicated by the angular brackets in Egs. (2) it is the
averaged, density-matrix elements (o;;) that correspond
to observable quantities; averaged, that is, over the fluc-
tuations of the field. If there are no fluctuations, which
means that the amplitude is perfectly stabilized and the
bandwidth is zero (or negligible compared to I';+7%,),
Egs. (2) must be modified by setting y; =0 and replacing
3y, 3Fy;, and 268 by y,, Fy;, and €, respectively. In that
case, {(oy;(¢)) is simply replaced by o;;() with no stochas-
tic average involved.

Ionization is given by

(P(t))=1—(0'“(t))—-<0’22(t)) (6

J
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and will in general be a complicated function of the time
during which atom and radiation interact. This interac-
tion time is either the laser-pulse duration or the time of
transit of the atom through the laser beam, whichever is
shorter. If certain conditions which are discussed below
are met, it may be possible to express (P(#)) in the form
1—e~"* where W is the transition probability per unit
time. In that case, the process is describable by a single
rate W. Under different conditions, two rate constants
may be necessary while in the most general case, (P(t))
must be obtained through the complete solution of the
density-matrix equations (2).

The rate of ionization can be increased further if a
second laser of higher power and different frequency is
used for the ionization step. The frequency must be dif-
ferent so as not to affect the two-photon bound-bound
transition. With this consideration, taking the stochastic
average of the equations of 0;;(¢) we have

%(011“»=r2<0'22(1))+2Im{}t12<0’12(t)[6‘(1)]2>} s (7a)
g;<022(t))=—(r2+7’2+‘}"2)(022(1))—2Im{#12(012(t)[5'(1)]2>] , (7b)
'5;+iA+';'(F2+37’2+7"2+27’L) (o[ () =ip2e (o) —(op(t) ], (7e)
where III. RATE APPROXIMATIONS
A=20—wy —3Fy —F5; . (8) In order to aid physical insight into the problem and its

The dynamic detuning includes the ac Stark shift Fy;
of the resonance transition as well as the ac Stark shift
F5, caused by a second laser if present. y; is then the rate
of ionization of level |2) caused by the second laser. 3
and F, appear in the equation without the factor 3, be-
cause the second laser is involved in the ionization process
for |2) to the continuum without participating in the
bound-to-bound two-photon-resonance process. Needless
to add that although the ionization rate of |2) can be in-
creased in relation to Rabi frequency by introducing a
second laser, it cannot be decreased since the laser causing
the two-photon transition will inevitably cause ionization,
and separating the ions from the two pulses is not a trivial
instrumental problem, if possible at all. If both lasers’
pulses are much shorter than the lifetime of the excited
state, one could delay the second pulse with respect to the
first. If the second laser is much stronger than the first,
y, can be dominated by 73, and the ionization rate of |2)
can, in principle, be approximately independent of the
Rabi frequency. Even if the second laser’s intensity is
comparable to that of the first, we can increase the value
(3y,+7v3) without increasing the Rabi frequency. Thus
we increase the total ionization rate and at the same time
we still can have a fairly good selectivity. This result is
further discussed in Sec. IV.

formulation, we give here a brief summary of certain spe-
cial cases and the conditions under which they can be ob-
tained from the general equations.

For brevity let us set

Lo+ 3v2+2vL =Y &2
and

<0'22(t)>-—'<0'“(t)>5n(t). (10)

Substituting into Eq. (2c) and converting it to an integral
equation we obtain

(onp([e*(O]) =ipy2€) fotdt’n(t’)e(iA+7/2)("_‘). any

If n(¢') does not change much over times for which

vt >>1, i.e, for times larger than 1/, then it can be re-

placed by n(z) and pulled outside the integral. The in-

tegration can then be performed, and in the limit y¢— oo,
we are left with the approximate expression

.1
<012(t)[6'(t)]2)=2#1263‘A_+l-2I'
A2 + % ,},2

n(t) (12)

which can now be substituted into Eqgs. (2a) and (2b). If
we also introduce the definitions
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1

7Y
Q=4 28— (13a)
|1z 0A2+%y2
and
Qo=4|p12 | %/57 - (13b)
Equations (2a) and (2b) become
%4—0 (ou(0) —(Tp4 Q) opn®)=0,  (142)
%+F2+72+Q <022(t)>—ﬂ<0'11(t)>=0 (14b)
Is it useful to note the relation
1.2
Q=0—1— (15)
AT 5y?

from which it is evident that Qo= lim,_,o 2.

