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We use a quantum-electrodynamical, many-body treatment to show mirrorless optical bistability
in terms of the spatial properties of coherent dipole-dipole interactions among interacting two-level
atoms. The general theory is applied to two special cases: (1) a thin sample of two-level atoms, with
a width smaller than a resonance wavelength and (2) a long sample of two-level atoms, with dimen-
sions very large relative to a resonance wavelength. While for the thin sample we are able to use a
mean-field approximation with validity, for the long sample we are compelled to take into account
retardation and propagation. In both cases bistability is found to be related to a renormalization of
the frequency (or relaxation rate) that is inversion dependent. For the long sample the frequency re-
normalization is significant for high atomic densities and for large oscillator strengths.

I. INTRODUCTION

Intrinsic optical bistability (IOB) that is not caused by
external feedback such as mirrors, has been the subject of
recent intense interest.! It was first pointed out by
Bowden and Sung®® and by Bowden®® that optical bista-
bility (OB) may occur for a system comprised of a collec-
tion of atoms interacting with the electromagnetic field
and driven by an externally applied coherent field without
external feedback. The first detailed experimental study
of intrinsic optical bistability was conducted almost
simultaneously by Hajto and Janossy® using amorphous
GeSe;, who interpreted their results as due to
temperature-dependent-induced optical absorption in the
material, and Bohnert, Kalt, and Klingshirn,* who used
CdS, and also Rossmann, Henneberger, and Voigt® using
the same material. The process in the first case depends
upon absorption due to temperature variation induced by
the incident field, whereas the latter cases depend upon sa-
turation of absorption due to the generation of carriers in
the material, and the IOB has been interpreted6 as due to
band-gap renormalization. Since the earlier works, there
have been many theoretical and experimental investiga-
tions of various forms of IOB.!

We present here a fully quantum-mechanical treatment
of mirrorless (intrinsic) optical bistability (IOB) from a
collection of a large number of spatially distributed two-
level atoms interacting via the electromagnetic field and
driven by an externally applied coherent field. Atomic
cooperative effects in IOB have been treated in previous
works either by assuming a small volume with dimensions
smaller than a wavelength,>” or by assuming a system
with a small number of atoms in a semiclassical approxi-
mation.® In the present work we treat the problem from
the many-body standpoint by developing the Heisenberg
equations of motion in the “bad-cavity” limit, in which
the variables associated with the field modes are adiabati-
cally eliminated.’

The general theory is developed in Sec. II. We distin-
guish between terms in the equations of “spontaneous,”
“cooperative,” “induced,” and “Langevin force” origin.
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While the spontaneous, induced, and Langevin force
terms depends only on the single atom response, the
cooperative terms include factors of operators belonging
to pairs of atoms with arguments expressive of retarda-
tion. In the cooperative terms the explicit spatial depen-
dence of the dipole-dipole interactions enters in the coeffi-
cients B(i,j) which turn out to be identical to those ob-
tained from classical dipole-dipole interactions.'®!!

We treat the steady-state conditions for our system and
by taking the expectation values in the Heisenberg equa-
tions of motion, the Langevin force terms vanish. In the
present work we do not treat fluctuations and the effects
of quantum fluctuations in our system will be presented in
a separate work.'?

It has been established in various works® 315 that fac-
torization of the cooperative terms in steady-state results
in a cubic nonlinearity and bistability. After establishing
that factorization of different atomic operators is a suit-
able approximation for the distributed many-atom system
we show bistability effects under steady-state conditions
for two cases: (1) the thin sample geometry with propaga-
tion length smaller than a resonance wavelength and (2)
the extended sample geometry where propagation effects
are important.

In Sec. III we treat the thin sample in the mean-field
approximation in which we use average values for the ex-
pectation values of the atomic operators. The present
mean-field approximation ignores propagation effects and
this is justified for a thin sample with a propagation dis-
tance smaller than a wavelength. For the steady-state
conditions a cubic equation is derived which shows bista-
bility in the parameter space. The linear stability analysis
for this system is described in Sec. IV.

In Sec. V we treat a long sample by taking into account
retardation and propagation. We analyze the cooperative
effects and find that under appropriate approximations
the conventional Maxwell-Bloch equations are reproduced
but with a correction that can be expressed as an
inversion-dependent renormalization of the frequency.
This correction is proportional to the number of two-level
atoms per cubic wavelength and to the decay constant,
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and therefore should be important for high densities and
strong oscillator strengths. By taking into account propa-
gation and retardation effects in the long sample we find
the interesting result that the two phases, of high and low
transmissivity, may coexist spatially in the material.

II. GENERAL THEORY

Our system is composed of a large number of spatially
distributed two-level atoms coupled to each other only via
the electromagnetic field and driven externally by an ap-
plied radiation field taken to be in a coherent state and
propagating along the z axis with a linear polarization in
the x direction. The Hamiltonian which describes the
system is given in the rotatmg wave and in the electric di-
pole approximations by'®'’

H =H0+H’

Ho=1#o 2 o +#3 wranay (1)
k

i=1
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where H.c. denotes the Hermitian conjugate and

2wy,
114

0 __

Pp;X.

