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%e consider the nonlinear three-wave stimulated Brillouin scattering where an initial electromag-

netic wave packet grows backboard in the expense of a constant input pump wave. For long interac-

tion times we show in particular that the backscattered wave envelope exhibits a set of large peaks of
decreasing amplitude, the intensity of the first one growing as t while its width shrinks as 1/t.
Moreover, the sound-wave amplitude saturates. In the limit case of strong damping of the sound

wave the asymptotic behavior is quite different. Implications of these results are considered con-

cerning the observed mechanical fracture of an optical fiber supporting a large laser pulse.

I. INTRODUCTION

Several nonlinear mechanisms are candidates for limit-
ing the intensity of an electromagnetic pulse propagating
along an optical fiber. One of the most important is
stimulated Brillouin scattering (SBS) generated by the
coupling of the electromagnetic (e.m. ) wave with the
thermal acoustic fluctuations of the fiber. Various experi-
mental and theoretical studies have been devoted to SBS
in single-mode optical fibers, ' and also in laser plasma
devices, mainly in order to avoid it. This process is
indeed so efficient that it has been conjectured in the
pioneering paper of Kroll that it could cause the mechan-
ical fracture of the optical material. But such
phenomenon would occur at very large e.m. intensities
which make the dynamics strongly nonlinear, and up to
now not well understood. However results on the non-
linear dynamics are crucial in order to determine at which
flux intensity catastrophic effects such as a mechanical
fracture are expected. Interesting results concerning this
problem have recently obtained by numerical integration
of the equations associated with SBS which show the
complex structure of the backward wave envelope at large
time. We present here analytical and numerical results
which yield the asymptotic time evolution of the ampli-
tude and the shape of the three wave envelopes. We give
an order of magnitude of the radiation pressure of the
backward wave in a typical optical-fiber experiment, and
we compare it with the fracture pressure of the material.
We also suggest that another contributing mechanism
could be the nonlinear propagation of the initial con-
straints generated by the e.m. pulse, after its passage. We
finally emphasize that we consider the pure three-wave
problem; in particular no thermal fluctuations are taken
into account and therefore multiple scattering is absent in
this model.

II. ENVELOPE MODEL

In the simplest version of SBS, two quasimonochromat-
ic waves Ei exp[i (co,t —k, x)), the pump, and

E e2xp[i( cotz+k 2x)), the backward scattered wave, are

propagating in opposite directions and couple with a for-
ward acoustic wave E,exp[i(co, t —k, x)). (For conveni-
ence we describe the acoustic wave by means of a variable

E, which has the dimension of an electric fleld and which
is proportional to the acoustic density p, . ) The frequen-
cies and wave vectors co; and k; =

~
k;

~
obey the conserva-

tion laws of the resonant interaction:

Assuming the waves to be quasimonochromatic is
equivalent to saying that the spatial extension of the three
wave packets is large and therefore that a description of
the interaction in terms of slowly varying complex ainpli-
tudes E;(x,t) is available. Finally we assume, as usual in
monomode fibers, that a plane-wave approximation is jus-
tified. Then the problem is one dimensional in space and
the E; obey the following equations:

(a, +a, )E, = —KE,E, ,

(d, d„)E,=KE,—E,',
(8,+sB„+y)E,=KE,E2 .

E is the SBS coupling constant and y is the damping rate
of the acoustic wave. We neglect the damping of e.m.
waves. The velocity of light is made equal to unity, and
e=c, /c is the ratio of sound to light velocity. We rewrite
Eqs. (1) in dimensionless form after introducing time and
length scales T =1/KEs and L = T, Es being the initial
amplitude of pump Ei, and measuring the fields in units
of Es. We obtain

(&, +B„)Ei—— E,E, , —

(8, —c)„)Ei EiE,*, ——

(a, +ea„+&)E,=E,E,',
where p =y T =2'~ &

T, p =y/~, being the relative
damping rate of the sound wave. The dynamical equa-
tions depend on parameters c and p, and it is important to
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note that, in a typical experiment of nonlinear propaga-
tion with moderate pump energy (say of the order of 1

mW}, (((, may be larger than unity, even though p is small
(say p-10 ). In this case the SBS coupling is indeed
resonant ((o &&1) as it should be in the envelope approxi-
mation; nevertheless the dynamics is a priori of the
"strongly damped" type since the datnping time of the
sound wave is smaller than the characteristic time T of
the nonlinear evolution.