We have thus arrived at two rate equations in which
represents the rate with which atoms are stimulated to
make the transition |1)<«>|2). Thus Q is the equivalent
of a Rabi frequency, but a two-photon Rabi frequency. It
includes, however, the effect of the laser bandwidth, of
the broadening of level |2) (owing to spontaneous decay
and ionization) as well as of the detuning. It is perhaps
more proper to reserve the term Rabi frequency for Q,
which is independent of the detuning A, a convention that
we adopt in the remainder of this paper.

The above rate equations with the initial conditions
(011(0))=1 and (02,(0))=0 can be solved exactly by
taking the Laplace transforms, finding the roots and cal-
culating the inversion integrals. The result is

(a“(t))=Aes"+(1-A)es2’ , (16a)
(om0 =< (=%, (16b)
1782
where

Si2=7(2Q+T,+7,)
47,0 172
T an
(2Q+Ty+7,)

are the roots resulting from the solution of the Laplace
transformed equations, and
S1+0+Th+7,

—1x

X

It will be useful to also note the relation
S1 —Sz = (20+F2+}’2)

. ¢ U
2Q+T,+7,)?

172

X (19)

If instead of spontaneous radiative decay, state |2) un-
dergoes transitions into other channels (e.g., dissociation
in a molecule) the equations are still valid with the modi-
fication that I'; should be omitted from Eq. (14a) since

the decay out of |2) does not return the system to |1).
It is also worth noting that different relaxation times for
the diagonal and off-diagonal matrix elements of p can be
accommodated in the equations (the well-known T, and
T,). This is accomplished by replacing I', in Eq. (9) by
another constant [';; independent of I',. The latter still
appears as the relaxation constant in the diagonal matrix
elements; that is, I',=1/T{ and I';;=1/T,.

The solutions (16a) and (16b) of the rate equations show
that in general two rate constants S, and S, determine
the evolution of the populations. In certain special cases,
only one of these constants may be important in the
description. This would be the case if one of the two rate
constants is much larger than the other. Then one of the
exponentials decays very fast, leaving only the one with
the small decay constant to determine the rate of ioniza-
tion. As the simplest example, let us consider the case of
weak field in the sense that () <<y,. From this inequality,
it follows that the fraction inside the square root in Eq.
(17) is much smaller than unity. Using the approximation
(14-X)'/2~1+4 +X and making repeated use of Q <<, we
arrive at S;=—Q and S,~—(I';+7,). Obviously, on
the basis of our assumption we have |S,| > |S;|. Thus
—Q is the smallest root which means that state |1) is
depleted according to Ae ~%, its rate of depletion being Q
which is now recognized as representing a special case of
two-photon-resonant three-photon ionization. It reduces
to the most conventional form if we take y, to dominate
both I'; and ¥, in which case ¥ reduces to 3y, and from
Eq. (13a) the rate of ionization becomes

2
a—getal 72 20
A+ 573

Since 7, is an ionization rate, it is proportional to €3,
which makes Q proportional to €5 or the third power of
the intensity. Also |, |2 combined with the square of
the bound-free matrix element yields a three-photon ma-
trix element with a resonance denominator, as expected,
since only one state reachable by two photons has been
considered, namely |2), and A is the detuning from that
state. Finally, the factor 6 in front arose from the ampli-
tude fluctuations which had been incorporated in our ini-
tial equations for the density matrix. It can be traced to
the combination of the factor 3 in front of ¥, in Eq. (2c)
with the factor 2 in front of the right-hand side of the
same equation. It is the well-known 3! coming from the
effect of intensity fluctuations (photon statistics).® This
effect can be present even in the absence of any bandwidth
effects, as in fact happened in Eq. (20) which is obtained
in the limit of negligible bandwidth.