H, includes the free atoms and free-field Hamiltonian.
We use here the usual operators related to the SU(2) alge-
bra for a single atom: o reprments the population-
inversion operator and a‘t) are the raising and lowering
operators for atom i with coordinates r;. wp is the Rabi
rate associated with the applied coherent field. g and kg
are the carrier frequency and wave vector of the applied
field, respectively. V is the quantization volume for the
field, w; is the frequency of the mode k, X is a unit vector
in the direction of polarization, P is the dipole moment
matrix element, and P; is the unit vector for the dipole of
atom i.

The Heisenberg equations of motion for our system are
obtained in the bad-cavity limit by adiabatically eliminat-
ing the variables associated with the field modes.” We
eliminate the rapid time and spatial dependence of the di-
pole operators by substituting

k=l 0.(!) () a.(i)(t)e_i(‘”o‘_ko'ri) 2
) Y i —ilagt —kgT,) +olt)=04 :
—1ﬁ/2i§1wRa(ﬂe @t ~ko; +H.c., We get
]
(i) N .
datzit(t)z“ﬁl[ﬁ(‘)(t)+1]— 23 B*(i,))o'lo(t)o') |t ‘c‘] Ko7 opa Do(1) +20 Lo 0)f Hrs,t) +Hec. |
j=1
(3)
(l) (t) ) r,'j 5 _iko.(r._.t.) (0; (i) 0
dt =(io—PBy)o'} (t)+2 B(i,j)o's [t ——F |o(t)e R ] + /7, 001) @
j=1
T
The prime on 3, indicates jwi, and f'*r;?) and Fykry)=e ®51 k2 rh4i/k3r—i/kry)

f=r;,t) are Langevin force operators which stem from
the vacuum contribution to the fluctuations due to normal
ordering of the field operators relative to the atomic
operators in products of field and atomic operators in the
equations of motion. These operators are § correlated,

(f(+)(riyt)’f(—)(ri’t’))Cra(t'—t’) . (5)

In our fully quantum-mechanical model B,=28, B,=8,
where B=2 | P | %k /34 is defined as half the spontaneous
decay constant. If we introduce additional homogeneous
broadening, B, and B, may be considered as empirical con-
stants.”> In such an approach the model becomes less
rigorous, but more general.

The coefficients B (i,j), derived from the model, are
identical to those obtained from classical dipole-dipole in-
teractions:'!

B(l,])= %B[ [ﬁ, 'ﬁj —(f’l '?ij )(ﬁ] -i",-j)]FI(kr;j)

+(P; Ty )P Ty )Fulkry)} (6)

where

)]

kr;

Frlkry)=e""(—2i /k3r} —2/k%) .

Here k =w/c, P; and P; are the unit vectors for the di-
poles of the atoms i and j, r;=r;—r; and r;= |1, —1; |
is the distance between the two atoms.

In developing Egs. (3) and (4) we sum the interaction of
atom i with many other atoms described by the summa-
tion over j (j=i). In the present work we assume a model
based upon many-body interactions in which each atom is
influenced by the ensemble average over all other atoms.
Such an assumption is justified when the number of atoms
within a volume of a wavelength is large ( >>1). We ap-
ply the equations either for steady-state conditions or for
small fluctuations near the steady state (i.e., linear stabili-
ty analysis). Under such conditions any correlation which
is generated between the atoms due to initial conditions
(like that assumed in the transient behavior of superradi-
ance) is destroyed by the dephasing mechanism. The time
of decorrelation is of order 1/B where B is the spontane-
ous decay time and becomes shorter if we add additional
homogeneous broadening due to collisions. Under such
conditions, as shown recently by Hopf and Bowden® in
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numerical simulations for a finite number of atoms within
a volume of a wavelength, we can adequately justify fac-
torization of the products of the dipole operators among
different atoms. Factorization is further validated by the
fact that there is a distribution of retardation times.
Therefore we use the approximation

(o Lo(00 ot —r;; /€)) ={a'o(8)) (6Pt —ry /) ®

(oot —rij /)0U()) =o' Lot —rj /) (aP(0))

etc. By taking into account that expectation values of
Langevin force terms vanish, [Eq. (4)], we get

d{o,(1))? n (i) N s o ikoGi=1), (i) )

——dt——=—ﬁl[(a, (0)+1]— |og{oLo(D))+2 3 'B*(i,jle ° ' /(o o)) (oLt —r; /c)) +c.c. |, (9)
j=1

d{(a¥y(1)) . _ N —ikg(r—1)), (i .