The strongly damped case corresporids to the limit

p »1. Then E, will follow adiabatically the excitation of
fields Ei and E2. This means that E, will be replaced in
Eqs. (2) by

E —E(E2 /y

which gives

(a, +(), )I( = I,I, , -
(()i —~.}I2=IiI2

where I& ——
~ EJ ~

. In Eqs. (3) we use a new time scale,
namely T'=pT/2=ePto(T'. These equations are well
known and are for instance used in the context of SBS in
fibers by Bar-Joseph et al. for studying relaxation oscil-
lations.

Fortunately there exists an exact solution of Eqs. (3},
obtained in 1977 by Chu and Karney. We shall use it for
analyzing the asymptotic evolution of a system corre-
sponding to the initial condition as found in Fig. 1. The
supports of the initial profiles I1(x,O) and I2(x,O) are dis-
joints. I2(x,O) has a finite extension while I1(x,O) extends
to infinity toward the left with constant amplitude. In
other words we study the interaction of a finite packet of
backward waves with a pump of infinite spatial extension.

Let us put Ii(x,O)=Pi(x) and I2(x,O)=P2(x). The
general solution of the initial-value problem is

I,(x,t)=[Z(g) —T(r)] '(8, —(), )T(r),
Iz(x, t)=[Z(g) —T(r)] '((), +(}„)Z(g),

where g=(t+x)l2, r=(t —x)/2, and
2g'

2Z (g') = 1+ f dyp2(y)exp f [pi(z)+ p2(z)]dz/2
—27

2T (r) = —1 f dy—P, (y)exp f [P((z)+Pi(z) ]dz/2
L

For initial disjoint supports, the above expressions reduce
to

2('
z(p= ——,'+exp f pztyny/2

2(= —2+exp f
—2f'

T(r) =
2

—exp f P2(y)dy/2
—2T= —,

' —exp f P, (y)dy
Z)

x~ and x2 being, respectively, the upper and lower bound
of Pi and P2.

We shall now show that the asymptotic profile Iz(x, t)
is extremely peaked in the vicinity of the left bound
xz(t)=xi t of—the wave packet at time t Let. us put
x =x2 —t +q and

2 = f P2(y)dy/2

Z~+ 'II—2t
= f Pz(y)dy/2~ —tP(( —oo ) at large t,Z)

2g' Z2+'g&= f P,(y}dy/2= f P,(y)dyl2.

[A and 8 are the integrals entering above expressions for
Z(g) and T(~).] For P, ( —00 ) =1 (intensity of the pump
normalized to unity), A (t~ —00 )=—t. Concerning 8, it
is determined, for small rl, by the analytic behavior of P2
in the neighborhood of x2. Let P2-a(x —x2)", we obtain
8=art" +'l(n +1). From expression (5}we obtain, in the
limit of large t,

I2 art" Ie ——'+art" +'/[2(n + I)]}

This function is maximum at

[2n (n + 1)/a]1/(n+1)e (/(n+1)—

at which value

2(n n/(n+1)) [a/[2(n + 1)]I
(/net/n

and the width of the peak is of the order of 5.
We see that the backward wave packet is extremely

peaked and that its amplitude grows and its width shrinks
exponentially in time. Therefore this very simple model
exhibits the striking property of the unlimited compres-
sion of the I2 profile. Let us remark that the asymptotic
behavior is completely determined by the analytic proper-
ties of the initial profile P2 in the vicinity of the lower
bound of its support. Such a behavior is obviously singu-
lar, and it may be shown that it does not survive if P2's
support is not left bounded. As an example, if P2 is
Gaussian, then we found that I2 grows only as v t. These
results show that the adiabatic model fails at large time:
Indeed when the width of the I2's peak becomes overly
small, the characteristic time of evolution becomes small-
er than the damping time of the sound wave. We are
therefore led to study the general case of a finite damping.

IV. GENERAL CASE

1

X)

FIG. 1. Shape of the initial eavelopes E~(x,O) and E24'x, O).