The basic assumption 2 <<I',+7, has the implication
that the field is sufficiently weak for the transitions
|1)<>|2) to be much slower than all other rates in the
process. As a consequence, atoms are pumped from | 1)
to |2) very slowly, thus leaving the population difference
(011(8)) — (0o5(2)) relatively unchanged over time periods
of the order 1/y, which is consistent with the step taken
from Eq. (11) to Eq. (12).

Another special case of the solutions (16a) and (16b)
corresponds to the opposite limit, i.e., A>T +y,+7v,.
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Taking again, for simplicity, y; =0 and observing that
4Q(y,+T5)
5 <<
(2Q+T,+7,)?

the two roots are S; = — 5 (I, +7,) and S, = —2Q, where
now |S,|>>|S;| and the resulting populations are
(on()y={opn(t))=Le "', The rate of depopulation
here is +(I,+7%,) which implies that, because of the
strength of Q the populations of the two resonant states
are almost equalized very quickly [compared to times
1/(I';+v,)]. Ionization then proceeds slowly with the
rate ¥, and decay with the rate I',. Again,
(011(1)) —{052(t)) changes very slowly, after a rapid
change occurring over a period of the order of 1/Q,
which also makes it consistent with the step from Eq. (11)
to Eq. (12). Note that in the previous case, excitation to
| 2) proceeds very slowly and subsequent ionization (rela-
tively) very fast. It goes without saying that, in the case
of quick saturation of | 1)— |2), the single-rate approxi-
mation would not be valid over short time periods of the
order of 1/Q. The full set of equations must be solved in
that case. The full set of equations is especially necessary
when () and y are of comparable magnitude in which case
none of the above approximations is valid, not even Eq.
(12) which leads to the rate equations. Of course even in
that case, the oscillations of the populations tend to be
damped over times long compared to 1/y. Over such
times simple rate equations do again give good approxi-
mations to the ionization rate.

21D

IV. APPLICATIONS

We consider now the application of the preceding
theory to the problem of isotopic selectivity’ in two-
photon-resonant three-photon ionization of atomic Li and
Sr.

In Li, we assume that the laser is tunable around the
two-photon resonance 2s —4s corresponding to an energy
difference of 35012.06 cm~!. The isotopic shift between
®Li and "Li is A;=12 GHz. In Sr the two-photon reso-
nance is 5s2'S;—5p2!S, corresponding to an energy
difference of 37 160.278 cm™!, the isotopic shift between
8Sr and *°Sr being 700 MHz.2 The other atomic parame-
ters necessary for the calculations are listed in Table I.

Let the laser be tuned exactly on resonance with the
above transition in one isotope. We use as a measure of
selectivity the ratio of ionization of the off-resonant iso-
tope to that of the resonant. In terms of the preceding
formalism, we need to calculate the ratio of ionization at a
two-photon detuning equal to the isotopic shift, to ioniza-
tion at a detuning equal to zero. We will agree in advance

that the detuning is to be understood as dynamic which
includes the ac Stark shift for a given laser power. The
laser frequency is assumed tuned exactly on resonance to
the shifted two-photon transition. At that power, the
same resonance transition for the other isotope is detuned
by an amount approximately equal to the isotopic shift.
A small correction, due to a difference between the ac
Stark shifts in the two isotopes, is totally imperceptible
and negligible for all practical purposes of the type dis-
cussed in this paper. Let us call £ the selectivity as de-
fined above. Using the definition of total ionization given
by Eq. (6), ¥ can be written as

P(A;,T)

S = PO,T) ’

(22)

where P(A;,T) is total ionization at detuning A; and
after interaction time 7. It is obvious that the smaller the
value of &, the better the selectivity will be. If the pa-
rameters are such that P is expressible in terms of a tran-
sition probability per unit time W, then P=WT and % is
independent of time. But even in that case, the linear
dependence in time holds for short times, i.e., WT << 1.
For longer times or for situations in which the transition
probability per unit time is not constant, we expect a com-
plicated and substantial time dependence of .%.