—;+=(m—ﬁz)<a‘;’0(t)>+<w;/2)<a£”(t)>+ 3 Bi,jle T Gt —ry /) 0AD) (10)

where c.c. denotes the complex conjugate and A=w—ay
is the deviation of the applied field frequency from reso-
nance. The reaction field is defined as

N
e(r)= 3 Bli,jle T (Pt —ry/e)) . (D)
j=1
The cooperative terms in Egs. (9) and (10) represent the
effect of the reaction field, which for low values of the
externally applied field, reduces the internal field. For
higher values of the external field its value decreases sud-
denly and thus, as shown below, produces a first-order
phase transition. In order to illuminate the physical prop-
erties of our system we apply our general equations to two
special cases: (1) a thin sample of two-level atoms, with a
width smaller than a resonance wavelength A and (2) a
long sample of two-level atoms, with dimensions very
large relative to a wavelength.

III. THIN SAMPLE

For coherent radiation impinging on a thin film of
two-level atoms with a large surface area and a width
smaller than a wavelength A we ignore the time of retar-
dation 7;;/c by a Taylor expansion of the operators and
use the approximation

e (12)

Under these approximations we can use mean values for
the expectation values of the atomic operators:

(o Lot —r;; /0)) {0 Po(1)) = (' Do(1)) = o 4 o(D)) ,
(oot —r;; /€)Y = V() ) =(aP(1)) = (o _o(1)) .
After using Egs. (12) and (13) in Egs. (9) and (10), we get

d{o,
<;Tt ) =—Bl(<0'z)+1)——4RCF<0'+0)<U_0>
—0)R<U+0)—(0;<0'_0> . (14)
d *
—ﬁi::-—())—:(iA—Bz)(U.Hﬁ+r(0+o><01)+ sz (o,),

(15)

where all expectation values are taken at the same time ¢

i=1

and

N
= 3'B(ij).
j=1

The mean-field approximation [Eq. (13)] becomes a very
good approximation when I' has only a small dependence
on the location of each atom i in the thin sample. In such
cases one can use Egs. (14) and (15) with some mean value
for T. In order to check the validity of this approxima-
tion and also in order to give some estimates for the value
of I we have made the following calculation.

We assume that the thin sample is a cylindrical slab
with a thickness d <<A. The z direction is defined as the
direction k of propagation of the external field and the di-
poles induced by the externally applied field are assumed
to be oriented along the X axis. As described in Appendix
A we calculate I as a function of z; where (0,0, z;) is the
location of the atom i and where the origin of the coordi-
nates is assumed to be at the center of the cylinder. The
general result represented in (A6) is quite complicated but
for the limit kd —0, ke—0, d /e=const, we get a simple
analytical result:

(d*/4—z])'"?

: 3
___3‘»3ﬂ 1+ln——€—— , (16)

I'=
8’
for
—d/24€<z;<d/2—€,

where n is the density of the two-level atoms. In the cal-
culation we excluded a volume +7e’=1/n about r; from
the integration range in order to exclude the self-field of
atom i. I' depends on z; only through the logarithmic
function which is a slowly varying function. This con-
clusion is quite good even for atoms which are very near
the surface [based on the comparison between Egs. (A7)
and (A8)].

For the thin film the main contribution to the reaction
field comes from the dipole field in the “near region.”!®
If the system has dimensions larger than a wavelength
and if the dipole-dipole interaction is of spherical or cubic
symmetry the average contribution of the dipole-dipole in-
teraction to the near region vanishes. This is similar to
the condition in the usual derivation of the Lorentz-
Lorenz correction.!® However, for a thin film with a
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width much smaller than a wavelength this local symme-
try is broken due to the width of the film, and the contri-
bution of the near region field becomes dominant. We
find that in this case the value of " diverges unless we ex-
clude the self-field from the volume of integration.

Under the steady-state conditions we get from Egs. (14)
and (15):

—(wg /2){0;)
(iA—B)+T(o,) ’

Bi({a, Y+ D[({o, YRel'—B,)*+ ({0, YImT +A)?]
=—B,|og | Xo,) . (18)

Equation (18) is a cubic equation in the population inver-
sion and as proved in the next section, it leads to bistabili-
ty effects. The critical points for {o,) as a function of
| wg | ? are determined by taking the derivative of Eq. (18)
with respect to (o,) and setting d |wg |2/d{0o,)=0.
We get

(0;)*+F(0,)+G =0, (19)
4
2 3Re(INB; 4 | Im(I)A
=i 2 2 4 m)a 20)
37T T3] e (

G [(A2+4B2) —2Re(D)B,+2 Im(D)A+(B,/By) | wg | 2]
- 3T |2 '
21)

This must be satisfied simultaneously with Eq. (18). The
condition for the threshold is G =+F? and by assuming
the approximations I' >>8,, I'>> | A |, we get

Blor|® 1 22)
B |T|* 3
for the threshold condition.

We find that, as the field intensity increases and the
Rabi parameter becomes large relative to the cooperative
constant T', the two-level system switches suddenly from
the low-transmission branch to the high-transmission
branch. We find here the interesting result that the
switching occurs at relatively lower intensities if dephas-
ing mechanisms due to collisions are introduced. This is
illustrated in the next section in Fig. 4.