The mathematical problem in the three-waves general
case is much more complex. Let us observe that, in the
limit p~O, it reduces to the coupling of three undamped
waves, and the equations are formally integrable by the
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method of inverse scattering. However, in the present
case where one of the waves is of the acoustic type, the
sign of the coupling coefficient is such that no solitonic
solution (i.e., corresponding to a discrete eigenvalue of the
associated spectral problem) is available. Then the ex-
istence of a formal solution is probably not of great help.
Therefore we have primarily made a numerical investiga-
tion. It proves useful to introduce the variable change
(x~x +I;t~t) into Eqs. (2). In terms of these new vari-
ables these equations read:

a,E,=E,E,',
(a, +2a, )E, = —E,E, ,

[a,+(1+.)a„+~]E,=E,E,' .

We are dealing with the same type of initial value problem
as in the preceding section. In addition we assume that
the support of E,(x,O) =0. Again we assume that the sup-
port of E&(x,0) has a lower bound (x=O), and that
Ei(0,0)=0. Then it can be shown that the initial value
problem on R is equivalent to a problem on R +(0, + oo ),
provided we add boundary values E i (0,I ) = 1 and

E, (O, t) =0. The validity of this statement relies upon the
vanishing of E2 and E, at the origin. This initial-
boundary-value problem is more suitable for numerical in-

tegration. Now we observe that e in a fiber is very small
(a=10 ), and it appears in Eqs. (7) only as a slight modi-
fication of the relative velocity of the sound wave. There-
fore one may conjecture that to take into account a
nonzero c, has only a small effect on the asymptotic
behavior of the solutions. This will be later confirmed.
Another remark is the following. It may be shown (see
Appendix A) that, with the above boundary conditions,
the relative phases p; of the complex amplitudes E; are
time independent, except for sudden m shifts which appear
when the fields vanish (i.e., these shifts are simply associ-
ated with the change of sign of the fields when they cross
value zero). An obvious consequence is that the y; stay
also x independent as they were at initial time. Then it is
easily seen that Eqs. (7) reduce (with the help of an ap-
propriate scaling) to

Y, (x, t) =fi(g),

Y2(x, t) = t~fI(g),

Y, (x, r) =r~f, (g),

(9)

where g=xt" M. aking the change of variable x~g, t~t,
we have

a, a, +ger)a, ,

a„gr"a, .

&~N0/3; c~O.I; gu I; t~II

T % I ~ T 8 '~ I '
~ T

C7 ~ T W

I
I ~ T ~ F I ~

10 15 80

8~30/3; c~O.I; pa~i; t=i3

comes dissipationless. Moreover the observed time varia-
tion of the amplitudes (see Fig. 5) and of the profiles
shape suggest asymptotic scale laws.

Let us look for an asymptotic solution of the form:

a, Y, =Y, Y, ,

(9, +28„)Yi ———Y2 Y, ,

[8,+(1+a)B„+p]Y,= Yi Y2,

where the Y, are the real part of the complex fields E;;
i.e., Y;. =ReE;—:E . In the limiting case e=O, we have
elaborate a convenient Runge-Kutta algorithm (see Ap-
pendix 8) for solving Eqs. (8). This algorithm appears
quite stable and fast and it has provided the profiles plot-
ted on Figs. 2—4.

Our results reproduce the complex structure of the
backward wave profile observed by Damzen and Hutchin-
son with successive nphase shifts of .Ei and E2. As in
the strongly damped model we observe the remarkable un-
limited compression of the first E2 peak and its shift to-
ward the front edge of the backward pulse. These results
suggest the same remark as in the preceding section,
namely: at large times, the dynamics of the first peak be-

10

FIG. 2. (a) Three-wave envelopes for E =ReE;=F; in the
reference franc of backward wave E2. transient stage at t=8.
Dimensionless units: E ~E /E~; t~t/T=tKE~; x~x/I.
=KE~/c; p= y T =2'~& T =y/(KE~ )= 1. Boundary-initial
conditions: EI(0,t)=1; E2(O, t)=E,'(O, t)=0. Initial profile for
E2(x,O}: amplitude a=0.1; width 5= 3 . The figure shows the

initial depletion of the pump E'I. (b) Same as (a) at time t=16.
A second E2 peak appears, while E~ changes its sign: phase re-
versal of the pump field ("m pulse"}.



ASYMPTOTIC EVOLUTION OF STIMULATED BRILLOUIN. . .