The problem involves many parameters and it is not a
priori obvious which combination is the optimum. Cer-
tain general statements, however, corresponding to limit-
ing values of particular parameters can be made. For ex-
ample, for interaction times sufficiently long, selectivity
will deteriorate because both isotopes will ionize. How
fast is this deterioration of selectivity depends on laser
power. Determining the optimum combination of time
and power is one aspect of the problem. Consider also the
question of laser bandwidth. The excited state has some
field-free width which, in a collisionless atomic beam, is
determined by the spontaneous radiative decay. In a mol-
ecule, this width is usually dominated by intramolecular
processes. As the laser intensity increases, ionization may
eventually become stronger than other depopulation
mechanisms and it is the ionization width that may then
dominate. The laser bandwidth, on the other hand, is
determined and limited by instrumental factors. More-
over, narrowing the laser bandwidth entails some sacrifice
of laser power. It is evident that narrow bandwidth helps
in improving selectivity, while large laser power increases
the ionization yield. We have again two competing fac-
tors whose optimal combination constitutes another as-
pect of the problem.

The natural width I'; of the excited state 4s of Li is
about 25 MHz. A state-of-the-art laser in this wavelength

TABLE 1. Atomic parameters of Li and Sr. I is the laser intensity in W/cm?

Spontaneous width Ionization width Two-photon
of excited state (MHz) of excited state (Hz) Rabi frequency (Hz)
Li 25 3.001 7.851
Sr 9 1.531 3.01x 1047
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TABLE II. Isotopic selectivity in Li. One laser of bandwidth
v =50 MHz; interaction time T =30 ns.

Laser intensity 1

(W/cm?) 107 3% 107 5% 10’
Ionization P (%) 19.91 67.98 86.78
Selectivity .~ 1.98x10~* 1.84x 1073 7.11x1073

region (17506 cm™') could deliver an intensity of the or-
der of 107 W/cm? within at best a bandwidth of y; =50
MHz. We begin our exploration around this range of
laser intensity and bandwidth. Although the pulse dura-
tion is more or less fixed by the type of the laser, we will
let it vary from a few nanoseconds to about 50 ns in order
to demonstrate its effect on the process under considera-
tion. The actual pulse duration of the laser contemplated
for such experiments is within the above range. We ex-
plore first the range of intensities between 10’ W/cm? and
5% 10" W/cm?. The two-photon Rabi frequency as well
as the ionization width vary linearly with laser intensity,
the Rabi frequency being 2.6 times larger. Independently
of the intensity therefore, ionization will always be slower
than the Rabi oscillation if only one laser is employed.
Within the above range of intensities, the Rabi frequency
varies from 79 to 392 MHz while the ionization width
ranges from 30 to 150 MHz. With a laser bandwidth 50
MHz, none of the important parameters dominates the
others. Thus we are in a situation in which a single-rate
approximation is not expected to be reliable especially for
a certain range of interaction times. We proceed with the
solution of the complete set of the density-matrix equa-
tions showing at the same time when rate approximations
give reasonably accurate results. The first set of results is
shown in Table II where for each intensity we have the
amount of ionization of the resonant isotope and the
selectivity at the laser is tuned around the two-photon res-
onance.

It is evident that increasing laser intensity helps in get-
ting more ionization but at the cost of deteriorating the
selectivity. Table III is the result of a rate-approximation
calculation. In the calculation, we keep two rate constants
S and S,. The result is close to that of the density-
matrix method especially for the high-intensity case.

In the calculation for the case of two lasers, we assume
that synchronized pulses are applied. We choose the
second laser’s intensity such that y5=v,, and y,=2y,,
respectively. The result is compared with that of the
one-laser case, in Table IV.

In the first example, the intensity of the second laser is

TABLE III. Isotopic selectivity in Li. Rate-approximation
result. One laser of bandwidth y; =50 MHz; interaction time
T =30 ns.

Laser intensity I

(W/cm?) 107 3% 10’ 5% 107
Ionization P (%) 25.51 67.57 86.28
Selectivity % 1.72%10~*  1.90x10~%  7.39% 103
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TABLE 1V. Isotopic selectivity in Li. Two-lasers: intensity
of the first laser I,=10" W/cm?, bandwidth of the first laser
Y1 =50 MHz, ionization width caused by the first laser y,=30
MHz, interaction time 7 =30 ns.