In previous works,"»%>”? it was shown that nonlinear re-
normalization of the frequency may lead to bistability. In
the present case such renormalization is obtained from

A;=B1+2B,—2Re(T'){0,) ,
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Eqgs. (14) and (15) in which A—A+ {0, )Im(T).
According to the theoretical calculations made in Ap-
pendix A, I' becomes imaginary in the limit that kd —O0,
d/e=const. By performing numerical calculations of I
for a thin sample, we found that the real part of I" was
small relative to the imaginary part and that the ratio de-
creases as a function of the density of atoms. While the
imaginary part of I leads to a renormalization of the fre-
quency, the real part of I, which is positive, is related to
superradiance. According to the present analysis both the
real part and imaginary part of I' may lead to bistability.
In treating the bistability effect for the thin sample one
should note that (o) is proportional to wk and it will
tend to zero only for a vanishing external field amplitude.

IV. LINEAR STABILITY ANALYSIS
FOR THE THIN SAMPLE

Here we show that the solutions to the steady-state con-
ditions of Eq. (18) indeed exhibit bistability. Let us con-
sider a stationary state of the thin sample. For infini-
tesimal perturbations of the system from the stationary
state the linearized set of equations obtained from Egs.
(14) and (15) are

ds(ao,
<d;' ) =—B16<0'z>—4Rer(8<0+0>)<a_0>
—4Rel(0,0)(8{c_o))
—wg(8(040))—0r8{a_o) , 23)
ds
——<doti(l)—=(iA—Bz)8(a+0)+F(8(0+0))<02>

+IT{(00)(8(0,))+(wg/2)8{a,) , (24)

where (o) and (o,) are again given by Eqgs. (17) and
(18). The equation for 8{o_q) is the complex conjugate
of Eq. (24).

By considering the three-component vector q
=(8(0,),8(040),8(0_o)) and following a general pro-
cedure for linear stability analysis,'® we introduce in the
linearized equations the ansatz

q(t)=q(0)exp(At) , (25)

where A is a complex number. We get the polynomial
equation for the stability eigenvalues,

A.3+AIA.2+A2)\.+A3=O, (26)

where

Ay =(B1/B2)({o;) + DIm(D)[A+Im(T){c, )]+ (38,/B)Re(I')({c, ) + 1)[Re(T" )0, ) —B>]
+[({o; )Rel' = B2)*+({o, YImT + AP][1—(B,/B2)( 0, ) +1) /{0, )]

+2B18,—2BRe(T) {0, ) —2(ReD)X By /By) o, Y o, )+ 1), (27)
A3=2B,({0o,)+1[|T|*0,)—BRe(T)+AIm(I)]—(8, /{0, )){({o; )Rel' = B,)*+[ {0, ) Im(T)+AJ?*} .
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In deriving Eqgs. (27) we eliminated (o), {0 _o), and
| wg | % by the use of Eqgs. (17) and (18).

According to the Hurwitz criterion!® the polynomial of
Eq. (26) has only zeros with negative real parts if the three
conditions

A1>0, A1A2—A3>O, A3>0 (28)

are fulfilled. These are therefore the conditions for our
system to be stable under small shifts from a stationary
state.

Since, according to Eq. (18), the equation for {(o,) at
the turning points is

_A3
BZ(O'Z>

the condition of stability A3 >0 implies that the system
is, as expected,“‘ unstable in the region in which we have a
negative slope:

d{o,;)/d |og |*<0.

For positive values of Re(I") the condition 4; >0 is al-
ways fulfilled (as (o, ) is, in our system, always negative).
Our system becomes unstable in regions of positive slope®
when Re(I') is negative and 2Re(I'){0,) >B;+B,. Al-
though in our theoretical and numerical calculations,
Re(I") was positive, there might be cases of subradiance
for which Re(T") is negative and the instabilities obtained
in such cases should be of interest.

In order to illustrate the properties of the steady states
in the thin sample we have calculated (o, ) as a function
of |wg|? [Eq. (18)] and the stability conditions [Egs.
(28)] for various examples in which we vary the physical
parameters. Some representative examples are pictured in
Figs. 1—5 where the solid and dotted curves represent,
respectively, stable and unstable steady states. We have
taken B;=2, so that all rates are essentially in units of
(B,/2); thus | wg | % is in units of (B,/2)%.

While in Figs. 1—4, Re(I') >0 and the instabilities are

=0, (29)

0 ju'"|2 100

FIG. 1. {o,) as a function of |wg |* for a thin sample with
normalized parameters: B;=2, B,=1, A=0, Re(I')=0. The
imaginary value of I is given by (a) I'y=—4, (b) I';=—6, (c)
I''=-8,(d I'/=—10, (¢) [';=—12, (f) I'y=—14. The solid
and dotted curves represent, respectively, stable and unstable
states.
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0 |w'n‘2 100

FIG. 2. (o,) as a function of |wg |2 for a thin sample with
normalized parameters: 8;=2, B;=1, Re(I')=0, Im(I')=—10.
The deviation from resonance is given by (a) A=—8, (b)
A=—-6,(c) A=—4,(d) A=—-2,(e) A=—1, (f) A=0, (g) A=%,
(h) A=1. The solid and dotted curves represent, respectively,
stable and unstable states.

only in the regions of a negative slope, in Fig. 5, Re(T") <0
and the instabilities are also in regions of a positive
slope.’ These figures demonstrate therefore the condi-
tions 4, >0 and A43;>0 for the stability of our system.
The condition 4,4, > 4; was fulfilled in all the numeri-
cal calculations in which 4, >0 and 43 >0 and therefore
did not give additional instabilities.