Replacing in Eqs. (8) the Y, by expressions (9), we obtain The compatibihty condition of these equations is obvious-

ly a= 1, P=O, and v= 1. Therefore the asymptotic solu-
tions are of the form:

Now the idea of our asymptotic expansion is to look for a
solution of form (9), with finite f;, in the limit taboo.
From numerical results we infer that v= 1 and P & 1. This
leads us to neglect the first left-hand-side terms of Eqs.
(11) and (12) as being small compared to the second ones.
Then Eqs. (10), (11),and (12) can be put in the form

(a)

Yi(x, t) =fi(g),

Y,(x, t) =tf, (g),

Y, (x, t) =f,(g),

e~0.1; pa~i; to~ISO t ~880 at~IS

I T r I W r r r r

«+vÃt)f2~(f if. )=t~"
2dgi~(f2fs)= —t +

~ 80/3; I 0.I: It I; t ISS

Sl
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FIG. 3. Steps in the asymptotic time evolution (note that a
different scale has been used f'or E2). (a) t= 136; an opposite ~
pulse appears in E2 profile. Note that E2 and E,' amplitudes
slowly decrease as a result of dissipation. {b) t=288; the figure
shows the complex structure of the envelopes.

0 2

X
FIG. 4. Space-time evolution of the envelopes for

136~ t &288. {a) E'l pump wave envelope. (b) E2 backscattered
wave envelope (scale is, o ). (c) E,' acoustic wave envelope.
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where g=xt, the f~'s obeying the system of ordinary dif-

ferential equations:

fz+Pfz/dC=f if.

2df i/d g = fzf-.

(1+&)df./dC=f ifz .

(14)

(15}

(16)

The general solution of Eqs. (14)—(16) depend upon three
parameters A;, some of which could a priori be deter-
mined by boundary conditions at /=0, namely fi(0) =1
and fz(0)=f, (0}=0. Here we encounter a difficulty.
Condition fz(0) =0 must be shown impossible to satisfy,
except for the trivial solution fz(g') =0. Indeed the solu-
tion of Eqs. (14)—(16) must reduce at small g to the solu-
tion of linearized Eqs. (14) and (16), where fi has been re-

placed by unity. These equations yield the following
equation for fz.

gfz'+2f'z =fz
whose general solution is of the form

fz g' [A——Ji(2i~g)+BNi(2i~))],

Ji and Ei being the usual Bessel and Neumann functions,
and A and 8 arbitrary constants. fz(0) is either infinite
(8~0) or equal to A &8=0).

We conclude that, if there exists a particular solution of
Eqs. (14)—(16)—let us call it in vector form Y"—which is
an approximate asymptotic solution of the partial dif-
ferential equation (PDE) Eqs. (8), its support must not in-
clude some neighborhood of the origin. This statement
can be made more precise by considering the solution of
linearized Eqs. (8) around Y, =1, namely:

B, Yz ——Y, , (19)

[~t+(1+e)~X+pl Ys = Yz (20)

We show in Appendix C that, for an initial condition of
the form

Yz(x,0)=x" (for small x),
the asymptotic solution of Eqs. (19) and (20) is

Yz(x, t)=t "PJ„(2iv g), (21)

Y, (x,t)=t '"+"P[(1 n)J—„(2iv g) 2igJ—„'(2iW()],
(22)

d~a0/a; a~0.t; pa t

CS T ~

N ~
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d~ao/S; cmo. f; ym i
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t (t~=136,345; t =421,3575)
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FIG. 5. Asymptotic time evolution of: (a) Amplitude of E2 first peak (E2,„). (b) Distance of this peak from the front's edge
(&2,„). (c) and (d) same but for E,. (Subscripts inf and sup delimit the ordinate interval, and min and max the time interval. )
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@=0.1; p,=0; t=i00

r r I r ~ r ~ I r ~ ~ r I r ~ r ~

'
~

L~~ aX a I' =~l a L I a
~ r r

S

I ~ a a ~ I ~ a a ~ I

(a)
a a a a I a a a a

~ j+

I&a
lg

where g=xt /(1+ a). I.et us call Y' this solution
[Y'=(FI,Fz F, )] with Fi(x,t)=1. The domain of valid-
ity of Y' is roughly defined by the condition that the
product F2F, is much smaller than unity. This gives, by
using the asymptotic evaluation of the Bessel functions:
g&&P=(nlogt) . As a result, the lower bound of Y"
support, being of the order of P, is not small [remember
of course that x' =(1+e)P /t is very small: therefore
the excluded domain in x space is vanishingly small at
large t]. Y' and Y" should be linked through the exact
solution of the nonlinear PDE which in some neighbor-
hood of g' is neither of type Y' nor of type Y [see Fig.
6(b)].