Ionization width caused

by the second laser y; y3=0 Yi=7, y3=2y,

19.91 50.12 51.60
1.98x10~* 1.84x10~* 2.57x10™*

Ionization P (%)
Selectivity %

chosen so as to have y;=v, while the Rabi frequency
remains unchanged. As a result, the amount of ionization
increases from 19.91% to 50.12% and the selectivity is
also improved. If we increase the intensity of the second
laser further by taking, for example, y3=2v, as in the last
column of Table IV, the amount of ionization increases to
51.60% but selectivity deteriorates. How strong the
second laser should be depends on the combined con-
sideration of ionization and selectivity. It will be different
from case to case. Nevertheless the above example shows
that using a second laser provides the option to increase
ionization and retain at the same time rather good selec-
tivity.
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FIG. 1. Time-dependent analysis of the isotope separation in
Li. The solid line represents the average ionization rate P/T
and the dotted-dashed line represents selectivity .. I[';=25
MHz, y; =50 MHz. One laser is used; its intensity is (a) 3 X 107
W/cm? and (b) 5 10’ W/cm?.
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TABLE V. Laser-bandwidth effect. One laser of intensity I =107 W/cm?, interaction time T =30

ns.

Laser bandwidth y; (MHz) 0 5 50 500 5000
Ionization P (%) 24.81 24.21 19.91 7.21 0.99
Selectivity . 1.59x10~* 1.63x10~* 1.98x10~* 5.50x10~* 3.06x107?

To demonstrate the laser-bandwidth effect on the iso-
tope separation process, we let y; vary from 0 to 5000
MHz and calculate the ionization and selectivity, al-
though it is technically difficult for such intense lasers to
have bandwidths even as small as a few MHz. Some re-
sults are shown in Table V.

The result is as expected. The narrower the bandwidth
the better the separation effect will be. But it is worth
mentioning here, that from 50 MHz to O, the separation
effect does not improve dramatically.

To explore the important role of interaction time in the
isotopic separation process, we calculate the evolution of
ionization and selectivity with the pulse duration. What
interests us in this process is the total amount of ioniza-
tion P(A=0) and selectivity . at time T. The aim is to
calculate the cumulative quantities rather than the instan-
taneous quantities. In Fig. 1, we present P/T versus T
and & versus T curves. The laser intensities are 3 107
W/cm? in Fig. 1(a) and 5X 10" W/cm? in Fig. 1(b). In
both cases one laser is used to ionize Li atoms. According
to the results of our calculation, P(A=0)/T is much
larger than P(A=12 GHz)/T. Although P(A=12
GHz)/T increases with the duration time T, it does so
very slowly. The range of variation for P(A=12
GHz)/T is much smaller than that for P(A=0)/T. So
& basically depends on P(A=0)/T. As we can see from
Fig. 1, at the beginning of the process, . is very large,
implying a poor selectivity. This is because P(A=0)/T is
still small and comparable to P(A=12 GHz)/T. With
the increase of P(A=0)/T the selectivity is improved.
After a certain interaction time, the average ionization
rate P(A=0)/T increases to a maximum and almost at
the same time the selectivity coefficient .% decreases to a
minimum. This time could be thought of as the optimal
interaction time. After the optimal time, P(A=0)/T de-
creases. Physically this means that the ionization process
slows down. On the contrary, as far as P(A=12 GHz)/T
is concerned, because of the large detuning, the amount of
ionization is still very small at that time and the ioniza-
tion is far from saturation. So P(A=12 GHz)/ T still in-
creases with time even though very slowly. As a result %

TABLE VI. Isotope selectivity in Sr. One laser of bandwidth
vr =7 MHz; interaction time T =50 ns.

Laser intensity I

(W/cm?) 10° 106 107
Ionization P (%) 0.18 3.68 31.83
Selectivity & 7.09x1073  2.64x10~'  9.78x 10!

will increase after the optimal time. Comparing Figs. 1(a)
and 1(b) we find that with the increase of laser intensity
the optimal interaction time becomes shorter. When a
strong laser field is applied, the ionization rate will in-
crease rapidly, saturate, and then decrease very fast. Gen-
erally speaking, the selectivity with a stronger laser field is
worse than that with the weaker laser field. In addition,
the & versus T curve has a deeper dip for the stronger
laser field than that for the weaker one. When the laser is
not so strong, it may be sufficient to choose the interac-
tion time so as to be a bit larger than the optimal time.
For example, while the interaction time is about 10 ns
longer than the optimal time in the weak-field case, the
selectivity does suffer but not much. When the strong
laser field is used, however, the interaction time would be
a very significant controlling parameter in the isotope
separation process.