According to the theoretical analysis the figures are in-
variant to simultaneous changes in the signs of Im(T") and
A. As demonstrated in these figures the bistability is re-
lated to the imaginary and/or the real part of I'.

In Figs. 1-3 and 5 we assumed the relation 8,=p,/2
which follows from the fully quantum-mechanical model
in which the spontaneous decay stems from the self-field

-1 4 T T

0 60 100 150

|“’r||2

FIG. 3. (o;) as a function of |wg |2 for a thin sample with
normalized parameters: B;=2, B;=1, A=0, Im(I')=—10.
The real part of I is given by (a) T =0, (b) T =2, (c) 'x =4,
(d) Tr=6, () Cx=8, () T =10. The solid and dotted curves
represent, respectively, stable and unstable states.
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|2 100

0 !‘"m
FIG. 4. (0, ) as a function of | wg |2 for a thin sample with
normalized parameters: 8;=2, A=0, Re(I")=0, Im(T")=—10.
The dephasing constant is given by (a) B,=2, (b) B,=1.5, (0
B,=1.

part of the atom-field interaction. For taking into ac-
count additional homogeneous broadening, one may con-
sider the ratio 3,/f, as an empirical parameter and the ef-
fect of changing this parameter is illustrated in Fig. 4.

The threshold condition given in Eq. (22) is in fairly
good agreement with our numerical calculations. The ex-
plicit threshold condition for bistability in terms of Im(I")
shown in Fig. 1 is consistent with similar threshold condi-
tions determined in Refs. 7 and 8. Further conclusions on
the qualitative behavior of our system can be obtained by
examining the systematic dependence of the figures on the
various system parameters.

V. LONG SAMPLE WITH RETARDATION
AND PROPAGATION EFFECTS

For coherent radiation transmitted through a long sam-
ple, with dimensions very large relative to a wavelength.,
we use again Egs. (9) and (10) and study the effect of the
spatially varying parameters on the behavior of the sys-
tem. We define the z axis as the direction of propagation
of the externally applied field, and the x axis as the direc-
tion of polarization. Since the dipoles induced by the
externally applied field are approximately in the x direc-
tion we simplify the expression given in Eq. (6) for B(i,j)
by assuming

pi=p;=PX. (30

For calculating the cooperative interaction of atom i
with all other atoms we separate this interaction into two
parts. We choose a sphere around the atom i with a ra-
dius 7, that is on the order of a wavelength, so that within
this sphere we can ignore retardation and use the mean-
field approximation. The second part of the cooperativ?

3BnA’
i=—"——y,
1 872 Y
1. 14cos(2R)  2sin(2R) 1—cos(2R)
Y=R — 3sin(2R) — R U P
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feodl?

RY Y
0

100

FIG. 5. (o) as a function of |wg |2 for a thin sample with
normalized parameters: B,=2, B,=1, A=0, Im(I')=-10.
The real part of T is given by (a) g=—2, (b) Tx=—6, (c)
'k =—10. The solid and dotted curves represent, respectively,
stable and unstable states.

interaction includes the interaction with all other atoms
that are not located inside the sphere. For the second part
of the interaction we take into account retardation and
propagation effects but simplify the calculations by using
the approximation r; >A, where r; is the distance be-
tween atom i and any other atom j that is outside the
sphere. We transform the summations to integrations by
using spatially continuous variables for the atomic expec-
tation values. We calculate the total cooperative effect by
adding the two parts of the interaction and the result, as
expected, is found to be independent of our arbitrary
choice of the radius rq of the sphere.

By using the mean-field approximation of Eq. (13) we
express the first part of the cooperative interaction as

[d (o)) /dt)coop = —4{0'Lo(1)) (' o(1) )ReT ,
. ‘ . 31)
[d(020(2)) /dt)conp, iy = o' Dol 1)) O}

where for ky~k =kZ we get

F1= E(i)B(i,j)e_ik(zi—zj) .
J

(t)ry,

(32)

In Appendix B we calculate I'; for the atom i which is at
the center of a sphere with a radius ry and exchange the
summation by integration for rahdomly distributed two-
level atoms with a density »n. In principle, one should
eliminate the self-field by excluding from the integral a
small sphere around atom i with a radius € where
(4m/3)e’n=1. Since the integrand is well behaved for
small r (see Appendix B), we assume the approximation
€=0 for ke << 1.

The final result for ' given by Eq. (B4) can be written
as

(33)

sin(2R)
R 3

sin(2R)  2cos(2R)
R R?

i|—+%++cos(2R)—

(34)
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where R =kry.