Since g' is a (logarithmic) slowly varying function of
time, we may conjecture that there exists a perturbative
analysis of the exact solution based on separate time
scales, in which Y"would be a slowly varying function of

time through the parameters defining the general solution
of Eqs. (14)—(16). A first parameter can be associated
with the integral of motion resulting from Eqs. (15) and
(16):

f1+[(1+v)/2]f, =la' .

Making the integration constant equal to unity means that
E keeps the same value in domains I and II. This choice
is indeed supported by the results of numerical integration
of Eqs. (8) (we have observed that E is a weakly oscillat-
ing function of g whose amplitude is a decreasing func-
tion of time). We are then left with a two-parameter fain-
ily of solutions of Eqs. (14)—(16). An additional require-
ment could be that Y does not diverge at the origin,
which would indeed determine another parameter [cf. Eq.
(18)]. But this argument is not tenable since P is not
small; therefore the flt of Y ' with numerical solution Y
of the PDE at a given time has been done by taking IC= 1

and by fitting the values of F2n and F," with the corre-
sponding components of Y at some g arbitrarily chosen in
domain II. Before proceeding to the comparison between
Y ' and Y, the following remark is in order. As was told
before we expect, in the case @&0, Y" to be a good ap-
proximation only for sufficiently small x, and in particu-
lar in the neighborhood of the first peak. On the contrary
the domain of validity of Y" may be much larger when
p=0. Indeed no damping of the acoustic field is to be
taken into account, and this corresponds to the fact that
in Eqs. (11) and (12) we only have to neglect g/t com-
pared to t in the factor multiplying differential operator
t)~. On the contrary, for @&0, we have to take into ac-
count the term pf, in Eq. (12).

A last question concerns the overall effect of SBS in-
teraction. Is the interaction zone finite'? In other words,
does E, vanish at large distances from the Ei front, and
what happens to E,'7 We have already seen that, in the
limit of infinite damping of the acoustic wave, a total re-
flection of the backward wave is achieved. No obvious
answer is available in the general case of finite damping
but it can be given in the limit p~o provided Y" is actu-
ally a good approximation of the asymptotic solution: let
us introduce in Eqs. (14)—(16) and (23) written for K= 1

the change of variables:

f, =sin(8/2),

f, =v 2cos(8/2) .

(24)

(25)

~ a a a I ~ ~ a a I a a
a r

(b)
I a ~ a a I a a a a
1

We then obtain

(26)

FIG. 6. Comparison of the numerical solutions of PDE (8),
(a) with the solutions of the ordinary differential equati. ons
(14)—(16) with invariant K=1 [cf. Eq. (23)], (h) in the case
p, =0. (a) Solution of the PDE at t=100. (b) Solution of Eqs.
(14)—4,'l6), with integration constants chosen in order to fit E,'

values at the first zero of E2. The transient solutions around
x =[log(t)]'/t linking Y' and Y"are plotted in dotted lines.

(8"+8'+sin8=0 .

It is interesting to point out that Eq. (27), for 8~8+m,
has been used by Lamb, Jr. for describing the propagation
of a npulse in a lossle.ss amplifier, and is connected with
a model for the treatment of ultrashort optical pulse prop-
agation. ' Moreover Eq. (27) can also be derived from the
sine-Gordon equation by looking for a self-similar solu-
tion of the variable g=(x+t)(x t) "We sho—w i.n Ap-
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pendix D that solutions of Eq. (27) vanish when g~ ao.
Then asymptotic solution of linearized Eq. (27) around
8=0 is

Fi-6i=g '~ sin(2V g+P) (P arbitrary constant),

I'2-tg ~ sin(2V g+P),
r, =v 2.

Let us also observe that a consequence of Eqs. (14)—(16)
with IC=1 is that the maximum value of F, is v 2, a
property which is remarkably weil verified by numerical
integration of the PDE, on the successive maxima of F,
We see on the above formulas that the overall spatial ex-
tension of the backward field grows like t I ~i while Fi
amplitude decreases as (xt) '~. This shows that the
pump's tail is large, but the refiection coefficient goes to
unity at large time.