The general qualitative features of isotope separation in
Sr are similar to those in Li. For Sr, the Rabi frequency
of two-photon resonance transition 5s2'S,—5p2'S, as
well as the ionization width of 5p*'S, state also vary
linearly with laser intensity. Unlike Li, however, the ratio
between them is quite large. As shown in Table I, the ion-
ization width is 1.537 Hz and the Rabi frequency is
301.571 Hz, the latter being almost 197 times larger than
the former. Usually a strong laser would be preferable for
more ionization. But for Sr, the large Rabi frequency will
cause broadening of the excited state, leading to deteriora-
tion of the selectivity. What makes the separation more
difficult in this case, is the small value of the isotopic
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FIG. 2. Time-dependent analysis of the isotope separation in
Sr. The solid line represents the average ionization rate P/T
and the dotted-dashed line represents selectivity *. I',=9
MHz, y, =7 MHz. Two lasers are used; the first laser’s intensi-
ty is 10° W/cm?, the second laser’s intensity is chosen to be such
that y3=10y,.
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TABLE VII. Isotopic selectivity in Sr. Two-lasers: intensity of the first laser I, =10° W/cm?, band-
width of the first laser ¥; =7 MHz, ionization width caused by the first laser y,=30.16 MHz, interac-

tion time T =50 ns.

Ionization width caused

by the second laser v y3=0 y3=10y, y2=507, y>=100y, y3=200y,
Ionization P (%) 0.18 1.96 8.18 14.29 22.44
Selectivity % 7.09%107%  7.17x1073  7.50x1073  7.98x10~%  9.17x 10~}

shift between ®Sr and °°Sr which is only 700 MHz. Thus
with a single laser, good selectivity requires low intensity
at the cost of amount of ionization. Table VI shows that
the amount of ionization is very small when the selectivity
is acceptable. If on the other hand, a second laser of
much higher power is used for the ionization step, and its
frequency is chosen to be sufficiently different from that
of the first so that it does not affect the two-photon tran-
sition, then the ionization step and the two-photon excita-
tion step could match each other. In Table VII we show
examples for the two-laser case. As long as we keep the
first laser at low intensity and increase the intensity of the
second laser, total ionization increases and the selectivity
remains almost unchanged. Even when the intensity of
the second laser is so large that y3=200y,, which indi-
cates that it is roughly about 200 times stronger than the
first one, the selectivity remains in the same order. In
other words, using a laser of 10° W/cm? in the excitation
step and a second laser of 2 10’ W/cm? in the ionization
step, we can obtain 22.4% ionization and have a selectivi-
ty as good as 0.009. From the calculation of this case, we
see how the use of a second laser may be imposed by the
atomic parameter.

When two lasers are adopted, the interaction time still
plays an important role. in Fig. 2 we present P/T versus
T and % versus T curves for Sr isotope separation. The

first laser’s intensity is 10° W/cm? while that of the
second is chosen so that y3; is 10 times larger than y,.
The large Rabi frequency causes the P/T to oscillate and
as a result the selectivity varies with interaction time.
However, as Fig. 2 shows, . reaches a dip when the P/T
is near the peak. In this special example, the optimal in-
teraction time is about 10 ns.

V. CONCLUSION

In isotope separation, both maximum ionization and
best selectivity are desired. Many parameters are involved
in this type of problem. We have presented a discussion
of the essentials of the density-matrix equation formalism
which incorporates all necessary effects. Using this for-
malism we have obtained detailed results for Li and Sr.
Aspects such as laser intensity dependence and laser-
bandwidth effects are discussed. Also the time depen-
dence of the process has been analyzed and realistic calcu-
lations show that there is an optimal interaction time for
isotope separation. A second laser for the ionization step
leads to maximum ionization and improved selectivity.
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