The real and imaginary parts of ¥ are described in Fig.
6 as functions of ro/A. Ignoring small oscillations we
find that Re(T") is given approximately by a linearly in-
creasing function of rg,

Re(y)zzTﬂro—-:R . (35)

As we increase the radius ry of the sphere, the contribu-
tion from the far dipoles becomes more dominant and the
effect of the oscillatory part of Re(y) becomes negligible.

Im(y) is a negative oscillating function of ry/A with an
averaged value

Im(y)=—1, (36)

which is independent of ry for ro/A > 1. The imaginary
part of v is therefore contributed by the dipoles in the “in-
termediate region” and its effect on the equations of
motion is to produce, through Eq. (31), a renormalization
of the resonance frequency. According to Eq. (33), the
frequency renormalization is proportional to the density
of the two-level atoms and to the oscillator strength.

For calculating the second part of interaction with the
distant dipoles which are outside of the sphere, we should
take into account retardation and propagation effects.
For this purpose it is convenient, at this stage of the cal-
culation, to describe the expectation values of the atomic
operators as continuous variables. We define (o _o(7,1))
and {o,(r,1)), respectively, as the complex dipole and the
inversion of population per unit volume at point r, con-
sistent with the volume of integration of the sphere of ra-
dius ry. Equations (9) and (10) can be written in the new
variables as

d{o,(r,t
M:—ﬂ,[(a‘,(r,t))—l—ﬂ]
dt
—{[26*(r,t) + w0 1o(r,t)) +c.C.} ,
(37)
d (r,1))
(U+tr=(i1§—32)(0+o(f,f)>
+ |+ =t [Kownn),  G8)

where O(r,t) is a continuous variable corresponding to the
definition of reaction field O(r;,?) given in Eq. (11), and is
separated into two parts: ©=0;+ 06, corresponding to
the contributions within and without the sphere. Accord-
ing to Eq. (31), we get

0.(r,0)= (0, o(r,t))T 1 /n . (39)

,{o4olz',t —(z—2")/c))

6m

Re(7)

Im(y)

£L
A

FIG. 6. Re(y) and Im(y) described as functions of r/A.

For calculating the second part of the reaction field, we
use the “radiation-zone approximation”!® for B(i,j),
which is valid for 7;; > A:

ikr;.
3iB e Y

B ==

sin’a , (40)

where a is the angle between r; and the x axis. The
second part of © can be written as
e kolr=r) ik |r—r'|

2
X K [r—r] sin‘a . (41)

r—r
c

N 3iB ’ ’ ’
62(l',t)=———£—- f d3r <0’+0 r,t—

The prime on the integral indicates that we have to ex-
clude from the volume of integration the sphere which in-
cludes the first part of the interaction.

For calculating ©,(r), we assume that the externally ap-
plied radiation is nearly resonant with the two-level atom-
ic frequency so that k~k, and find that, because of the
spatial phase factors the main contribution to the integral
comes from the region for which ko (r—r)~ |r—r']|.
The strength of the coherent dipole-dipole interaction for
each atom is therefore mainly due to atoms that are locat-
ed at smaller values of the propagation distance in the
material. Following these considerations, we assume that
the expectation values of the atomic operators per unit
volume depend on the z coordinate and use in Eq. (41) the
approximation sina=1, |r—r'|~|z—z'| (for the
denominator) and |y—y'| <« |z-Z'|, |x-—x']|
<< |z—2"| (for the exponents). Following these approxi-
mations we get, by a straightforward integration of Eq.
(41) over the x and y coordinates, the result

_ _ =3iB ¥ o
O,(r,1)=065(z,t)= 2 fo dz k(z—=z")

_ 378
==z

J [ dxdyexplik[(y —y")+(x —x")’]/2(z —2")}

/, P dz o olz't —(z—2)/c)) 42)
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We find according to Eq. (42) that for each atom the
dipole-dipole interaction with other atoms decreases as the
inverse of distance but that due to phase factors appearing
in the equations, the number of atoms in the opposite
direction to that of propagation of the external field,
which contribute to the cooperative effect, increases pro-
portional to distance. So the explicit dependence of the
cooperative dipole-dipole interaction on distance is com-
pletely eliminated.

The choice of ry defines the spherical volume over
which O, is calculated. This volume must be larger than
a cubic wavelength in order that the radiation-zone ap-
proximation be valid in the calculation for ©,. On the
other hand, it should be small enough so that retardation
effects are not important within this sphere. By using Eq.
(36) we find that the average value of Im(y) is indepen-
dent of r for r/A> 1. The effect of Im(y), which enters
in Eq. (39) via Eq. (33), is very important as it leads to a
renormalization of the frequency. Following these con-
siderations we define r, to be of order A, but somewhat
larger than A

Concerning Re(y) one should note that the effect of
Rely) in O is overwhelmed by the large value of ©, in
the long sample, since both terms influence the relaxation.
Also by ignoring retardation in the small volume of radius
ro and by neglecting the small oscillations of Re(y) in Eq.
(34) we find, according to Egs. (31) and (39), that the net
effect of Re(y) is to allow the upper limit of integration
for ©, to become z instead of z —ry.