Equations (14)—(16) have beini integrated numerically
and their solution (for a=O) is compared in Figs. 7 with
the numerical solution of Eqs. (8) for a long time
( t= 288). The agreement is quite satisfactory as far as the
erst peak region is concerned for )I = l. In the limiting
case p, =0 the agreement is still better, and the domain of
validity of Y'I larger, as expected; however a deviation is

observed between the spatial period of the oscillations in
Y" and Y (see Figs. 6). It is difficult to say if this devia-
tion would disappear at larger times, or if it belongs to the
asymptotic state (and then would be obtained in a con-
venient separate time-scale analysis).

Summarizing the above results on asymptotic behavior,
we have shown that:

(1) The backward wave profile begins with a peak of
very large amplitude followed by several secondary peaks.

(2) The amplitude of the first peak in the asymptotic re-

gime grows as t (the intensity as t ), and its width shrinks
as I/t. These two facts are obvious consequences of the
scaling law.

(3) The intensity of the sound wave saturates at twice
the value of the pump intensity (in our system of units).

(4) The existence of the scaling laws seems to confirm
the conjecture that the dynamics of the first peak is in-
sensitive to dissipation.

(5) In the limit p~O the nonlinear reflection of the

pump w'ave is total.
We also emphasize that the above results are restricted

to the validity of the three-wave envelope model. This ob-
viously gives a lower bound of the peaks' width of the
backward wave profile.

a-ao/3; e-o.i; ~s; t see

'~ ~ I ~

(Oj-

V. MECHANICAL EFFECTS ON THE FIBER

Can we expect from the above results a mechanical ef-
fect of the backward wave packets on the fiber? At first
sight we could guess that the sound wave's pressure could
be responsible for that. Let us put some numbers in the
theory.

(1) The proportionality coefficient a=p, /E, between E,
and acoustic density fiuctuation p„ is given by

a= [kgb/(cki)]'~i,

where

I a a a a I a ~ ~ I i i w a I a a ~ ~

0.1 0.8 0.5

f ~ T F I I l ~ v I ~ ~ ~ ~ I I ~ T 0 I T v w v

E (b)

a

~ a a I a a ~ ~ I ~ I ~ ~ I I s . E 4

0.1 O.R

X

0.3 0.4 0.5

FIG. 7. Same comparison as in Fig. 6 for the case @&0
(p = I } for t =288. The two graphs (a) and (b) are restricted to
the neighborhood of the first peak.

k2 ——mn pi2/(Apo), ki k2pon e——o/(2c, ) .

Using Cotter's notations po is the unperturbed fiber den-
sity, eo the vacuum dielectric constant, n the refractive iii-
dex, I, the laser wavelength, and pi& the elasto-optic coef-
ficient. With the numerical values of the Cotter's article'
we find a=10 ' (for A, =155pm, y/co, =10 i).

(2) The SBS coupling constant is E=k, /a. We find
X=25. For a fiber's effective cross section of 6X10
m, we find that the amplitude Er of the pump field is
E~=IO V/m for a laser with power equal to 10 W, and
that p =0.2.

With these numerical values we find for the pressure's
amplitude of the sound wave: p, =c,p, =c,aE~, since we
have seen that E, remains smaller than v 2E~ This gives.
p, =0.3 bars. Such a value has to be compared to a
relevant elastic coefficient of the fiber, namely the Young
modulus, or more accurately to the fracture pressure pf of
the material. A typical value is pf-500 bars. We there-
fore conclude that the sound pressure generated by
resonant SBS interaction cannot produce any appreciable
mechanical effect on the fiber. We are then led to consid-
er the effect of the radiation pressure of the backward
wave, which is a static pressure. Considering the same
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laser power, and a pulse long enough to contain 400 in-

teraction ti~es (an interaction length of 500 m), then we

find that a+2-50 bars, a value which is not so far from

Pf
At this point a new interesting problem arises. We have

seen that important pressure gradients are likely to appear
on the fiber as a result of the nonlinear propagation of the
backward pulse. Therefore large local constraints have
been set up, which will propagate along the fiber after the
passage of the e.m. pulse, and we can expect that this
propagation itself will exhibit a nonlinear behavior. Non-
linear propagation of a longitudinal strain in an elastic
medium is not a usual matter. We have already derived
the equation of propagation along a thin rod starting from
an expression of the free energy of the elastic medium ex-
panded up to third order in terms of the stress tensor
components. Our preliminary results show that the solu-

tions have a characteristic tendency of steepening the ini-
tial gradients, which suggests that this nonlinear propaga-
tion may be an additional factor reinforcing the initial
constraints produced by the radiation pressure. A detailed
study of this phenomenon will be presented in a forth-
coming paper.
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but p, +0. Then p =0 and since B,ip; =0, Eqs. (A2) give
B,qr;(x, O)=0. Now it is easily seen that B,gr;(x, O) also
vanish. For instance, we have

d i}i%i+i}i(P2P /Pi)+(P2P /Pi)(co P)~H'

which vanishes at t=O In. the same way all the time
derivatives of the q& s vanish at t=O. Assuming the
analyticity of the ip; s at initial time we conclude that they
reduce to constants. Making now p, ~O, we obtain our
previous initial conditions at t=0+, which ends the
proof.

APPENDIX 8

It is convenient, for numerical integration, to reinove in
Eqs. (8), for a =0, the space derivatives by introducing the
new functions z;(x, t) defined by

z, (x, r) = Y, (x +2r, r),

z2 (x, t)= Y2(x,t),
z, (x,t)=Y,(x+r, r) .

Then the z s obey the following nonlocal equations in x:

B,zi(x, t) = —z2(x +2r, t)z, (x +t, t),
B,z2 (x, t) =z i (x 2t, t)z, (x r,—t), —

(8, +p, )z, (x,r)=z, (x —r, r)z, (x+r, r) .

APPENDIX A

(i}i+i}x)p&= pipsco&-
i}x)p2=pipscosip i

(a, +sa„+p, )p, =pip, cosq,

(Bi+8 )f'i=(p2p /pi)sing,

((},—B„)ip2——
(p ipse /pg)sing,

(&,+&&„)y,=(pip2/p, )sinq,

(Al)

(A2)

Let E; =p;e '. With the chosen initial conditions, ini-
tial phases ipi and qadi are obviously independent of x (ipi
can be taken null} while p, is undetermined (E,=0). The
following argument shows that p;(x, t) keep constant
values in time.

First we observe that our initial conditions actually
determine y, at t =0+. Indeed Eqs. (8) for E, imphes
that limq OE (x,h) =hEi(x, O)E2 (x,O), which gives

q, (x,O+ )= —yi. Let us rewrite Eqs. (8) in terms of the p;
and Qg

'.

Discretizing variable x by setting x =jh, we obtain a set
of functions zj(r), obeying ordinary differential equa-
tions. These equations will be considered as depending ex-
plicitly on time through the spatial arguments of zj func-
tions, namely: x+t, x+2t. We can then apply to the nu-
merical integration of these equations a standard four-step
Runge-Kutta algorithm. However we must consider the
stability of this algorithm. It is known, in the case of
PDE describing counterstreaming wave interaction that a
numerical instability occurs when the spatial step li is
larger or equal to the temporal step ho. We have there-
fore been led to use h =ho/2. Then at each step of in-

tegration the pairwise zj's are incremented according to
the Runge-Kutta algorithm, while the odd ones are calcu-
lated by four-term interpolation using the pairwise z~'s.
This procedure proves to be remarkably stable.

APPENDIX C

From Eqs. (19}and (20) of the main text, we find that
F2 obeys the following equation:

(Bzt+B„ai+I at) Y2 Y2— (C 1)
where ip=yi (ip2+ ip, ). —

Let us now consider slightly different initial conditions,
namely the g& s keep the above values (y,.=0, ip, = —ip2)

where we have made the change of variable
x = xl(1+a). Initial a-nd boundary conditions are
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Y,(x,O) =0,
Y2(x,O)=px" (n integer),

Y, (O, t)=0 .

From the two last relations ere deduce

B,Yz(O, t)= Y2(O, t)=0 T. akmg the Laplace transform of

Eq. (Cl) yields

[(s —1)+s (8„+p)1y(x,s) =(s +p+8„)Y,{x,O), (C2)

where y (x,s) is the Laplace transform of Y2(x, t)
Integrating Eq. (C2) with respect to variable x, and ac-

counting for the boundary conditions, gives

n —1

y(x, s)/p= —x"/a —(1+a/s) g n(n —1) (n —k+1)x" "/o"+'+n.'(I —e™)/o"+
k=1

with a =(1—p,s —s )/s.
A priori the singularities of y (x,s) in s space are located

at s=O and at the roots s, z of o=O. It can be shown
that s& 2 are not poles of the above expression. Indeed

y (x,s) reduce, in the vicinity of a=0, to

y(x, s)/p=x "/s +n!(1—ps)/s~ g x a" '"+"/k!,
k=n+1

which expression is regular for a=O. We are therefore
left with the unique s=O singularity. Inverting the La-
place transformation, we shall use for t px the following
I" contour in the s-complex plane:

Y2 At —'(i g)'J, (2i Wg), (C7)

which formula generalizes result (C5) to the case of nonin-

teger n. Using Eq. (20) we obtain

Y, =At "+ '(ig)'[(1 a)J, (2i—~g) 2igJ,'(2—i v g)] .