We arrive now, after the above calculations, to an im-
portant physical result. Since (o (z',t —(z —z')/c)) of
Eq. (42) is taken at retarded time the derivative d©,/dz
gives the form of Maxwell’s equation in the slowly vary-
ing envelope approximation and in the retarded time
frame. However, because of the macroscopic self-field
contribution ©,(r) we should take into account in Eq. (38)
frequency and dephasing renormalization that is propor-
tional to the population inversion {o,(r)). This result is
remarkable since in all textbooks on quantum optics in
which Maxwell-Bloch equations are used, this effect is
neglected. The present analysis shows that it may be im-
portant for high densities and large oscillator strengths.

In summary, the equation for ©,(z,t) is given by the
form of the ordinary Maxwell equation in the slowly
varying envelope approximation:

1 96,(z,1) + 90;(z,t) 3nB

” 3 FR R (o,olz,0)), (43)

while in the Bloch equations represented by Egs. (37) and
(38) one should substitute © =60, +O,, where O, leads to
a renormalization of the frequency, relaxation, and de-
phasing.

In the present theory the spherical volume over which
the discrete variables are averaged to obtain the continu-
ous variables can be of order ro>A. The use of the fac-
torization and mean-field approximations for calculating
O, is justified only for densities which are sufficiently
large so that we have many atoms within a volume of a
wavelength.

In previous works, it has been shown that a renor-
malization of frequency can lead to bistability. In the

1,2,7,8
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present work we have clarified the nature of this effect in

a many-atom system and found that the renormalization

of frequency is proportional to the decay constant 8 mul-

tiplied by the number of two-level atoms per cubic volume

of wavelength, consistent with the results of Refs. 7 and 8.
If one introduces in Eqgs. (37) and (38) the definitions

or(r)=wg +203(r1),
['=64(r)/(0 (1))
~—i(3/87%)+A°8,

(44)

these equations are of the same form as Egs. (14) and (15)
for the thin sample, with an imaginary value for I'. The
threshold condition for bistability represented in Eq. (22)
will be correct here also when we exchange wg and I" by
wr and I, respectively. In the long sample, |z (r)| will
be a decreasing function of the distance along the z axis.
We get therefore the important result that the two phases
of high and low transmissivity may coexist spatially in the
material.

VI. CONCLUSIONS

In the present work we have presented a general
quantum-mechanical treatment of coherent dipole-dipole
interactions in a coherently driven collection of a large
number of spatially extended, two-level atoms, and have
shown that a frequency renormalization (as well as relaxa-
tion renormalization) that is proportional to the popula-
tion inversion exists and may lead to intrinsic optical bi-
stability. In the context of the general theory we clarified
by our analysis the relation between these effects and the
use of the conventional Maxwell-Bloch equations.

We conclude from the present analysis that intrinsic
(mirrorless) optical bistability may be produced by a thin
sample of two-level atoms with a width smaller than a
wavelength, due to a local spatial symmetry breaking. A
system of a thin sample with two-level atoms might be
realized in experiments with Rydberg atoms. While the
present analysis is suitable mainly for an atomic system, it
suggests that similar effects may be obtained by using
crystals with a high density of bound excitons with large
oscillator strengths. The treatment of the long sample
shows the possibility that two phases, of high and low
transmissivity, may coexist spatially in the material.

According to the analysis in the present article, the ef-
fects of intrinsic bistability follow mainly from the
inversion-dependent frequency renormalization. For the
long sample, this conclusion follows from Egs. (37) and
(38), with the value of ©,=I"(o ) given by Eq. (44)
(where I'" is imaginary). For the thin sample, it follows
from Eqgs. (17) and (18), with the value of T estimated in
Eq. (A7) (the effect of relaxation renormalization ex-
pressed by the real part of I is negligible for high densi-
ties). In order to get the phase transition in the two cases,
the frequency of the coherent radiation should be some-
what lower than the atomic frequency and of such a value
that the frequency renormalization will bring it in and out
of resonance as a function of the value of {(o,). To ob-
tain a good condition for intrinsic bistability, ImI" should
be made an order of magnitude (or more) larger than f3,,
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where B, is the relaxation rate for the complex dipole.
Assuming for the pure quantum case B,=pf, where B is
one-half of the spontaneous decay rate, we find that we
need approximately 50—100 (or more) atoms within the
volume of a cubic wavelength in order that the effects will
be significant. If we introduce additional homogeneous
broadening, which increases the value of B,, the density
should be increased by an additional factor of B8,/8. The
present effects should therefore be significant for high
densities and/or large oscillator strengths and when the
mechanism of spontaneous decay is strong. The intensity
of the external field for which the phase transition occurs
can be estimated by (22).