(C8)

from which we deduce the equation obeyed by y2.

gd tp2/dg +(a+1)diaz/dg=p2,

whose solutions vanishing at the origin are of the form

g2=A( ~ J (2i~g) .

At small g, q2 behaves hke A(i) g /I'( —a), where I"

is the gamma function. Therefore a solution Y2 propor-
tional to P (a arbitrary real) at the origin is of the form

Finally the only contribution to this integral comes
from the essential singularity at s=O associated with the
exponential term e in expression (C3), and we obtain

Yz(x, t)/p=n! f (1+ais)e~e"/a" +'ds .
(F)

The residue of s=O singularity is obtained by expanding
the integrand in powers of s. In the limit of large t, we

obtain

Y2(x, t)ip=n ~~" g gk/(k!(n +k)!),
k=O

where g=xti(1+a) (returning to old x variable). Expres-
sion (C4) can be expressed in terms of a Bessel function of
1IIlaglIia~ algume11t:

Y2(x, t)=pn!(i') "t "P J„(2i~g) .

This result can be rederived by looking for an asymp-
totic solution of Eqs. (19) and (20) of the form

Y2 ——t y2(g), Y, =t~p, (g). The argument given in the
main text only leads to the relation P=a —1, and not to
the complete determination of a and P values (this is due
to the absence of the equation obeyed by Y', ). We then
obtain

(1/q&, )(a+gd/d g)gran ( I iyz)dp, /dg= 1,——

APPENDIX 0
Equation (27) of the main text can be rewritten as

($8'}'=—sin8, from which

8'= —g
' f sin8(~)d~, (D 1)

and we want to show that I8'I ~0 when gazoo. Eq.
(Dl) gives

(D2)

Le«s first assume that, at large g, 8(g) is a monotonic,
say growing, function of g. Then inequality (D2) shows
that, when g~ 00 e'ther 18 I

~k & 1 or
I
8

I
~0. In the

last case the theorem is verified, while in the former
8~kg+ p(g), where

I p(g) I
& g. Then, since

sin8 =sin(k g)cosp+ cos(k g)sinp, we have

sin ~ ~ sin + cos ~ac,

and by Eq. (Dl),
I

O'I 0.
Now this argument can be extended to the case where

8(g') is unbounded but no longer monotonic. More pre-
cisely we assume that

I
8

I
& A (g), with P (g) monotonic,

and that A(g)=8/A is such that g
' f )I.(~)dr~0 when

(~oo. A(g) and A' are bounded. From 8'=A'X+A)I. '

and Pq. (D2) we conclude that A, '~0. Since
'
fo i4(r}dr&0, then A,~k&0. We conclude that

I
O'

I
~kA, and we recover the preceding case.
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In the last case to be considered, 8 pill be assumed
bounded. We shall show that

~ g
'

j~ sin8d~
~

either

goes to zero or to a finite value k as g~ ao. Let us put
8=p+a{g) with f ada& oo. Then a(g) has a well-

defined Fourier transform: a(g) = gk akcos(kg+ pk ).
Now sin8=sin(p+a) can be expanded in terms of Bessel
functions as

lcxkcos(k /+)4k )S168~8 ~ 8 —C.C.
k

iakcos(kg+Pk) .„ in(kf+Iik)
8 i J~Gke

n

Then sin8 appears as a sum of terms proportional to
ig;n;(k&f+P;(e ' ' ' ', whose contribution to expression (Dl) van-

ishes except for terms where g,. n;(k;g+P;)=0, which
terms yield a f-independent contribution. Finally we ob-
tain that 8'~8 (8 constant). Therefore 8~8/+v(g),
with

~
v~ &g and putting this asymptotic expression in

Eq. (Dl) we obtain as above that
~

8'
~

~0.
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