In the present work we have used the mean-field ap-
proximation in the small volume to evaluate ©,, Eq. (39),
which enables us to treat intrinsic bistability by an analyt-
ical quantum-mechanical calculation. The validity of the
present model is supported by previous treatments of this
problem from other points of view. The use of a semi-
classical model’ consisting of the Maxwell-Bloch formula-
tion for a medium consisting of laser-driven two-level
atoms with the local-field correction, where the mean-
field and slowly varying envelope approximations were
not made, gives precisely the same results for the renor-
malization of frequency and the same threshold condi-

INTRINSIC OPTICAL BISTABILITY IN COLLECTIONS OF . . .

2 ds2 Praax )
=%Bn fo do f_dﬂdz fpmin pdp[sm2¢F,(kr)+cos2¢Fn(kr)],
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tions for bistability in the thin sample as the present work.
The results of the heuristic model® which treats the intrin-
sic bistability and the dynamical statistical behavior by
numerical simulations, for a finite number of atoms
within a cubic wavelength quantitatively confirms the
essential deterministic results derived in the present work,
as well as that of Ref. 7. However, the present treatment
is more general than the previous work, and is also analyt-
ical and therefore should be of much interest. We hope
that experiments will be done for observing the phenome-
na predicted theoretically by the present analysis.
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APPENDIX A: CALCULATION OF T FOR THE THIN
SAMPLE

The present theoretical calculation is done by using the
approximation (13) and assuming ky~k=kZ2. Locate
atom i at (0,0,z;) and assume cylindrical symmetry, where
the origin of coordinates is in the center of the cylinder.
Then

(A1)

where r =[p*+(z —z;)*]'/%. In addition, we exclude a volume (4/3)me’=1/n about r; from the integration range. Then,

performing the angle integration, we find

3 d/2 Pmax max Z +€ pmax
T=3pn| [, dz [[" pdp+ I mdz [ pdp+ Jo—edz [ 22, _, pap e |IFer)+Fulkn)] (A2)
Now,
fpdp[FI(kr)+Fn(kr)]= frdre”"(—-i/kr—l/kzrz—i/k3r3)
=—1/k* [ dR (i +1/R +i/R?) (A3)
where R =kr, so
3 1'an [ d/2 max max z+e Rmax ] iR, : . 2
— 3T | Joee® fklz zldR+f_d/2 wroes AR+ [ dz [, AR MG+ 1/R+i/RY) (A%
since
e®(i +1/R +i/R?)=0/3R (e’®—ie'R/R), (AS)
) . iR, (2)
l‘=——3— 1rB3n k a7 dz | o Rmax'® __ e
2 k —d/2 R ax(2)
. ike d/2 . ik |z—z |
—2¢ek |etke_ e [ ] lkiz-—zlg_- e
€k |e J e +f_d/2 ke Iz ,
Rnax (D) =[P+ (z =272 . (A0
Now assume kd —0,ke—0,d /e=const. Then
3mBn |, . 9% dz 5—€ gz 3iBnA’ (d?/4—z})'/?
M=— - aamE)
2 k3 2 +i f ite (z —z;) e f d/2 (z; —2) ]_ 82 I+ln ’ (A7)
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for —d/24€<z <d/2—e. For |z; | =d/2 we get by a similar calculation, the result

3lﬁnk
F'=-— 1+In
1672 ————(1+Ind /e) .

(A8)

APPENDIX B: CALCULATION OF I' FOR A SPHERICAL SAMPLE

Let I;

I‘,_z B(i,je

1——an de [ def
=3B f desmef

* dr risin?0

Let x =cos6; then,
,
3 max
==7Pn
2 B J"min

=3apn [ " drr?|(sinkr)/kr[Fy(kr)+Fu(kr)]+

min
or, with kr =R

61an f max
R,

317'Bn f max
R,

2coskr  k#Wi-2

=0 and use spherical coordinates. Then, with ky=k=kZ, and by using the approximation of Eq. (13), we have

" dr rsinfe ™ ©0[ (sin%6 sin’¢ + cos?0)F;(kr) +sin®6 cos’pFyy (kr)]

e*r<os0[ (sin%0 + 2 cos?0)F(kr) +sin*6F (kr)] . (B1)

dr f_ll dx rcos(krx){ Fy(kr)+ Fy(kr)+x*[Fy(kr)—Fy(kr)]}

k*r? + k33

sinkr

[Fi(kr)—Fy(kr)] ] (B2)

R{sinR[1/R —3/R*—i(1—2/R?4+3/R*)]+cosR[3/R*—i(1/R —3/R?)]}eR

R{1+1/R*+3/R*+(2/R —6/R%)sin(2R)—(1—5/R*+3/R*)cos(2R)

—i[(2/R —6/R*)cos(2R)+(1—5/R?+3/R*)sin(2R)]} . (B3)

Since the integrand is well behaved for small R [it is O (R?)+iO(R)], we take R, =0 and let R,,—R. The integra-

tion then gives

3BnA’ 1. 14cos(2R) 2sin2R  1—cos(2R)
I = —_— — _
1= R — 5sin(2R) R R2 E
, 71 sin(2R)  2cos(2R)  sin(2R)
—_—r 4 — — B4
+i =+ 5cos(2R) > 3 (B4)
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